Restructured the interdependencies within the BMWlibs (maybe other commits will follow)
This commit is contained in:
519
src/external/BMWtools/BMWIntegrator.h
vendored
Normal file
519
src/external/BMWtools/BMWIntegrator.h
vendored
Normal file
@@ -0,0 +1,519 @@
|
||||
/***************************************************************************
|
||||
|
||||
BMWIntegrator.h
|
||||
|
||||
Author: Bastian M. Wojek
|
||||
e-mail: bastian.wojek@psi.ch
|
||||
|
||||
$Id$
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
/***************************************************************************
|
||||
* Copyright (C) 2009 by Bastian M. Wojek *
|
||||
* bastian.wojek@psi.ch *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License for more details. *
|
||||
* *
|
||||
* You should have received a copy of the GNU General Public License *
|
||||
* along with this program; if not, write to the *
|
||||
* Free Software Foundation, Inc., *
|
||||
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
||||
***************************************************************************/
|
||||
|
||||
#ifndef _BMWIntegrator_H_
|
||||
#define _BMWIntegrator_H_
|
||||
|
||||
#include "Math/GSLIntegrator.h"
|
||||
#include "Math/GSLMCIntegrator.h"
|
||||
#include "TMath.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
/**
|
||||
* <p>Base class for 1D integrations using the GNU Scientific Library integrator.
|
||||
* The function which should be integrated has to be implemented in a derived class.
|
||||
* Note: The purpose of this is to offer an easy-to-use interface---not the most efficient integration routine.
|
||||
*/
|
||||
class TIntegrator {
|
||||
public:
|
||||
TIntegrator();
|
||||
virtual ~TIntegrator();
|
||||
void SetParameters(const std::vector<double> &par) const { fPar=par; }
|
||||
virtual double FuncAtX(double) const = 0;
|
||||
double IntegrateFunc(double, double);
|
||||
|
||||
protected:
|
||||
mutable vector<double> fPar; ///< parameters of the integrand
|
||||
|
||||
private:
|
||||
static double FuncAtXgsl(double, void *);
|
||||
ROOT::Math::GSLIntegrator *fIntegrator; ///< pointer to the GSL integrator
|
||||
mutable double (*fFunc)(double, void *); ///< pointer to the integrand function
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Constructor of the base class for 1D integrations
|
||||
* Allocation of memory for an integration using the adaptive 31 point Gauss-Kronrod rule
|
||||
*/
|
||||
inline TIntegrator::TIntegrator() : fFunc(0) {
|
||||
fIntegrator = new ROOT::Math::GSLIntegrator(ROOT::Math::Integration::kADAPTIVE,ROOT::Math::Integration::kGAUSS31);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Destructor of the base class for 1D integrations
|
||||
* Clean up.
|
||||
*/
|
||||
inline TIntegrator::~TIntegrator(){
|
||||
fPar.clear();
|
||||
delete fIntegrator;
|
||||
fIntegrator=0;
|
||||
fFunc=0;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Method for passing the integrand function value to the integrator.
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value of the integrand
|
||||
*
|
||||
* \param x point at which the function value is calculated
|
||||
* \param obj pointer to the integrator
|
||||
*/
|
||||
inline double TIntegrator::FuncAtXgsl(double x, void *obj)
|
||||
{
|
||||
return ((TIntegrator*)obj)->FuncAtX(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Calculate the integral of the function between the given boundaries
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - value of the integral
|
||||
*
|
||||
* \param x1 lower boundary
|
||||
* \param x2 upper boundary
|
||||
*/
|
||||
inline double TIntegrator::IntegrateFunc(double x1, double x2)
|
||||
{
|
||||
fFunc = &TIntegrator::FuncAtXgsl;
|
||||
return fIntegrator->Integral(fFunc, (this), x1, x2);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Base class for multidimensional Monte-Carlo integrations using the GNU Scientific Library integrator.
|
||||
* The function which should be integrated has to be implemented in a derived class.
|
||||
* Note: The purpose of this is to offer an easy-to-use interface---not the most efficient integration routine.
|
||||
*/
|
||||
class TMCIntegrator {
|
||||
public:
|
||||
TMCIntegrator();
|
||||
virtual ~TMCIntegrator();
|
||||
void SetParameters(const std::vector<double> &par) const { fPar=par; }
|
||||
virtual double FuncAtX(double *) const = 0;
|
||||
double IntegrateFunc(size_t, double *, double *);
|
||||
|
||||
protected:
|
||||
mutable vector<double> fPar; ///< parameters of the integrand
|
||||
|
||||
private:
|
||||
static double FuncAtXgsl(double *, size_t, void *);
|
||||
ROOT::Math::GSLMCIntegrator *fMCIntegrator; ///< pointer to the GSL integrator
|
||||
mutable double (*fFunc)(double *, size_t, void *); ///< pointer to the integrand function
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Constructor of the base class for multidimensional Monte-Carlo integrations
|
||||
* Allocation of memory for an integration using the MISER algorithm of Press and Farrar
|
||||
*/
|
||||
inline TMCIntegrator::TMCIntegrator() : fFunc(0) {
|
||||
fMCIntegrator = new ROOT::Math::GSLMCIntegrator(ROOT::Math::MCIntegration::kMISER, 1.E-6, 1.E-4, 500000);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Destructor of the base class for 1D integrations
|
||||
* Clean up.
|
||||
*/
|
||||
inline TMCIntegrator::~TMCIntegrator(){
|
||||
fPar.clear();
|
||||
delete fMCIntegrator;
|
||||
fMCIntegrator=0;
|
||||
fFunc=0;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Method for passing the integrand function value to the integrator.
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value of the integrand
|
||||
*
|
||||
* \param x point at which the function value is calculated
|
||||
* \param dim number of dimensions
|
||||
* \param obj pointer to the integrator
|
||||
*/
|
||||
inline double TMCIntegrator::FuncAtXgsl(double *x, size_t dim, void *obj)
|
||||
{
|
||||
return ((TMCIntegrator*)obj)->FuncAtX(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Calculate the integral of the function between the given boundaries
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - value of the integral
|
||||
*
|
||||
* \param dim number of dimensions
|
||||
* \param x1 lower boundary array
|
||||
* \param x2 upper boundary array
|
||||
*/
|
||||
inline double TMCIntegrator::IntegrateFunc(size_t dim, double *x1, double *x2)
|
||||
{
|
||||
fFunc = &TMCIntegrator::FuncAtXgsl;
|
||||
return fMCIntegrator->Integral(fFunc, dim, x1, x2, (this));
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and a d_{x^2-y^2} symmetry of the superconducting order parameter.
|
||||
* The integration uses the Cuhre algorithm of the Cuba library.
|
||||
*/
|
||||
class TDWaveGapIntegralCuhre {
|
||||
public:
|
||||
TDWaveGapIntegralCuhre() : fNDim(2) {}
|
||||
~TDWaveGapIntegralCuhre() { fPar.clear(); }
|
||||
void SetParameters(const std::vector<double> &par) { fPar=par; }
|
||||
static int Integrand(const int*, const double[], const int*, double[], void*);
|
||||
double IntegrateFunc();
|
||||
|
||||
protected:
|
||||
static vector<double> fPar; ///< parameters of the integrand
|
||||
unsigned int fNDim; ///< dimension of the integral
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density along the a-axis
|
||||
* within the semi-classical model assuming a cylindrical Fermi surface and a mixed d_{x^2-y^2} + s symmetry of the
|
||||
* superconducting order parameter (effectively: d_{x^2-y^2} with shifted nodes and a-b-anisotropy).
|
||||
* The integration uses the Cuhre algorithm of the Cuba library.
|
||||
*/
|
||||
class TCosSqDWaveGapIntegralCuhre {
|
||||
public:
|
||||
TCosSqDWaveGapIntegralCuhre() : fNDim(2) {}
|
||||
~TCosSqDWaveGapIntegralCuhre() { fPar.clear(); }
|
||||
void SetParameters(const std::vector<double> &par) { fPar=par; }
|
||||
static int Integrand(const int*, const double[], const int*, double[], void*);
|
||||
double IntegrateFunc();
|
||||
|
||||
protected:
|
||||
static vector<double> fPar; ///< parameters of the integrand
|
||||
unsigned int fNDim; ///< dimension of the integral
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density along the b-axis
|
||||
* within the semi-classical model assuming a cylindrical Fermi surface and a mixed d_{x^2-y^2} + s symmetry of the
|
||||
* superconducting order parameter (effectively: d_{x^2-y^2} with shifted nodes and a-b-anisotropy).
|
||||
* The integration uses the Cuhre algorithm of the Cuba library.
|
||||
*/
|
||||
class TSinSqDWaveGapIntegralCuhre {
|
||||
public:
|
||||
TSinSqDWaveGapIntegralCuhre() : fNDim(2) {}
|
||||
~TSinSqDWaveGapIntegralCuhre() { fPar.clear(); }
|
||||
void SetParameters(const std::vector<double> &par) { fPar=par; }
|
||||
static int Integrand(const int*, const double[], const int*, double[], void*);
|
||||
double IntegrateFunc();
|
||||
|
||||
protected:
|
||||
static vector<double> fPar; ///< parameters of the integrand
|
||||
unsigned int fNDim; ///< dimension of the integral
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and an "anisotropic s-wave" symmetry of the superconducting order parameter.
|
||||
* The integration uses the Cuhre algorithm of the Cuba library.
|
||||
*/
|
||||
class TAnSWaveGapIntegralCuhre {
|
||||
public:
|
||||
TAnSWaveGapIntegralCuhre() : fNDim(2) {}
|
||||
~TAnSWaveGapIntegralCuhre() { fPar.clear(); }
|
||||
void SetParameters(const std::vector<double> &par) { fPar=par; }
|
||||
static int Integrand(const int*, const double[], const int*, double[], void*);
|
||||
double IntegrateFunc();
|
||||
|
||||
protected:
|
||||
static vector<double> fPar; ///< parameters of the integrand
|
||||
unsigned int fNDim; ///< dimension of the integral
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and an "anisotropic s-wave" symmetry of the superconducting order parameter.
|
||||
* The integration uses the Divonne algorithm of the Cuba library.
|
||||
*/
|
||||
class TAnSWaveGapIntegralDivonne {
|
||||
public:
|
||||
TAnSWaveGapIntegralDivonne() : fNDim(2) {}
|
||||
~TAnSWaveGapIntegralDivonne() { fPar.clear(); }
|
||||
void SetParameters(const std::vector<double> &par) { fPar=par; }
|
||||
static int Integrand(const int*, const double[], const int*, double[], void*);
|
||||
double IntegrateFunc();
|
||||
|
||||
protected:
|
||||
static vector<double> fPar; ///< parameters of the integrand
|
||||
unsigned int fNDim; ///< dimension of the integral
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and an "anisotropic s-wave" symmetry of the superconducting order parameter.
|
||||
* The integration uses the Suave algorithm of the Cuba library.
|
||||
*/
|
||||
class TAnSWaveGapIntegralSuave {
|
||||
public:
|
||||
TAnSWaveGapIntegralSuave() : fNDim(2) {}
|
||||
~TAnSWaveGapIntegralSuave() { fPar.clear(); }
|
||||
void SetParameters(const std::vector<double> &par) { fPar=par; }
|
||||
static int Integrand(const int*, const double[], const int*, double[], void*);
|
||||
double IntegrateFunc();
|
||||
|
||||
protected:
|
||||
static vector<double> fPar; ///< parameters of the integrand
|
||||
unsigned int fNDim; ///< dimension of the integral
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and an "non-monotonic d-wave" symmetry of the superconducting order parameter.
|
||||
* The integration uses the Cuhre algorithm of the Cuba library.
|
||||
*/
|
||||
class TNonMonDWave1GapIntegralCuhre {
|
||||
public:
|
||||
TNonMonDWave1GapIntegralCuhre() : fNDim(2) {}
|
||||
~TNonMonDWave1GapIntegralCuhre() { fPar.clear(); }
|
||||
void SetParameters(const std::vector<double> &par) { fPar=par; }
|
||||
static int Integrand(const int*, const double[], const int*, double[], void*);
|
||||
double IntegrateFunc();
|
||||
|
||||
protected:
|
||||
static vector<double> fPar; ///< parameters of the integrand
|
||||
unsigned int fNDim; ///< dimension of the integral
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and an "non-monotonic d-wave" symmetry of the superconducting order parameter.
|
||||
* The integration uses the Cuhre algorithm of the Cuba library.
|
||||
*/
|
||||
class TNonMonDWave2GapIntegralCuhre {
|
||||
public:
|
||||
TNonMonDWave2GapIntegralCuhre() : fNDim(2) {}
|
||||
~TNonMonDWave2GapIntegralCuhre() { fPar.clear(); }
|
||||
void SetParameters(const std::vector<double> &par) { fPar=par; }
|
||||
static int Integrand(const int*, const double[], const int*, double[], void*);
|
||||
double IntegrateFunc();
|
||||
|
||||
protected:
|
||||
static vector<double> fPar; ///< parameters of the integrand
|
||||
unsigned int fNDim; ///< dimension of the integral
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Test class for the 2D MC integration
|
||||
* Integral: x*y dx dy
|
||||
*/
|
||||
class T2DTest : public TMCIntegrator {
|
||||
public:
|
||||
T2DTest() {}
|
||||
~T2DTest() {}
|
||||
double FuncAtX(double *) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Calculate the function value---actual implementation of the function x*y
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double T2DTest::FuncAtX(double *x) const
|
||||
{
|
||||
return x[0]*x[1];
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Class for the 2D Monte-Carlo integration for the calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and a d_{x^2-y^2} symmetry of the superconducting order parameter.
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TDWaveGapIntegral : public TMCIntegrator {
|
||||
public:
|
||||
TDWaveGapIntegral() {}
|
||||
~TDWaveGapIntegral() {}
|
||||
double FuncAtX(double *) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Calculate the function value---actual implementation of the function
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TDWaveGapIntegral::FuncAtX(double *x) const // x = {E, phi}, fPar = {T, Delta(T)}
|
||||
{
|
||||
double twokt(2.0*0.08617384436*fPar[0]); // kB in meV/K
|
||||
double deltasq(TMath::Power(fPar[1]*TMath::Cos(2.0*x[1]),2.0));
|
||||
return -1.0/(2.0*twokt*TMath::CosH(TMath::Sqrt(x[0]*x[0]+deltasq)/twokt)*TMath::CosH(TMath::Sqrt(x[0]*x[0]+deltasq)/twokt));
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Class for the 2D Monte-Carlo integration for the calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and an "anisotropic s-wave" symmetry of the superconducting order parameter.
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TAnSWaveGapIntegral : public TMCIntegrator {
|
||||
public:
|
||||
TAnSWaveGapIntegral() {}
|
||||
~TAnSWaveGapIntegral() {}
|
||||
double FuncAtX(double *) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Calculate the function value---actual implementation of the function
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TAnSWaveGapIntegral::FuncAtX(double *x) const // x = {E, phi}, fPar = {T, Delta(T), a}
|
||||
{
|
||||
double twokt(2.0*0.08617384436*fPar[0]); // kB in meV/K
|
||||
double deltasq(TMath::Power(fPar[1]*(1.0+fPar[2]*TMath::Cos(4.0*x[1])),2.0));
|
||||
return -1.0/(2.0*twokt*TMath::CosH(TMath::Sqrt(x[0]*x[0]+deltasq)/twokt)*TMath::CosH(TMath::Sqrt(x[0]*x[0]+deltasq)/twokt));
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Class for the 1D integration of j0(a*x)*exp(-b*x)
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TIntBesselJ0Exp : public TIntegrator {
|
||||
public:
|
||||
TIntBesselJ0Exp() {}
|
||||
~TIntBesselJ0Exp() {}
|
||||
double FuncAtX(double) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Calculate the function value---actual implementation of the function j0(a*x)*exp(-b*x)
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TIntBesselJ0Exp::FuncAtX(double x) const
|
||||
{
|
||||
double w0t(TMath::TwoPi()*fPar[0]*x);
|
||||
double j0;
|
||||
if (fabs(w0t) < 0.001) { // check zero time limits of the spherical bessel functions j0(x) and j1(x)
|
||||
j0 = 1.0;
|
||||
} else {
|
||||
j0 = TMath::Sin(w0t)/w0t;
|
||||
}
|
||||
return j0 * TMath::Exp(-fPar[1]*x);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Class for the 1D integration of sin(a*x)*exp(-b*x*x)
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TIntSinGss : public TIntegrator {
|
||||
public:
|
||||
TIntSinGss() {}
|
||||
~TIntSinGss() {}
|
||||
double FuncAtX(double) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Calculate the function value---actual implementation of the function sin(a*x)*exp(-b*x*x)
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TIntSinGss::FuncAtX(double x) const
|
||||
{
|
||||
return TMath::Sin(TMath::TwoPi()*fPar[0]*x) * TMath::Exp(-0.5*fPar[1]*fPar[1]*x*x);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Class for the 1D integration of the "DeRenzi Spin Glass Interpolation Integrand"
|
||||
* See Eq. (5) of R. De Renzi and S. Fanesi, Physica B 289-290, 209-212 (2000).
|
||||
* doi:10.1016/S0921-4526(00)00368-9
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TIntSGInterpolation : public TIntegrator {
|
||||
public:
|
||||
TIntSGInterpolation() {}
|
||||
~TIntSGInterpolation() {}
|
||||
double FuncAtX(double) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Calculate the function value---actual implementation of the function
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TIntSGInterpolation::FuncAtX(double x) const
|
||||
{
|
||||
// Parameters: nu_L [MHz], a [1/us], lambda [1/us], beta [1], t [us]
|
||||
double wt(TMath::TwoPi()*fPar[0]*x);
|
||||
double expo(0.5*fPar[1]*fPar[1]*x*x/fPar[3]+fPar[2]*fPar[4]);
|
||||
return (wt*TMath::Cos(wt)-TMath::Sin(wt))/(wt*wt)*TMath::Exp(-TMath::Power(expo,fPar[3]))/TMath::Power(expo,(1.0-fPar[3]));
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Class for the 1D integration for the calculation of the superfluid density within the semi-classical model
|
||||
* assuming a cylindrical Fermi surface and an isotropic s-wave symmetry of the superconducting order parameter.
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TGapIntegral : public TIntegrator {
|
||||
public:
|
||||
TGapIntegral() {}
|
||||
~TGapIntegral() {}
|
||||
double FuncAtX(double) const; // variable: E
|
||||
};
|
||||
|
||||
/**
|
||||
* <p>Calculate the function value---actual implementation of the function df/dE * E / sqrt(E^2 - Delta^2)
|
||||
*
|
||||
* <p><b>return:</b>
|
||||
* - function value
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TGapIntegral::FuncAtX(double e) const
|
||||
{
|
||||
return 1.0/(TMath::Power(TMath::CosH(TMath::Sqrt(e*e+fPar[1]*fPar[1])/fPar[0]),2.0));
|
||||
}
|
||||
|
||||
#endif //_TIntegrator_H_
|
||||
Reference in New Issue
Block a user