Added B(z) for two superconducting layers insulated by a barrier layer to libTFitPofB
This commit is contained in:
parent
2c1cc87150
commit
a9ea0160a3
118
src/external/TFitPofB-lib/classes/TBofZCalc.cpp
vendored
118
src/external/TFitPofB-lib/classes/TBofZCalc.cpp
vendored
@ -52,7 +52,7 @@ void TBofZCalc::Calculate()
|
|||||||
|
|
||||||
#pragma omp parallel for default(shared) private(j,ZZ) schedule(dynamic)
|
#pragma omp parallel for default(shared) private(j,ZZ) schedule(dynamic)
|
||||||
for (j=0; j<fSteps; j++) {
|
for (j=0; j<fSteps; j++) {
|
||||||
ZZ = fParam[1] + (double)j*fDZ;
|
ZZ = fParam[1] + static_cast<double>(j)*fDZ;
|
||||||
fZ[j] = ZZ;
|
fZ[j] = ZZ;
|
||||||
fBZ[j] = GetBofZ(ZZ);
|
fBZ[j] = GetBofZ(ZZ);
|
||||||
}
|
}
|
||||||
@ -227,7 +227,7 @@ void TLondon1D_1L::SetBmin()
|
|||||||
double minZ;
|
double minZ;
|
||||||
// check if the minimum is in the first layer
|
// check if the minimum is in the first layer
|
||||||
minZ=-0.5*fParam[3]*log(b_a);
|
minZ=-0.5*fParam[3]*log(b_a);
|
||||||
if (minZ > fParam[1] && minZ <= fParam[2]) {
|
if (minZ > fParam[1] && minZ <= fParam[1]+fParam[2]) {
|
||||||
fMinZ = minZ;
|
fMinZ = minZ;
|
||||||
fMinB = GetBofZ(minZ);
|
fMinB = GetBofZ(minZ);
|
||||||
return;
|
return;
|
||||||
@ -1088,6 +1088,120 @@ vector< pair<double, double> > TLondon1D_3LS::GetInverseAndDerivative(double BB)
|
|||||||
return inv;
|
return inv;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//------------------
|
||||||
|
// Constructor of the TLondon1D_3LwInsulator class
|
||||||
|
// 1D-London screening in a two thin superconducting layers fully insulated by a buffer layer
|
||||||
|
// Parameters: Bext[G], deadlayer[nm], thickness1[nm], thickness2[nm], thickness3[nm], lambda1[nm], lambda2[nm]
|
||||||
|
//------------------
|
||||||
|
|
||||||
|
TLondon1D_3LwInsulator::TLondon1D_3LwInsulator(const vector<double> ¶m, unsigned int steps)
|
||||||
|
{
|
||||||
|
fSteps = steps;
|
||||||
|
fDZ = (param[2]+param[3]+param[4])/static_cast<double>(steps);
|
||||||
|
fParam = param;
|
||||||
|
fMinZ = -1.0;
|
||||||
|
fMinB = -1.0;
|
||||||
|
|
||||||
|
// thicknesses have to be greater or equal to zero
|
||||||
|
for(unsigned int i(1); i<5; i++) {
|
||||||
|
if(param[i] < 0.){
|
||||||
|
fParam[i] = 0.;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// lambdas have to be greater than zero
|
||||||
|
for(unsigned int i(5); i<7; i++) {
|
||||||
|
if(param[i] < 0.1){
|
||||||
|
fParam[i] = 0.1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate the coefficients of the exponentials
|
||||||
|
double N0(fParam[0]/(1.0+exp(fParam[2]/fParam[5])));
|
||||||
|
double N1(fParam[0]/(1.0+exp(fParam[4]/fParam[6])));
|
||||||
|
|
||||||
|
fCoeff[0]=N0*exp((fParam[1]+fParam[2])/fParam[5]);
|
||||||
|
fCoeff[1]=N0*exp(-fParam[1]/fParam[5]);
|
||||||
|
fCoeff[2]=N1*exp((fParam[1]+fParam[2]+fParam[3]+fParam[4])/fParam[6]);
|
||||||
|
fCoeff[3]=N1*exp(-(fParam[1]+fParam[2]+fParam[3])/fParam[6]);
|
||||||
|
|
||||||
|
// none of the coefficients should be zero
|
||||||
|
for(unsigned int i(0); i<4; i++)
|
||||||
|
assert(fCoeff[i]);
|
||||||
|
|
||||||
|
SetBmin();
|
||||||
|
}
|
||||||
|
|
||||||
|
double TLondon1D_3LwInsulator::GetBofZ(double ZZ) const
|
||||||
|
{
|
||||||
|
if(ZZ < 0. || ZZ < fParam[1] || ZZ > fParam[1]+fParam[2]+fParam[3]+fParam[4] || \
|
||||||
|
(ZZ > fParam[1]+fParam[2] && ZZ < fParam[1]+fParam[2]+fParam[3]))
|
||||||
|
return fParam[0];
|
||||||
|
|
||||||
|
if(ZZ <= fParam[1]+fParam[2])
|
||||||
|
return fCoeff[0]*exp(-ZZ/fParam[5])+fCoeff[1]*exp(ZZ/fParam[5]);
|
||||||
|
else
|
||||||
|
return fCoeff[2]*exp(-ZZ/fParam[6])+fCoeff[3]*exp(ZZ/fParam[6]);
|
||||||
|
}
|
||||||
|
|
||||||
|
double TLondon1D_3LwInsulator::GetBmax() const
|
||||||
|
{
|
||||||
|
// return applied field
|
||||||
|
return fParam[0];
|
||||||
|
}
|
||||||
|
|
||||||
|
double TLondon1D_3LwInsulator::GetBmin() const
|
||||||
|
{
|
||||||
|
// return field minimum
|
||||||
|
return fMinB;
|
||||||
|
}
|
||||||
|
|
||||||
|
void TLondon1D_3LwInsulator::SetBmin()
|
||||||
|
{
|
||||||
|
double b_a(fCoeff[1]/fCoeff[0]);
|
||||||
|
double d_c(fCoeff[3]/fCoeff[2]);
|
||||||
|
|
||||||
|
if(b_a<1E-7) {
|
||||||
|
b_a = 1E-7;
|
||||||
|
}
|
||||||
|
if(d_c<1E-7) {
|
||||||
|
d_c = 1E-7;
|
||||||
|
}
|
||||||
|
|
||||||
|
double minZ1, minZ2, temp;
|
||||||
|
// check if the minimum is in the first or third layer
|
||||||
|
minZ1=-0.5*fParam[5]*log(b_a);
|
||||||
|
minZ2=-0.5*fParam[6]*log(d_c);
|
||||||
|
|
||||||
|
if (minZ1 > fParam[1] && minZ1 <= fParam[1]+fParam[2]) {
|
||||||
|
fMinZ = minZ1;
|
||||||
|
fMinB = GetBofZ(minZ1);
|
||||||
|
if (minZ2 > fParam[1]+fParam[2]+fParam[3] && minZ2 <= fParam[1]+fParam[2]+fParam[3]+fParam[4]) {
|
||||||
|
temp = GetBofZ(minZ2);
|
||||||
|
if (temp < fMinB) {
|
||||||
|
fMinZ = minZ2;
|
||||||
|
fMinB = temp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
} else if (minZ2 > fParam[1]+fParam[2]+fParam[3] && minZ2 <= fParam[1]+fParam[2]+fParam[3]+fParam[4]) {
|
||||||
|
fMinZ = minZ2;
|
||||||
|
fMinB = GetBofZ(minZ2);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// assert(fMinZ > 0. && fMinB > 0.);
|
||||||
|
if(fMinZ <= 0.){
|
||||||
|
fMinZ = 0.;
|
||||||
|
}
|
||||||
|
if(fMinB <= 0.){
|
||||||
|
fMinB = 0.;
|
||||||
|
}
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// //------------------
|
// //------------------
|
||||||
// // Constructor of the TLondon1D_4L class
|
// // Constructor of the TLondon1D_4L class
|
||||||
|
31
src/external/TFitPofB-lib/include/TBofZCalc.h
vendored
31
src/external/TFitPofB-lib/include/TBofZCalc.h
vendored
@ -239,16 +239,25 @@ private:
|
|||||||
double fCoeff[6];
|
double fCoeff[6];
|
||||||
};
|
};
|
||||||
|
|
||||||
// //--------------------
|
//--------------------
|
||||||
// // Class "for Meissner screening" in a thin superconducting film - four layers with four different lambdas
|
// Class "for Meissner screening" in a thin superconducting film - tri-layer with insulating buffer layer, two lambda
|
||||||
// //--------------------
|
//--------------------
|
||||||
//
|
|
||||||
// class TLondon1D_4L : public TBofZCalc {
|
class TLondon1D_3LwInsulator : public TBofZCalc {
|
||||||
//
|
|
||||||
// public:
|
public:
|
||||||
//
|
|
||||||
// TLondon1D_4L(unsigned int, const vector<double>& );
|
TLondon1D_3LwInsulator(const vector<double>&, unsigned int steps = 3000);
|
||||||
//
|
double GetBofZ(double) const;
|
||||||
// };
|
double GetBmin() const;
|
||||||
|
double GetBmax() const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
void SetBmin();
|
||||||
|
|
||||||
|
double fMinZ;
|
||||||
|
double fMinB;
|
||||||
|
double fCoeff[4];
|
||||||
|
};
|
||||||
|
|
||||||
#endif // _BofZCalc_H_
|
#endif // _BofZCalc_H_
|
||||||
|
@ -425,3 +425,107 @@ double TMeanFieldsForScTrilayer::CalcMeanB (double E, const vector<double>& inte
|
|||||||
}
|
}
|
||||||
return meanB;
|
return meanB;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Constructor: Read the energies from the xml-file and load the according TRIM.SP-data files
|
||||||
|
|
||||||
|
TMeanFieldsForScTrilayerWithInsulator::TMeanFieldsForScTrilayerWithInsulator() {
|
||||||
|
|
||||||
|
// read startup file
|
||||||
|
string startup_path_name("TFitPofB_startup.xml");
|
||||||
|
|
||||||
|
TSAXParser *saxParser = new TSAXParser();
|
||||||
|
TFitPofBStartupHandler *startupHandler = new TFitPofBStartupHandler();
|
||||||
|
saxParser->ConnectToHandler("TFitPofBStartupHandler", startupHandler);
|
||||||
|
int status (saxParser->ParseFile(startup_path_name.c_str()));
|
||||||
|
// check for parse errors
|
||||||
|
if (status) { // error
|
||||||
|
cout << endl << "**WARNING** reading/parsing TFitPofB_startup.xml failed." << endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
string rge_path(startupHandler->GetDataPath());
|
||||||
|
vector< pair<double, string> > energy_vec(startupHandler->GetEnergies());
|
||||||
|
|
||||||
|
TTrimSPData *x = new TTrimSPData(rge_path, energy_vec);
|
||||||
|
fImpProfile = x;
|
||||||
|
x = 0;
|
||||||
|
|
||||||
|
// clean up
|
||||||
|
if (saxParser) {
|
||||||
|
delete saxParser;
|
||||||
|
saxParser = 0;
|
||||||
|
}
|
||||||
|
if (startupHandler) {
|
||||||
|
delete startupHandler;
|
||||||
|
startupHandler = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// Operator-method that returns the mean field for a given implantation energy
|
||||||
|
// Parameters: field, deadlayer, layer1, layer2, layer3, lambda1, lambda2, weight1, weight2, weight3, weight4, weight5
|
||||||
|
|
||||||
|
double TMeanFieldsForScTrilayerWithInsulator::operator()(double E, const vector<double> &par_vec) const{
|
||||||
|
|
||||||
|
vector<double> interfaces;
|
||||||
|
interfaces.push_back(par_vec[1]);
|
||||||
|
interfaces.push_back(par_vec[1]+par_vec[2]);
|
||||||
|
interfaces.push_back(par_vec[1]+par_vec[2]+par_vec[3]);
|
||||||
|
interfaces.push_back(par_vec[1]+par_vec[2]+par_vec[3]+par_vec[4]);
|
||||||
|
|
||||||
|
vector<double> weights;
|
||||||
|
weights.push_back(par_vec[7]);
|
||||||
|
weights.push_back(par_vec[8]);
|
||||||
|
weights.push_back(par_vec[9]);
|
||||||
|
weights.push_back(par_vec[10]);
|
||||||
|
weights.push_back(par_vec[11]);
|
||||||
|
|
||||||
|
// Calculate field profile
|
||||||
|
vector<double> parForBofZ;
|
||||||
|
for (unsigned int i(0); i<7; i++)
|
||||||
|
parForBofZ.push_back(par_vec[i]);
|
||||||
|
|
||||||
|
TLondon1D_3LwInsulator BofZ(parForBofZ);
|
||||||
|
|
||||||
|
vector<double> energies(fImpProfile->Energy());
|
||||||
|
vector<double>::const_iterator energyIter;
|
||||||
|
energyIter = find(energies.begin(), energies.end(), E);
|
||||||
|
|
||||||
|
if (energyIter != energies.end()) { // implantation profile found - no interpolation needed
|
||||||
|
return CalcMeanB(E, interfaces, weights, BofZ);
|
||||||
|
} else {
|
||||||
|
if (E < *energies.begin())
|
||||||
|
return CalcMeanB(*energies.begin(), interfaces, weights, BofZ);
|
||||||
|
if (E > *(energies.end()-1))
|
||||||
|
return CalcMeanB(*(energies.end()-1), interfaces, weights, BofZ);
|
||||||
|
|
||||||
|
energyIter = find_if(energies.begin(), energies.end(), bind2nd( greater<double>(), E));
|
||||||
|
// cout << *(energyIter - 1) << " " << *(energyIter) << endl;
|
||||||
|
|
||||||
|
double E1(*(energyIter - 1));
|
||||||
|
double E2(*(energyIter));
|
||||||
|
|
||||||
|
double B1(CalcMeanB(E1, interfaces, weights, BofZ));
|
||||||
|
double B2(CalcMeanB(E2, interfaces, weights, BofZ));
|
||||||
|
|
||||||
|
return B1 + (B2-B1)/(E2-E1)*(E-E1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
double TMeanFieldsForScTrilayerWithInsulator::CalcMeanB
|
||||||
|
(double E, const vector<double>& interfaces, const vector<double>& weights, const TLondon1D_3LwInsulator& BofZ) const {
|
||||||
|
//calcData->UseHighResolution(E);
|
||||||
|
fImpProfile->WeightLayers(E, interfaces, weights);
|
||||||
|
fImpProfile->Normalize(E);
|
||||||
|
|
||||||
|
vector<double> z(fImpProfile->DataZ(E));
|
||||||
|
vector<double> nz(fImpProfile->DataNZ(E));
|
||||||
|
|
||||||
|
// calculate mean field
|
||||||
|
|
||||||
|
double meanB(0.);
|
||||||
|
|
||||||
|
for (unsigned int i(0); i<z.size(); i++) {
|
||||||
|
meanB += (z[1]-z[0])*nz[i]*BofZ.GetBofZ(0.1*z[i]);
|
||||||
|
}
|
||||||
|
return meanB;
|
||||||
|
}
|
||||||
|
@ -98,4 +98,20 @@ private:
|
|||||||
ClassDef(TMeanFieldsForScTrilayer,1)
|
ClassDef(TMeanFieldsForScTrilayer,1)
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class TMeanFieldsForScTrilayerWithInsulator : public PUserFcnBase {
|
||||||
|
|
||||||
|
public:
|
||||||
|
// default constructor
|
||||||
|
TMeanFieldsForScTrilayerWithInsulator();
|
||||||
|
~TMeanFieldsForScTrilayerWithInsulator() {delete fImpProfile; fImpProfile = 0;}
|
||||||
|
|
||||||
|
double operator()(double, const vector<double>&) const;
|
||||||
|
double CalcMeanB (double, const vector<double>&, const vector<double>&, const TLondon1D_3LwInsulator&) const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
TTrimSPData *fImpProfile;
|
||||||
|
|
||||||
|
ClassDef(TMeanFieldsForScTrilayerWithInsulator,1)
|
||||||
|
};
|
||||||
|
|
||||||
#endif /* _TCalcMeanFieldsLEM_H_ */
|
#endif /* _TCalcMeanFieldsLEM_H_ */
|
||||||
|
@ -40,6 +40,7 @@
|
|||||||
#pragma link C++ class TMeanFieldsForScSingleLayer+;
|
#pragma link C++ class TMeanFieldsForScSingleLayer+;
|
||||||
#pragma link C++ class TMeanFieldsForScBilayer+;
|
#pragma link C++ class TMeanFieldsForScBilayer+;
|
||||||
#pragma link C++ class TMeanFieldsForScTrilayer+;
|
#pragma link C++ class TMeanFieldsForScTrilayer+;
|
||||||
|
#pragma link C++ class TMeanFieldsForScTrilayerWithInsulator+;
|
||||||
|
|
||||||
#endif //__CINT__
|
#endif //__CINT__
|
||||||
// root dictionary stuff --------------------------------------------------
|
// root dictionary stuff --------------------------------------------------
|
||||||
|
Loading…
x
Reference in New Issue
Block a user