Added a possible userFcn-implementation of Gaussian and Lorentzian static and dynamic LF relaxation functions to musrfit. Read the README

This commit is contained in:
Bastian M. Wojek
2008-12-05 15:43:47 +00:00
parent 01159eb5c6
commit 943494f4dc
7 changed files with 693 additions and 0 deletions

View File

@ -0,0 +1,64 @@
#---------------------------------------------------
# get compilation flags from root-config
ROOTCFLAGS = $(shell $(ROOTSYS)/bin/root-config --cflags)
# ROOTLIBS = $(shell $(ROOTSYS)/bin/root-config --libs)
#---------------------------------------------------
OS = LINUX
CXX = g++
CXXFLAGS = -g -Wall -Wno-trigraphs -fPIC
MUSRFITINCLUDE = ../../include
#MUSRFITINCLUDE = /home/l_wojek/rep/analysis/musrfit/src/include
LOCALINCLUDE = .
ROOTINCLUDE = $(ROOTSYS)/include/root
INCLUDES = -I$(LOCALINCLUDE) -I$(MUSRFITINCLUDE) -I$(ROOTINCLUDE)
LD = g++
LDFLAGS = -g
SOFLAGS = -O -shared
# the output from the root-config script:
CXXFLAGS += $(ROOTCFLAGS)
LDFLAGS +=
# some definitions: headers (used to generate *Dict* stuff), sources, objects,...
OBJS =
OBJS += TIntegrator.o
OBJS += TLFRelaxation.o TLFRelaxationDict.o
SHLIB = libLFRelaxation.so
# make the shared lib:
#
all: $(SHLIB)
$(SHLIB): $(OBJS)
@echo "---> Building shared library $(SHLIB) ..."
/bin/rm -f $(SHLIB)
$(LD) $(LDFLAGS) $(OBJS) $(SOFLAGS) -o $(SHLIB)
@echo "done"
# clean up: remove all object file (and core files)
# semicolon needed to tell make there is no source
# for this target!
#
clean:; @rm -f $(OBJS) $(SHLIB) *Dict* core* *~
@echo "---> removing $(OBJS) $(SHLIB)"
#
$(OBJS): %.o: %.cpp
$(CXX) $(INCLUDES) $(CXXFLAGS) -c $<
# Generate the ROOT CINT dictionary
TLFRelaxationDict.cpp: ./TLFRelaxation.h ./TLFRelaxationLinkDef.h
@echo "Generating dictionary $@..."
rootcint -f $@ -c -p -I$(MUSRFITINCLUDE) $^
install: all
@echo "Installing shared lib: libLFRelaxation.so"
ifeq ($(OS),LINUX)
cp -pv $(SHLIB) $(ROOTSYS)/lib
cp -pv $(LOCALINCLUDE)/*.h $(ROOTSYS)/include
endif

19
src/external/libLFRelaxation/README vendored Normal file
View File

@ -0,0 +1,19 @@
/***************************************************************************
Author: Bastian M. Wojek
e-mail: bastian.wojek@psi.ch
2008/12/05
***************************************************************************/
Implementation of a userFcn-interface to Gaussian and Lorentzian static and dynamic LF relaxation functions.
At the moment this is localized to l_wojek@pc5405, because an absolute path had to be set. Of course this can be easily
changed in the code if needed.
The functions are then called from within musrfit as:
userFcn libLFRelaxation.so TLFStatGssKT 1 2 (frequency rate)
userFcn libLFRelaxation.so TLFStatLorKT 1 2 (frequency rate)
userFcn libLFRelaxation.so TLFDynGssKT 1 2 3 (frequency rate fluct.rate)
userFcn libLFRelaxation.so TLFDynLorKT 1 2 3 (frequency rate fluct.rate)

View File

@ -0,0 +1,52 @@
/***************************************************************************
TIntegrator.cpp
Author: Bastian M. Wojek
e-mail: bastian.wojek@psi.ch
2008/12/03
***************************************************************************/
#include "TIntegrator.h"
#include "TMath.h"
using namespace std;
TIntegrator::TIntegrator() : fFunc(0) {
ROOT::Math::GSLIntegrator *integrator = new ROOT::Math::GSLIntegrator(ROOT::Math::Integration::kADAPTIVE,ROOT::Math::Integration::kGAUSS51);
fIntegrator = integrator;
integrator = 0;
delete integrator;
}
TIntegrator::~TIntegrator(){
delete fIntegrator;
fIntegrator=0;
fFunc=0;
}
inline double TIntegrator::FuncAtXgsl(double x, void *obj)
{
return ((TIntegrator*)obj)->FuncAtX(x);
}
double TIntegrator::IntegrateFunc(double x1, double x2)
{
fFunc = &TIntegrator::FuncAtXgsl;
return fIntegrator->Integral(fFunc, (this), x1, x2);
}
inline double TIntBesselJ0Exp::FuncAtX(double x) const
{
return TMath::BesselJ0(TMath::TwoPi()*fPar[0]*x) * TMath::Exp(-fPar[1]*x);
}
inline double TIntSinGss::FuncAtX(double x) const
{
return TMath::Sin(TMath::TwoPi()*fPar[0]*x) * TMath::Exp(-0.5*fPar[1]*fPar[1]*x*x);
}

View File

@ -0,0 +1,52 @@
/***************************************************************************
TIntegrator.h
Author: Bastian M. Wojek
e-mail: bastian.wojek@psi.ch
2008/12/03
***************************************************************************/
#ifndef _TIntegrator_H_
#define _TIntegrator_H_
#include "Math/GSLIntegrator.h"
#include<vector>
using namespace std;
class TIntegrator {
public:
TIntegrator();
virtual ~TIntegrator();
void SetParameters(const std::vector<double> &par) const { fPar=par; }
virtual double FuncAtX(double) const = 0;
double IntegrateFunc(double, double);
protected:
mutable vector<double> fPar;
private:
static double FuncAtXgsl(double, void *);
ROOT::Math::GSLIntegrator *fIntegrator;
mutable double (*fFunc)(double, void *);
};
class TIntBesselJ0Exp : public TIntegrator {
public:
TIntBesselJ0Exp() {}
~TIntBesselJ0Exp() {}
double FuncAtX(double) const;
};
class TIntSinGss : public TIntegrator {
public:
TIntSinGss() {}
~TIntSinGss() {}
double FuncAtX(double) const;
};
#endif //_TIntegrator_H_

View File

@ -0,0 +1,375 @@
/***************************************************************************
TLFRelaxation.cpp
Author: Bastian M. Wojek
e-mail: bastian.wojek@psi.ch
2008/12/04
***************************************************************************/
#include <cassert>
#include "TIntegrator.h"
#include "TLFRelaxation.h"
using namespace std;
ClassImp(TLFStatGssKT)
ClassImp(TLFStatLorKT)
ClassImp(TLFDynGssKT)
ClassImp(TLFDynLorKT)
// LF Static Gaussian KT
TLFStatGssKT::TLFStatGssKT() {
TIntSinGss *intSinGss = new TIntSinGss();
fIntSinGss = intSinGss;
intSinGss = 0;
delete intSinGss;
}
TLFStatGssKT::~TLFStatGssKT() {
delete fIntSinGss;
fIntSinGss = 0;
}
double TLFStatGssKT::operator()(double t, const vector<double> &par) const {
assert(par.size() == 2); // two parameters nu=gbar*B,sigma
if(t<0.0)
return 1.0;
double sigsq(par[1]*par[1]);
if(TMath::Abs(par[0])<0.00135538817){
return (0.33333333333333333333+0.66666666666666666667*(1.0-sigsq*t*t)*TMath::Exp(-0.5*sigsq*t*t));
}
fIntSinGss->SetParameters(par);
double omegaL(TMath::TwoPi()*par[0]);
double coeff1(2.0*sigsq/(omegaL*omegaL));
double coeff2(2.0*sigsq*sigsq/(omegaL*omegaL*omegaL));
return (1.0-(coeff1*(1.0-TMath::Exp(-0.5*sigsq*t*t)*TMath::Cos(omegaL*t)))+(coeff2*fIntSinGss->IntegrateFunc(0.,t)));
}
// LF Static Lorentzian KT
TLFStatLorKT::TLFStatLorKT() {
TIntBesselJ0Exp *intBesselJ0Exp = new TIntBesselJ0Exp();
fIntBesselJ0Exp = intBesselJ0Exp;
intBesselJ0Exp = 0;
delete intBesselJ0Exp;
}
TLFStatLorKT::~TLFStatLorKT() {
delete fIntBesselJ0Exp;
fIntBesselJ0Exp = 0;
}
double TLFStatLorKT::operator()(double t, const vector<double> &par) const {
assert(par.size() == 2); // two parameters nu=gbar*B,rate
if(t<0.0)
return 1.0;
if(TMath::Abs(par[0])<0.00135538817){
return (0.33333333333333333333+0.66666666666666666667*(1.0-par[1]*t)*TMath::Exp(-par[1]*t));
}
fIntBesselJ0Exp->SetParameters(par);
double omegaL(TMath::TwoPi()*par[0]);
double coeff1(par[1]/omegaL);
double coeff2(coeff1*coeff1);
double coeff3((1.0+coeff2)*par[1]);
return (1.0-(coeff1*TMath::Exp(-par[1]*t)*TMath::BesselJ1(omegaL*t))-(coeff2*(TMath::BesselJ0(omegaL*t)*TMath::Exp(-par[1]*t)-1.0))-coeff3*fIntBesselJ0Exp->IntegrateFunc(0.,t));
}
// LF Dynamic Gaussian KT
TLFDynGssKT::TLFDynGssKT() : fCalcNeeded(true), fFirstCall(true), fWisdom("/home/l_wojek/analysis/WordsOfWisdom.dat"), fNSteps(524288), fDt(0.000040), fCounter(0) {
// Calculate d_omega and C for given NFFT and dt
fDw = TMath::Pi()/fNSteps/fDt;
fC = 2.0*TMath::Log(double(fNSteps))/(double(fNSteps-1)*fDt);
// Load FFTW Wisdom
int wisdomLoaded(0);
FILE *wordsOfWisdomR;
wordsOfWisdomR = fopen(fWisdom.c_str(), "r");
if (wordsOfWisdomR == NULL) {
cout << "TLFDynGssKT::TLFDynGssKT: Couldn't open wisdom file ..." << endl;
} else {
wisdomLoaded = fftw_import_wisdom_from_file(wordsOfWisdomR);
fclose(wordsOfWisdomR);
}
if (!wisdomLoaded) {
cout << "TLFDynGssKT::TLFDynGssKT: No wisdom is imported..." << endl;
}
// END of WisdomLoading
// allocating memory for the FFtransform pairs and create the FFT plans
fFFTtime = (double *)malloc(sizeof(double) * fNSteps);
fFFTfreq = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * (fNSteps/2+1));
fFFTplanFORW = fftw_plan_dft_r2c_1d(fNSteps, fFFTtime, fFFTfreq, FFTW_EXHAUSTIVE);
fFFTplanBACK = fftw_plan_dft_c2r_1d(fNSteps, fFFTfreq, fFFTtime, FFTW_EXHAUSTIVE);
}
TLFDynGssKT::~TLFDynGssKT() {
// export FFTW Wisdom so it has not to be checked for the FFT-plan next time
FILE *wordsOfWisdomW;
wordsOfWisdomW = fopen(fWisdom.c_str(), "w");
if (wordsOfWisdomW == NULL) {
cout << "TLFDynGssKT::~TLFDynGssKT: Could not open file ... No wisdom is exported..." << endl;
} else {
fftw_export_wisdom_to_file(wordsOfWisdomW);
fclose(wordsOfWisdomW);
}
// END of Wisdom Export
// clean up
fftw_destroy_plan(fFFTplanFORW);
fftw_destroy_plan(fFFTplanBACK);
free(fFFTtime);
fftw_free(fFFTfreq);
cout << "TLFDynGssKT::~TLFDynGssKT(): " << fCounter << " full FFT cycles needed..." << endl;
}
double TLFDynGssKT::operator()(double t, const vector<double> &par) const {
assert(par.size() == 3); // three parameters nuL=gbar*B,sigma,fluct.rate nu
if(t<0.0)
return 1.0;
if(t>20.0)
return 0.0;
if(fFirstCall){
fPar = par;
fFirstCall=false;
}
for (unsigned int i(0); i<par.size(); i++) {
if( fPar[i]-par[i] ) {
fPar[i] = par[i];
fCalcNeeded=true;
}
}
double sigsq(par[1]*par[1]); // sigma^2
double omegaL(TMath::TwoPi()*par[0]); // Larmor frequency
double nusq(par[2]*par[2]); // nu^2
if(par[1]){
if(par[2]/par[1] > 5. || omegaL > 20.0*par[1]){
if(TMath::Abs(par[0])<0.00135538817){
return TMath::Exp(-2.0*sigsq/nusq*(TMath::Exp(-par[2]*t)-1.0+par[2]*t)); // ZF Abragam Delta^2->2*Delta^2
}
double omegaLnusqp(omegaL*omegaL+nusq);
double omegaLnusqm(omegaL*omegaL-nusq);
return TMath::Exp(-2.0*sigsq/(omegaLnusqp*omegaLnusqp)*(omegaLnusqp*par[2]*t+omegaLnusqm*(1.0-TMath::Exp(-par[2]*t)*TMath::Cos(omegaL*t))-2.0*par[2]*omegaL*TMath::Exp(-par[2]*t)*TMath::Sin(omegaL*t))); // Keren
}
}
if(fCalcNeeded){
double tt(0.);
if(TMath::Abs(par[0])<0.00135538817){
for(unsigned int i(0); i<fNSteps; i++) {
tt=double(i)*fDt;
fFFTtime[i]=(0.33333333333333333333+0.66666666666666666667*(1.0-sigsq*tt*tt)*TMath::Exp(-0.5*sigsq*tt*tt))*TMath::Exp(-(fC+par[2])*tt)*fDt;
}
} else {
double coeff1(2.0*sigsq/(omegaL*omegaL));
double coeff2(2.0*sigsq*sigsq/(omegaL*omegaL*omegaL));
fFFTtime[0] = 1.0*fDt;
for(unsigned int i(1); i<fNSteps; i++) {
tt=(double(i)-0.5)*fDt;
fFFTtime[i]=(TMath::Sin(omegaL*tt) * TMath::Exp(-0.5*sigsq*tt*tt))*fDt;
}
double totoIntegrale(0.);
for(unsigned int i(1); i<fNSteps; i++) {
tt=double(i)*fDt;
totoIntegrale+=fFFTtime[i];
fFFTtime[i]=(1.0-(coeff1*(1.0-TMath::Exp(-0.5*sigsq*tt*tt)*TMath::Cos(omegaL*tt)))+(coeff2*totoIntegrale))*TMath::Exp(-(fC+par[2])*tt)*fDt;
}
}
// Transform to frequency domain
fftw_execute(fFFTplanFORW);
// calculate F(s)
double denom(1.0);
for (unsigned int i(0); i<fNSteps/2+1; i++) {
denom=(1.0-(par[2]*fFFTfreq[i][0]))*(1.0-(par[2]*fFFTfreq[i][0])) + (nusq*fFFTfreq[i][1]*fFFTfreq[i][1]);
fFFTfreq[i][0] = (fFFTfreq[i][0]-(par[2]*fFFTfreq[i][0]*fFFTfreq[i][0])-(par[2]*fFFTfreq[i][1]*fFFTfreq[i][1]))/denom;
fFFTfreq[i][1] = fFFTfreq[i][1]/denom;
}
// Transform back to time domain
fftw_execute(fFFTplanBACK);
// for (unsigned int i(0); i<fNSteps; i++) {
// fFFTtime[i]=(fDw*TMath::Exp(fC*i*fDt)/TMath::Pi()*fFFTtime[i]);
// }
fCalcNeeded=false;
fCounter++;
}
// return fFFTtime[int(t/fDt)];
return fDw*TMath::Exp(fC*t)/TMath::Pi()*fFFTtime[int(t/fDt)];
}
// LF Dynamic Lorentz KT
TLFDynLorKT::TLFDynLorKT() : fCalcNeeded(true), fFirstCall(true), fWisdom("/home/l_wojek/analysis/WordsOfWisdom.dat"), fNSteps(524288), fDt(0.000040), fCounter(0) {
// Calculate d_omega and C for given NFFT and dt
fDw = TMath::Pi()/fNSteps/fDt;
fC = 2.0*TMath::Log(double(fNSteps))/(double(fNSteps-1)*fDt);
// Load FFTW Wisdom
int wisdomLoaded(0);
FILE *wordsOfWisdomR;
wordsOfWisdomR = fopen(fWisdom.c_str(), "r");
if (wordsOfWisdomR == NULL) {
cout << "TLFDynGssKT::TLFDynGssKT: Couldn't open wisdom file ..." << endl;
} else {
wisdomLoaded = fftw_import_wisdom_from_file(wordsOfWisdomR);
fclose(wordsOfWisdomR);
}
if (!wisdomLoaded) {
cout << "TLFDynGssKT::TLFDynGssKT: No wisdom is imported..." << endl;
}
// END of WisdomLoading
// allocating memory for the FFtransform pairs and create the FFT plans
fFFTtime = (double *)malloc(sizeof(double) * fNSteps);
fFFTfreq = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * (fNSteps/2+1));
fFFTplanFORW = fftw_plan_dft_r2c_1d(fNSteps, fFFTtime, fFFTfreq, FFTW_EXHAUSTIVE);
fFFTplanBACK = fftw_plan_dft_c2r_1d(fNSteps, fFFTfreq, fFFTtime, FFTW_EXHAUSTIVE);
}
TLFDynLorKT::~TLFDynLorKT() {
// export FFTW Wisdom so it has not to be checked for the FFT-plan next time
FILE *wordsOfWisdomW;
wordsOfWisdomW = fopen(fWisdom.c_str(), "w");
if (wordsOfWisdomW == NULL) {
cout << "TLFDynGssKT::~TLFDynGssKT: Could not open file ... No wisdom is exported..." << endl;
} else {
fftw_export_wisdom_to_file(wordsOfWisdomW);
fclose(wordsOfWisdomW);
}
// END of Wisdom Export
// clean up
fftw_destroy_plan(fFFTplanFORW);
fftw_destroy_plan(fFFTplanBACK);
free(fFFTtime);
fftw_free(fFFTfreq);
cout << "TLFDynLorKT::~TLFDynLorKT(): " << fCounter << " full FFT cyles needed..." << endl;
}
double TLFDynLorKT::operator()(double t, const vector<double> &par) const {
assert(par.size() == 3); // three parameters nuL=gbar*B,sigma,fluct.rate nu
if(t<0.0)
return 1.0;
if(t>20.0)
return 0.0;
if(fFirstCall){
fPar = par;
fFirstCall=false;
}
for (unsigned int i(0); i<par.size(); i++) {
if( fPar[i]-par[i] ) {
fPar[i] = par[i];
fCalcNeeded=true;
}
}
if(fCalcNeeded){
double tt(0.);
if(TMath::Abs(par[0])<0.00135538817){
for(unsigned int i(0); i<fNSteps; i++) {
tt=double(i)*fDt;
fFFTtime[i]=(0.33333333333333333333+0.66666666666666666667*(1.0-par[1]*tt)*TMath::Exp(-par[1]*tt))*TMath::Exp(-(fC+par[2])*tt)*fDt;
}
} else {
double omegaL(TMath::TwoPi()*par[0]); // Larmor frequency
double coeff1(par[1]/omegaL);
double coeff2(coeff1*coeff1);
double coeff3((1.0+coeff2)*par[1]);
fFFTtime[0] = 1.0*fDt;
for(unsigned int i(1); i<fNSteps; i++) {
tt=(double(i)-0.5)*fDt;
fFFTtime[i]=TMath::BesselJ0(omegaL*tt)*TMath::Exp(-par[1]*tt)*fDt;
}
double totoIntegrale(0.);
for(unsigned int i(1); i<fNSteps; i++) {
tt=double(i)*fDt;
totoIntegrale+=fFFTtime[i];
fFFTtime[i]=(1.0-(coeff1*TMath::Exp(-par[1]*tt)*TMath::BesselJ1(omegaL*tt))-(coeff2*(TMath::BesselJ0(omegaL*tt)*TMath::Exp(-par[1]*tt)-1.0))-coeff3*totoIntegrale)*TMath::Exp(-(fC+par[2])*tt)*fDt;
}
}
// Transform to frequency domain
fftw_execute(fFFTplanFORW);
// calculate F(s)
double denom(1.0);
double nusq(par[2]*par[2]); // nu^2
for (unsigned int i(0); i<fNSteps/2+1; i++) {
denom=(1.0-(par[2]*fFFTfreq[i][0]))*(1.0-(par[2]*fFFTfreq[i][0])) + (nusq*fFFTfreq[i][1]*fFFTfreq[i][1]);
fFFTfreq[i][0] = (fFFTfreq[i][0]-(par[2]*fFFTfreq[i][0]*fFFTfreq[i][0])-(par[2]*fFFTfreq[i][1]*fFFTfreq[i][1]))/denom;
fFFTfreq[i][1] = fFFTfreq[i][1]/denom;
}
// Transform back to time domain
fftw_execute(fFFTplanBACK);
// for (unsigned int i(0); i<fNSteps; i++) {
// fFFTtime[i]=(fDw*TMath::Exp(fC*i*fDt)/TMath::Pi()*fFFTtime[i]);
// }
fCalcNeeded=false;
fCounter++;
}
// return fFFTtime[int(t/fDt)];
return fDw*TMath::Exp(fC*t)/TMath::Pi()*fFFTtime[int(t/fDt)];
}

View File

@ -0,0 +1,105 @@
/***************************************************************************
TLFRelaxation.h
Author: Bastian M. Wojek
e-mail: bastian.wojek@psi.ch
2008/12/04
***************************************************************************/
#ifndef _TLFRelaxation_H_
#define _TLFRelaxation_H_
#include<vector>
#include<cstdio>
using namespace std;
#include "TMath.h"
#include "PUserFcnBase.h"
#include "fftw3.h"
#include "TIntegrator.h"
class TLFStatGssKT : public PUserFcnBase {
public:
TLFStatGssKT();
~TLFStatGssKT();
double operator()(double, const vector<double>&) const;
private:
TIntSinGss *fIntSinGss;
ClassDef(TLFStatGssKT,1)
};
class TLFStatLorKT : public PUserFcnBase {
public:
TLFStatLorKT();
~TLFStatLorKT();
double operator()(double, const vector<double>&) const;
private:
TIntBesselJ0Exp *fIntBesselJ0Exp;
ClassDef(TLFStatLorKT,1)
};
class TLFDynGssKT : public PUserFcnBase {
public:
TLFDynGssKT();
~TLFDynGssKT();
double operator()(double, const vector<double>&) const;
private:
mutable vector<double> fPar;
mutable bool fCalcNeeded;
mutable bool fFirstCall;
string fWisdom;
unsigned int fNSteps;
double fDt;
double fDw;
double fC;
fftw_plan fFFTplanFORW;
fftw_plan fFFTplanBACK;
double *fFFTtime;
fftw_complex *fFFTfreq;
mutable unsigned int fCounter;
ClassDef(TLFDynGssKT,1)
};
class TLFDynLorKT : public PUserFcnBase {
public:
TLFDynLorKT();
~TLFDynLorKT();
double operator()(double, const vector<double>&) const;
private:
mutable vector<double> fPar;
mutable bool fCalcNeeded;
mutable bool fFirstCall;
string fWisdom;
unsigned int fNSteps;
double fDt;
double fDw;
double fC;
fftw_plan fFFTplanFORW;
fftw_plan fFFTplanBACK;
double *fFFTtime;
fftw_complex *fFFTfreq;
mutable unsigned int fCounter;
ClassDef(TLFDynLorKT,1)
};
#endif //_LFRelaxation_H_

View File

@ -0,0 +1,26 @@
/***************************************************************************
TLFRelaxationLinkDef.h
Author: Bastian M. Wojek
e-mail: bastian.wojek@psi.ch
2008/12/04
***************************************************************************/
// root dictionary stuff --------------------------------------------------
#ifdef __CINT__
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class TLFStatGssKT+;
#pragma link C++ class TLFStatLorKT+;
#pragma link C++ class TLFDynGssKT+;
#pragma link C++ class TLFDynLorKT+;
#endif //__CINT__
// root dictionary stuff --------------------------------------------------