modernized code to C++11 and newer.

This allows to analyze the code by external code analyzers. Since a lot is adopted,
the version is changed to 1.4.3
This commit is contained in:
2019-04-16 15:34:49 +02:00
parent e6d424e900
commit 795cd75b1e
136 changed files with 6870 additions and 7085 deletions

View File

@@ -37,8 +37,6 @@
#endif
#include <cmath>
//#include <iostream>
//#include <algorithm>
#include <cassert>
//------------------
@@ -122,7 +120,7 @@ void TBofZCalc::Calculate()
// Parameters: Bext[G], deadlayer[nm], lambda[nm]
//------------------
TLondon1D_HS::TLondon1D_HS(const vector<double> &param, unsigned int steps)
TLondon1D_HS::TLondon1D_HS(const std::vector<double> &param, unsigned int steps)
{
fSteps = steps;
fDZ = 200.0/double(steps);
@@ -149,14 +147,14 @@ double TLondon1D_HS::GetBmin() const
return fParam[0]*exp((fParam[1]-200.0)/fParam[2]);
}
vector< pair<double, double> > TLondon1D_HS::GetInverseAndDerivative(double BB) const
std::vector< std::pair<double, double> > TLondon1D_HS::GetInverseAndDerivative(double BB) const
{
vector< pair<double, double> > inv;
std::vector< std::pair<double, double> > inv;
if(BB <= 0.0 || BB > fParam[0])
return inv;
pair<double, double> invAndDerivative;
std::pair<double, double> invAndDerivative;
invAndDerivative.first = fParam[1] - fParam[2]*log(BB/fParam[0]);
invAndDerivative.second = -fParam[2]/BB;
@@ -173,7 +171,7 @@ vector< pair<double, double> > TLondon1D_HS::GetInverseAndDerivative(double BB)
// Parameters: Bext[G], deadlayer[nm], thickness[nm], lambda[nm]
//------------------
TLondon1D_1L::TLondon1D_1L(const vector<double> &param, unsigned int steps)
TLondon1D_1L::TLondon1D_1L(const std::vector<double> &param, unsigned int steps)
{
fSteps = steps;
fDZ = param[2]/double(steps);
@@ -254,15 +252,15 @@ void TLondon1D_1L::SetBmin()
return;
}
vector< pair<double, double> > TLondon1D_1L::GetInverseAndDerivative(double BB) const
std::vector< std::pair<double, double> > TLondon1D_1L::GetInverseAndDerivative(double BB) const
{
vector< pair<double, double> > inv;
std::vector< std::pair<double, double> > inv;
if(BB <= fMinB || BB > fParam[0])
return inv;
double inverse[2];
pair<double, double> invAndDerivative;
std::pair<double, double> invAndDerivative;
inverse[0]=fParam[3]*log((BB-sqrt(BB*BB-4.0*fCoeff[0]*fCoeff[1]))/(2.0*fCoeff[1]));
inverse[1]=fParam[3]*log((BB+sqrt(BB*BB-4.0*fCoeff[0]*fCoeff[1]))/(2.0*fCoeff[1]));
@@ -288,7 +286,7 @@ vector< pair<double, double> > TLondon1D_1L::GetInverseAndDerivative(double BB)
// Parameters: Bext[G], deadlayer[nm], thickness1[nm], thickness2[nm], lambda1[nm], lambda2[nm]
//------------------
TLondon1D_2L::TLondon1D_2L(const vector<double> &param, unsigned int steps)
TLondon1D_2L::TLondon1D_2L(const std::vector<double> &param, unsigned int steps)
{
fSteps = steps;
fDZ = (param[2]+param[3])/double(steps);
@@ -389,15 +387,15 @@ void TLondon1D_2L::SetBmin()
return;
}
vector< pair<double, double> > TLondon1D_2L::GetInverseAndDerivative(double BB) const
std::vector< std::pair<double, double> > TLondon1D_2L::GetInverseAndDerivative(double BB) const
{
vector< pair<double, double> > inv;
std::vector< std::pair<double, double> > inv;
if(BB <= fMinB || BB >= fParam[0])
return inv;
double inverse[3];
pair<double, double> invAndDerivative;
std::pair<double, double> invAndDerivative;
switch(fMinTag)
{
@@ -457,7 +455,7 @@ vector< pair<double, double> > TLondon1D_2L::GetInverseAndDerivative(double BB)
// Parameters: Bext[G], B1[G], deadlayer[nm], thickness1[nm], lambda[nm]
//------------------
TProximity1D_1LHS::TProximity1D_1LHS(const vector<double> &param, unsigned int steps)
TProximity1D_1LHS::TProximity1D_1LHS(const std::vector<double> &param, unsigned int steps)
{
fSteps = steps;
fDZ = 200./double(steps);
@@ -512,15 +510,15 @@ void TProximity1D_1LHS::SetBmin()
return;
}
vector< pair<double, double> > TProximity1D_1LHS::GetInverseAndDerivative(double BB) const
std::vector< std::pair<double, double> > TProximity1D_1LHS::GetInverseAndDerivative(double BB) const
{
vector< pair<double, double> > inv;
std::vector< std::pair<double, double> > inv;
if(BB <= fMinB || BB > fParam[0])
return inv;
double inverse[2];
pair<double, double> invAndDerivative;
std::pair<double, double> invAndDerivative;
inverse[0]=(fParam[0]*(fParam[2]+fParam[3])-fParam[1]*fParam[2]-BB*fParam[3])/(fParam[0]-fParam[1]);
inverse[1]=fParam[2]+fParam[3]-fParam[4]*log(BB/fParam[1]);
@@ -545,7 +543,7 @@ vector< pair<double, double> > TProximity1D_1LHS::GetInverseAndDerivative(double
// Parameters: Bext[G], deadlayer[nm], thickness1[nm], thickness2[nm], thickness3[nm], lambda1[nm], lambda2[nm], lambda3[nm]
//------------------
TLondon1D_3L::TLondon1D_3L(const vector<double> &param, unsigned int steps)
TLondon1D_3L::TLondon1D_3L(const std::vector<double> &param, unsigned int steps)
// : fSteps(steps), fDZ((param[2]+param[3]+param[4])/double(steps)), fParam(param), fMinTag(-1), fMinZ(-1.0), fMinB(-1.0)
{
// no members of TLondon1D_3L, therefore the initialization list cannot be used!!
@@ -681,15 +679,15 @@ void TLondon1D_3L::SetBmin()
return;
}
vector< pair<double, double> > TLondon1D_3L::GetInverseAndDerivative(double BB) const
std::vector< std::pair<double, double> > TLondon1D_3L::GetInverseAndDerivative(double BB) const
{
vector< pair<double, double> > inv;
std::vector< std::pair<double, double> > inv;
if(BB <= fMinB || BB > fParam[0])
return inv;
double inverse[4];
pair<double, double> invAndDerivative;
std::pair<double, double> invAndDerivative;
switch(fMinTag)
{
@@ -791,7 +789,7 @@ vector< pair<double, double> > TLondon1D_3L::GetInverseAndDerivative(double BB)
// Parameters: Bext[G], deadlayer[nm], thickness1[nm], thickness2[nm], thickness3[nm], lambda1[nm], lambda2[nm]
//------------------
TLondon1D_3LS::TLondon1D_3LS(const vector<double> &param, unsigned int steps)
TLondon1D_3LS::TLondon1D_3LS(const std::vector<double> &param, unsigned int steps)
{
fSteps = steps;
fDZ = (param[2]+param[3]+param[4])/double(steps);
@@ -915,15 +913,15 @@ void TLondon1D_3LS::SetBmin()
return;
}
vector< pair<double, double> > TLondon1D_3LS::GetInverseAndDerivative(double BB) const
std::vector< std::pair<double, double> > TLondon1D_3LS::GetInverseAndDerivative(double BB) const
{
vector< pair<double, double> > inv;
std::vector< std::pair<double, double> > inv;
if(BB <= fMinB || BB > fParam[0])
return inv;
double inverse[4];
pair<double, double> invAndDerivative;
std::pair<double, double> invAndDerivative;
switch(fMinTag)
{
@@ -1025,7 +1023,7 @@ vector< pair<double, double> > TLondon1D_3LS::GetInverseAndDerivative(double BB)
// Parameters: Bext[G], deadlayer[nm], thickness1[nm], thickness2[nm], thickness3[nm], lambda1[nm], lambda2[nm]
//------------------
TLondon1D_3LwInsulator::TLondon1D_3LwInsulator(const vector<double> &param, unsigned int steps)
TLondon1D_3LwInsulator::TLondon1D_3LwInsulator(const std::vector<double> &param, unsigned int steps)
{
fSteps = steps;
fDZ = (param[2]+param[3]+param[4])/static_cast<double>(steps);

View File

@@ -40,7 +40,6 @@
#endif
#include <iostream>
using namespace std;
#include "TMath.h"
@@ -73,7 +72,7 @@ TBulkVortexFieldCalc::~TBulkVortexFieldCalc() {
FILE *wordsOfWisdomW;
wordsOfWisdomW = fopen(fWisdom.c_str(), "w");
if (wordsOfWisdomW == NULL) {
cout << "TBulkVortexFieldCalc::~TBulkVortexFieldCalc(): Could not open file ... No wisdom is exported..." << endl;
std::cout << "TBulkVortexFieldCalc::~TBulkVortexFieldCalc(): Could not open file ... No wisdom is exported..." << std::endl;
} else {
fftw_export_wisdom_to_file(wordsOfWisdomW);
fclose(wordsOfWisdomW);
@@ -123,7 +122,7 @@ double TBulkVortexFieldCalc::GetBmax() const {
}
}
TBulkTriVortexLondonFieldCalc::TBulkTriVortexLondonFieldCalc(const string& wisdom, const unsigned int steps) {
TBulkTriVortexLondonFieldCalc::TBulkTriVortexLondonFieldCalc(const std::string& wisdom, const unsigned int steps) {
fWisdom = wisdom;
if (steps % 2) {
fSteps = steps + 1;
@@ -143,7 +142,7 @@ TBulkTriVortexLondonFieldCalc::TBulkTriVortexLondonFieldCalc(const string& wisdo
fFFTin = new fftw_complex[(fSteps/2 + 1) * fSteps];
fFFTout = new double[fSteps*fSteps];
// cout << "Check for the FFT plan..." << endl;
// std::cout << "Check for the FFT plan..." << std::endl;
// Load wisdom from file if it exists and should be used
@@ -174,11 +173,11 @@ TBulkTriVortexLondonFieldCalc::TBulkTriVortexLondonFieldCalc(const string& wisdo
void TBulkTriVortexLondonFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 3) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2]) {
cout << endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << endl;
std::cout << std::endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << std::endl;
return;
}
@@ -302,7 +301,7 @@ void TBulkTriVortexLondonFieldCalc::CalculateGrid() const {
}
TBulkSqVortexLondonFieldCalc::TBulkSqVortexLondonFieldCalc(const string& wisdom, const unsigned int steps) {
TBulkSqVortexLondonFieldCalc::TBulkSqVortexLondonFieldCalc(const std::string& wisdom, const unsigned int steps) {
fWisdom = wisdom;
if (steps % 2) {
fSteps = steps + 1;
@@ -322,7 +321,7 @@ TBulkSqVortexLondonFieldCalc::TBulkSqVortexLondonFieldCalc(const string& wisdom,
fFFTin = new fftw_complex[(fSteps/2 + 1) * fSteps];
fFFTout = new double[fSteps*fSteps];
// cout << "Check for the FFT plan..." << endl;
// std::cout << "Check for the FFT plan..." << std::endl;
// Load wisdom from file if it exists and should be used
@@ -353,11 +352,11 @@ TBulkSqVortexLondonFieldCalc::TBulkSqVortexLondonFieldCalc(const string& wisdom,
void TBulkSqVortexLondonFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 3) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2]) {
cout << endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << endl;
std::cout << std::endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << std::endl;
return;
}
@@ -449,7 +448,7 @@ void TBulkSqVortexLondonFieldCalc::CalculateGrid() const {
TBulkTriVortexMLFieldCalc::TBulkTriVortexMLFieldCalc(const string& wisdom, const unsigned int steps) {
TBulkTriVortexMLFieldCalc::TBulkTriVortexMLFieldCalc(const std::string& wisdom, const unsigned int steps) {
fWisdom = wisdom;
if (steps % 2) {
fSteps = steps + 1;
@@ -469,7 +468,7 @@ TBulkTriVortexMLFieldCalc::TBulkTriVortexMLFieldCalc(const string& wisdom, const
fFFTin = new fftw_complex[(fSteps/2 + 1) * fSteps];
fFFTout = new double[fSteps*fSteps];
// cout << "Check for the FFT plan..." << endl;
// std::cout << "Check for the FFT plan..." << std::endl;
// Load wisdom from file if it exists and should be used
@@ -500,11 +499,11 @@ TBulkTriVortexMLFieldCalc::TBulkTriVortexMLFieldCalc(const string& wisdom, const
void TBulkTriVortexMLFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 3) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2]) {
cout << endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << endl;
std::cout << std::endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << std::endl;
return;
}
@@ -645,7 +644,7 @@ void TBulkTriVortexMLFieldCalc::CalculateGrid() const {
}
TBulkTriVortexAGLFieldCalc::TBulkTriVortexAGLFieldCalc(const string& wisdom, const unsigned int steps) {
TBulkTriVortexAGLFieldCalc::TBulkTriVortexAGLFieldCalc(const std::string& wisdom, const unsigned int steps) {
fWisdom = wisdom;
if (steps % 2) {
fSteps = steps + 1;
@@ -665,7 +664,7 @@ TBulkTriVortexAGLFieldCalc::TBulkTriVortexAGLFieldCalc(const string& wisdom, con
fFFTin = new fftw_complex[(fSteps/2 + 1) * fSteps];
fFFTout = new double[fSteps*fSteps];
// cout << "Check for the FFT plan..." << endl;
// std::cout << "Check for the FFT plan..." << std::endl;
// Load wisdom from file if it exists and should be used
@@ -696,11 +695,11 @@ TBulkTriVortexAGLFieldCalc::TBulkTriVortexAGLFieldCalc(const string& wisdom, con
void TBulkTriVortexAGLFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 3) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2]) {
cout << endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << endl;
std::cout << std::endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << std::endl;
return;
}
@@ -850,7 +849,7 @@ void TBulkTriVortexAGLFieldCalc::CalculateGrid() const {
TBulkTriVortexAGLIIFieldCalc::TBulkTriVortexAGLIIFieldCalc(const string& wisdom, const unsigned int steps) {
TBulkTriVortexAGLIIFieldCalc::TBulkTriVortexAGLIIFieldCalc(const std::string& wisdom, const unsigned int steps) {
fWisdom = wisdom;
if (steps % 2) {
fSteps = steps + 1;
@@ -870,7 +869,7 @@ TBulkTriVortexAGLIIFieldCalc::TBulkTriVortexAGLIIFieldCalc(const string& wisdom,
fFFTin = new fftw_complex[(fSteps/2 + 1) * fSteps];
fFFTout = new double[fSteps*fSteps];
// cout << "Check for the FFT plan..." << endl;
// std::cout << "Check for the FFT plan..." << std::endl;
// Load wisdom from file if it exists and should be used
@@ -901,11 +900,11 @@ TBulkTriVortexAGLIIFieldCalc::TBulkTriVortexAGLIIFieldCalc(const string& wisdom,
void TBulkTriVortexAGLIIFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 3) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2]) {
cout << endl << "The field, penetration depth and vortex-core radius have to have finite values in order to calculate B(x,y)!" << endl;
std::cout << std::endl << "The field, penetration depth and vortex-core radius have to have finite values in order to calculate B(x,y)!" << std::endl;
return;
}
@@ -1054,7 +1053,7 @@ void TBulkTriVortexAGLIIFieldCalc::CalculateGrid() const {
}
TBulkTriVortexNGLFieldCalc::TBulkTriVortexNGLFieldCalc(const string& wisdom, const unsigned int steps)
TBulkTriVortexNGLFieldCalc::TBulkTriVortexNGLFieldCalc(const std::string& wisdom, const unsigned int steps)
: fLatticeConstant(0.0), fKappa(0.0), fSumAk(0.0), fSumOmegaSq(0.0), fSumSum(0.0)
{
fWisdom = wisdom;
@@ -1332,7 +1331,7 @@ void TBulkTriVortexNGLFieldCalc::CalculateGradient() const {
// // #pragma omp parallel for default(shared) private(i) schedule(dynamic)
// for (i = 0; i < NFFTsq; i += 1) {
// if (fOmegaMatrix[i] < 0.0) {
// cout << "Omega negative for index " << i << ", value: " << fOmegaMatrix[i] << endl;
// std::cout << "Omega negative for index " << i << ", value: " << fOmegaMatrix[i] << std::endl;
// fOmegaMatrix[i] = 0.0;
// }
// }
@@ -1909,11 +1908,11 @@ void TBulkTriVortexNGLFieldCalc::CalculateSumAk() const {
void TBulkTriVortexNGLFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 3) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2]) {
cout << endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << endl;
std::cout << std::endl << "The field, penetration depth and coherence length have to have finite values in order to calculate B(x,y)!" << std::endl;
return;
}
@@ -1967,7 +1966,7 @@ void TBulkTriVortexNGLFieldCalc::CalculateGrid() const {
CalculateSumAk();
// cout << "fSumAk = " << fSumAk << endl;
// std::cout << "fSumAk = " << fSumAk << std::endl;
// Do the Fourier transform to get omega(x,y) - Abrikosov
@@ -2060,7 +2059,7 @@ void TBulkTriVortexNGLFieldCalc::CalculateGrid() const {
CalculateSumAk();
// cout << "fSumAk = " << fSumAk << endl;
// std::cout << "fSumAk = " << fSumAk << std::endl;
// Need a copy of the aK-matrix since FFTW is manipulating the input in c2r and r2c transforms
// Store it in the first half of the bK-matrix
@@ -2133,9 +2132,9 @@ void TBulkTriVortexNGLFieldCalc::CalculateGrid() const {
if (fFFTin[l][0]){
if (((fabs(fFFTin[l][0]) > 1.0E-6) && (fabs(fCheckAkConvergence[l] - fFFTin[l][0])/fFFTin[l][0] > 1.0E-3)) || \
(fCheckAkConvergence[l]/fFFTin[l][0] < 0.0)) {
//cout << "old: " << fCheckAkConvergence[l] << ", new: " << fFFTin[l][0] << endl;
//std::cout << "old: " << fCheckAkConvergence[l] << ", new: " << fFFTin[l][0] << std::endl;
akConverged = false;
//cout << "index = " << l << endl;
//std::cout << "index = " << l << std::endl;
break;
}
}
@@ -2156,13 +2155,13 @@ void TBulkTriVortexNGLFieldCalc::CalculateGrid() const {
//break;
}
// cout << "Ak Convergence: " << akConverged << endl;
// std::cout << "Ak Convergence: " << akConverged << std::endl;
// Calculate omega again either for the bK-iteration step or again the aK-iteration
CalculateSumAk();
// cout << "fSumAk = " << fSumAk << " count = " << count << endl;
// std::cout << "fSumAk = " << fSumAk << " count = " << count << std::endl;
// Do the Fourier transform to get omega(x,y)
@@ -2222,14 +2221,14 @@ void TBulkTriVortexNGLFieldCalc::CalculateGrid() const {
if (fBkMatrix[l][0]) {
if (((fabs(fBkMatrix[l][0]) > 1.0E-6) && (fabs(fCheckBkConvergence[l] - fBkMatrix[l][0])/fabs(fBkMatrix[l][0]) > 1.0E-3)) || \
(fCheckBkConvergence[l]/fBkMatrix[l][0] < 0.0)) {
// cout << "old: " << fCheckBkConvergence[l] << ", new: " << fBkMatrix[l][0] << endl;
// std::cout << "old: " << fCheckBkConvergence[l] << ", new: " << fBkMatrix[l][0] << std::endl;
bkConverged = false;
break;
}
}
}
// cout << "Bk Convergence: " << bkConverged << endl;
// std::cout << "Bk Convergence: " << bkConverged << std::endl;
if (!bkConverged) {
#ifdef HAVE_GOMP
@@ -2338,7 +2337,7 @@ void TBulkTriVortexNGLFieldCalc::CalculateGrid() const {
}
TBulkAnisotropicTriVortexLondonFieldCalc::TBulkAnisotropicTriVortexLondonFieldCalc(const string& wisdom, const unsigned int steps) {
TBulkAnisotropicTriVortexLondonFieldCalc::TBulkAnisotropicTriVortexLondonFieldCalc(const std::string& wisdom, const unsigned int steps) {
fWisdom = wisdom;
if (steps % 2) {
fSteps = steps + 1;
@@ -2358,7 +2357,7 @@ TBulkAnisotropicTriVortexLondonFieldCalc::TBulkAnisotropicTriVortexLondonFieldCa
fFFTin = new fftw_complex[(fSteps/2 + 1) * fSteps];
fFFTout = new double[fSteps*fSteps];
// cout << "Check for the FFT plan..." << endl;
// std::cout << "Check for the FFT plan..." << std::endl;
// Load wisdom from file if it exists and should be used
@@ -2389,12 +2388,12 @@ TBulkAnisotropicTriVortexLondonFieldCalc::TBulkAnisotropicTriVortexLondonFieldCa
void TBulkAnisotropicTriVortexLondonFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 5) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2] || !fParam[3] || !fParam[4]) {
cout << endl << "The field, penetration depths and coherence lengths have to have finite values in order to calculate B(x,y)!" \
<< endl;
std::cout << std::endl << "The field, penetration depths and coherence lengths have to have finite values in order to calculate B(x,y)!" \
<< std::endl;
return;
}
@@ -2555,7 +2554,7 @@ void TBulkAnisotropicTriVortexLondonFieldCalc::CalculateGrid() const {
}
TBulkAnisotropicTriVortexMLFieldCalc::TBulkAnisotropicTriVortexMLFieldCalc(const string& wisdom, const unsigned int steps) {
TBulkAnisotropicTriVortexMLFieldCalc::TBulkAnisotropicTriVortexMLFieldCalc(const std::string& wisdom, const unsigned int steps) {
fWisdom = wisdom;
if (steps % 2) {
fSteps = steps + 1;
@@ -2575,7 +2574,7 @@ TBulkAnisotropicTriVortexMLFieldCalc::TBulkAnisotropicTriVortexMLFieldCalc(const
fFFTin = new fftw_complex[(fSteps/2 + 1) * fSteps];
fFFTout = new double[fSteps*fSteps];
// cout << "Check for the FFT plan..." << endl;
// std::cout << "Check for the FFT plan..." << std::endl;
// Load wisdom from file if it exists and should be used
@@ -2606,12 +2605,12 @@ TBulkAnisotropicTriVortexMLFieldCalc::TBulkAnisotropicTriVortexMLFieldCalc(const
void TBulkAnisotropicTriVortexMLFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 5) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2] || !fParam[3] || !fParam[4]) {
cout << endl << "The field, penetration depths and coherence lengths have to have finite values in order to calculate B(x,y)!" \
<< endl;
std::cout << std::endl << "The field, penetration depths and coherence lengths have to have finite values in order to calculate B(x,y)!" \
<< std::endl;
return;
}
@@ -2754,7 +2753,7 @@ void TBulkAnisotropicTriVortexMLFieldCalc::CalculateGrid() const {
}
TBulkAnisotropicTriVortexAGLFieldCalc::TBulkAnisotropicTriVortexAGLFieldCalc(const string& wisdom, const unsigned int steps) {
TBulkAnisotropicTriVortexAGLFieldCalc::TBulkAnisotropicTriVortexAGLFieldCalc(const std::string& wisdom, const unsigned int steps) {
fWisdom = wisdom;
if (steps % 2) {
fSteps = steps + 1;
@@ -2774,7 +2773,7 @@ TBulkAnisotropicTriVortexAGLFieldCalc::TBulkAnisotropicTriVortexAGLFieldCalc(con
fFFTin = new fftw_complex[(fSteps/2 + 1) * fSteps];
fFFTout = new double[fSteps*fSteps];
// cout << "Check for the FFT plan..." << endl;
// std::cout << "Check for the FFT plan..." << std::endl;
// Load wisdom from file if it exists and should be used
@@ -2805,12 +2804,12 @@ TBulkAnisotropicTriVortexAGLFieldCalc::TBulkAnisotropicTriVortexAGLFieldCalc(con
void TBulkAnisotropicTriVortexAGLFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 5) {
cout << endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2] || !fParam[3] || !fParam[4]) {
cout << endl << "The field, penetration depths and coherence lengths have to have finite values in order to calculate B(x,y)!" \
<< endl;
std::cout << std::endl << "The field, penetration depths and coherence lengths have to have finite values in order to calculate B(x,y)!" \
<< std::endl;
return;
}

View File

@@ -41,7 +41,6 @@
#endif
#include <iostream>
using namespace std;
#include "TMath.h"
@@ -60,7 +59,7 @@ TFilmVortexFieldCalc::~TFilmVortexFieldCalc() {
FILE *wordsOfWisdomW;
wordsOfWisdomW = fopen(fWisdom.c_str(), "w");
if (wordsOfWisdomW == NULL) {
cout << "TFilmVortexFieldCalc::~TFilmVortexFieldCalc(): Could not open file ... No wisdom is exported..." << endl;
std::cout << "TFilmVortexFieldCalc::~TFilmVortexFieldCalc(): Could not open file ... No wisdom is exported..." << std::endl;
} else {
fftwf_export_wisdom_to_file(wordsOfWisdomW);
fclose(wordsOfWisdomW);
@@ -71,7 +70,7 @@ TFilmVortexFieldCalc::~TFilmVortexFieldCalc() {
fftwf_destroy_plan(fFFTplan);
delete[] fFFTin; fFFTin = 0;
delete[] fFFTin; fFFTin = nullptr;
for(unsigned int i(0); i<3; ++i){
delete[] fBout[i]; fBout[i] = 0;
@@ -117,10 +116,10 @@ float TFilmVortexFieldCalc::GetBmax() const {
}
TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc(const string& wisdom, const unsigned int steps, const unsigned int stepsZ)
TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc(const std::string& wisdom, const unsigned int steps, const unsigned int stepsZ)
: fLatticeConstant(0.0), fKappa(0.0), fSumOmegaSq(0.0), fSumSum(0.0), fFind3dSolution(false)
{
// cout << "TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc... ";
// std::cout << "TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc... ";
fWisdom = wisdom;
switch (stepsZ % 2) {
@@ -171,7 +170,7 @@ TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc(const string& wisdom, con
temp = new float[stepsSqStZ]; // (grad omega)_(x,y,z)
fOmegaDiffMatrix.push_back(temp);
}
temp = 0;
temp = nullptr;
fOmegaMatrix = new float[stepsSqStZ]; // |psi|^2
@@ -201,7 +200,7 @@ TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc(const string& wisdom, con
FILE *wordsOfWisdomR;
wordsOfWisdomR = fopen(fWisdom.c_str(), "r");
if (wordsOfWisdomR == NULL) {
if (wordsOfWisdomR == nullptr) {
fUseWisdom = false;
} else {
wisdomLoaded = fftwf_import_wisdom_from_file(wordsOfWisdomR);
@@ -215,7 +214,7 @@ TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc(const string& wisdom, con
// create the FFT plans
if (fUseWisdom) {
// cout << "use wisdom ... ";
// std::cout << "use wisdom ... ";
// use the first plan from the base class here - it will be destroyed by the base class destructor
fFFTplan = fftwf_plan_dft_3d(fSteps, fSteps, fStepsZ, fFFTin, fRealSpaceMatrix, FFTW_BACKWARD, FFTW_EXHAUSTIVE);
fFFTplanBkToBandQ = fftwf_plan_dft_3d(fSteps, fSteps, fStepsZ, fBkMatrix, fBkMatrix, FFTW_BACKWARD, FFTW_EXHAUSTIVE);
@@ -226,7 +225,7 @@ TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc(const string& wisdom, con
fFFTplanForBatSurf = fftwf_plan_dft_2d(fSteps, fSteps, fBkS, fBkS, FFTW_FORWARD, FFTW_EXHAUSTIVE);
}
else {
// cout << "do not use wisdom ... ";
// std::cout << "do not use wisdom ... ";
// use the first plan from the base class here - it will be destroyed by the base class destructor
fFFTplan = fftwf_plan_dft_3d(fSteps, fSteps, fStepsZ, fFFTin, fRealSpaceMatrix, FFTW_BACKWARD, FFTW_ESTIMATE);
fFFTplanBkToBandQ = fftwf_plan_dft_3d(fSteps, fSteps, fStepsZ, fBkMatrix, fBkMatrix, FFTW_BACKWARD, FFTW_ESTIMATE);
@@ -236,7 +235,7 @@ TFilmTriVortexNGLFieldCalc::TFilmTriVortexNGLFieldCalc(const string& wisdom, con
fFFTplanForPk2 = fftwf_plan_dft_3d(fSteps, fSteps, fStepsZ, fQMatrix, fQMatrix, FFTW_BACKWARD, FFTW_ESTIMATE);
fFFTplanForBatSurf = fftwf_plan_dft_2d(fSteps, fSteps, fBkS, fBkS, FFTW_FORWARD, FFTW_ESTIMATE);
}
// cout << "done" << endl;
// std::cout << "done" << endl;
}
TFilmTriVortexNGLFieldCalc::~TFilmTriVortexNGLFieldCalc() {
@@ -254,19 +253,19 @@ TFilmTriVortexNGLFieldCalc::~TFilmTriVortexNGLFieldCalc() {
}
fOmegaDiffMatrix.clear();
delete[] fOmegaMatrix; fOmegaMatrix = 0;
delete[] fBkMatrix; fBkMatrix = 0;
delete[] fRealSpaceMatrix; fRealSpaceMatrix = 0;
delete[] fPkMatrix; fPkMatrix = 0;
delete[] fQMatrix; fQMatrix = 0;
delete[] fQMatrixA; fQMatrixA = 0;
delete[] fSumAkFFTin; fSumAkFFTin = 0;
delete[] fSumAk; fSumAk = 0;
delete[] fBkS; fBkS = 0;
delete[] fGstorage; fGstorage = 0;
delete[] fOmegaMatrix; fOmegaMatrix = nullptr;
delete[] fBkMatrix; fBkMatrix = nullptr;
delete[] fRealSpaceMatrix; fRealSpaceMatrix = nullptr;
delete[] fPkMatrix; fPkMatrix = nullptr;
delete[] fQMatrix; fQMatrix = nullptr;
delete[] fQMatrixA; fQMatrixA = nullptr;
delete[] fSumAkFFTin; fSumAkFFTin = nullptr;
delete[] fSumAk; fSumAk = nullptr;
delete[] fBkS; fBkS = nullptr;
delete[] fGstorage; fGstorage = nullptr;
delete[] fCheckAkConvergence; fCheckAkConvergence = 0;
delete[] fCheckBkConvergence; fCheckBkConvergence = 0;
delete[] fCheckAkConvergence; fCheckAkConvergence = nullptr;
delete[] fCheckBkConvergence; fCheckBkConvergence = nullptr;
}
void TFilmTriVortexNGLFieldCalc::CalculateGatVortexCore() const {
@@ -2612,11 +2611,11 @@ void TFilmTriVortexNGLFieldCalc::CalculateSumAk() const {
void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
// SetParameters - method has to be called from the user before the calculation!!
if (fParam.size() < 4) {
cout << endl << "The SetParameters-method has to be called before B(x,y,z) can be calculated!" << endl;
std::cout << std::endl << "The SetParameters-method has to be called before B(x,y,z) can be calculated!" << std::endl;
return;
}
if (!fParam[0] || !fParam[1] || !fParam[2] || !fParam[3]) {
cout << endl << "The field, penetration depth, coherence length and layer thickness have to have finite values in order to calculate B(x,y,z)!" << endl;
std::cout << std::endl << "The field, penetration depth, coherence length and layer thickness have to have finite values in order to calculate B(x,y,z)!" << std::endl;
return;
}
@@ -2785,7 +2784,7 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
// CalculateGatVortexCore();
// for (k = 0; k < NFFTz; ++k) {
// cout << "g[" << k << "] = " << fGstorage[k] << endl;
// std::cout << "g[" << k << "] = " << fGstorage[k] << std::endl;
// }
#ifdef HAVE_GOMP
@@ -2800,7 +2799,7 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
(fOmegaDiffMatrix[0][l]*fOmegaDiffMatrix[0][l] + fOmegaDiffMatrix[1][l]*fOmegaDiffMatrix[1][l] + \
fOmegaDiffMatrix[2][l]*fOmegaDiffMatrix[2][l])/(fourKappaSq*fOmegaMatrix[l]);
} else {
// cout << "index where omega is zero: " << l << endl;
// std::cout << "index where omega is zero: " << l << std::endl;
fRealSpaceMatrix[l][0] = 0.0;
}
fRealSpaceMatrix[l][1] = 0.0;
@@ -2862,7 +2861,7 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
(fOmegaDiffMatrix[0][index]*fOmegaDiffMatrix[0][index] + fOmegaDiffMatrix[1][index]*fOmegaDiffMatrix[1][index] + \
fOmegaDiffMatrix[2][index]*fOmegaDiffMatrix[2][index])/(fourKappaSq*fOmegaMatrix[index]);
} else {
// cout << "! fOmegaMatrix at index " << index << endl;
// std::cout << "! fOmegaMatrix at index " << index << std::endl;
// fSumSum -= fGstorage[k];
index = k + fStepsZ*(j + fSteps*(i + 1));
if (i < NFFT - 1 && fOmegaMatrix[index]) {
@@ -2898,9 +2897,9 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
if (fFFTin[index][0]) {
if (((fabs(fFFTin[index][0]) > 1.0E-5f) && (fabs(fCheckAkConvergence[index] - fFFTin[index][0])/fFFTin[index][0] > 5.0E-3f)) \
|| ((fabs(fFFTin[index][0]) > 1.0E-10f) && (fCheckAkConvergence[index]/fFFTin[index][0] < 0.0))) {
//cout << "old: " << fCheckAkConvergence[index] << ", new: " << fFFTin[index][0] << endl;
//std::cout << "old: " << fCheckAkConvergence[index] << ", new: " << fFFTin[index][0] << std::endl;
akConverged = false;
//cout << "count = " << count << ", Ak index = " << index << endl;
//std::cout << "count = " << count << ", Ak index = " << index << std::endl;
break;
}
}
@@ -2926,17 +2925,17 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
}
}
// cout << "Ak Convergence: " << akConverged << endl;
// std::cout << "Ak Convergence: " << akConverged << std::endl;
// Calculate omega again either for the bK-iteration step or again the aK-iteration
CalculateSumAk();
// cout << "fSumAk = ";
// std::cout << "fSumAk = ";
// for (k = 0; k < NFFTz; ++k){
// cout << fSumAk[k][0] << ", ";
// std::cout << fSumAk[k][0] << ", ";
// }
// cout << endl;
// std::cout << endl;
meanAk = 0.0f;
for (k = 0; k < NFFTz; ++k) {
@@ -2995,7 +2994,7 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
fBkS[index][1] = 0.f;
}
// cout << "fC = " << fC << ", meanAk = " << meanAk << endl;
// std::cout << "fC = " << fC << ", meanAk = " << meanAk << endl;
fSumSum = fC*meanAk;
@@ -3027,9 +3026,9 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
if (((fabs(fBkMatrix[index][0]) > 1.0E-5f) && \
(fabs(fCheckBkConvergence[index] - fBkMatrix[index][0])/fBkMatrix[index][0] > 5.0E-3f)) \
|| ((fabs(fBkMatrix[index][0]) > 1.0E-10f) && (fCheckBkConvergence[index]/fBkMatrix[index][0] < 0.0))) {
//cout << "old: " << fCheckBkConvergence[index] << ", new: " << fBkMatrix[index][0] << endl;
//std::cout << "old: " << fCheckBkConvergence[index] << ", new: " << fBkMatrix[index][0] << std::endl;
bkConverged = false;
//cout << "count = " << count << ", Bk index = " << index << endl;
//std::cout << "count = " << count << ", Bk index = " << index << std::endl;
break;
}
}
@@ -3038,7 +3037,7 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
break;
}
// cout << "Bk Convergence: " << bkConverged << endl;
// std::cout << "Bk Convergence: " << bkConverged << std::endl;
if (!bkConverged) {
#ifdef HAVE_GOMP
@@ -3069,7 +3068,7 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
}
if (count == 50) {
cout << "3D iterations aborted after " << count << " steps" << endl;
std::cout << "3D iterations aborted after " << count << " steps" << std::endl;
break;
}
@@ -3080,14 +3079,14 @@ void TFilmTriVortexNGLFieldCalc::CalculateGrid() const {
if (bkConverged && akConverged) {
if (!fFind3dSolution) {
//cout << "count = " << count << " 2D converged" << endl;
//cout << "2D iterations converged after " << count << " steps" << endl;
//std::cout << "count = " << count << " 2D converged" << std::endl;
//std::cout << "2D iterations converged after " << count << " steps" << std::endl;
//break;
akConverged = false;
bkConverged = false;
fFind3dSolution = true;
} else {
cout << "3D iterations converged after " << count << " steps" << endl;
std::cout << "3D iterations converged after " << count << " steps" << std::endl;
break;
}
}

View File

@@ -32,7 +32,6 @@
#include <iostream>
#include <cassert>
#include <cmath>
using namespace std;
#include <TSAXParser.h>
#include "BMWStartupHandler.h"
@@ -256,7 +255,7 @@ double TLondon1DHS::operator()(double t, const vector<double> &par) const {
if(!only_phase_changed) {
// cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << endl;
// std::cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << std::endl;
for (unsigned int i(2); i<fPar.size(); i++)
fParForBofZ[i-2] = par[i];
@@ -278,7 +277,7 @@ double TLondon1DHS::operator()(double t, const vector<double> &par) const {
fPofT->DoFFT();
}/* else {
cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << endl;
std::cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << std::endl;
}*/
fPofT->CalcPol(fParForPofT);
@@ -416,7 +415,7 @@ double TLondon1D1L::operator()(double t, const vector<double> &par) const {
if(!only_phase_changed) {
// cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << endl;
// std::cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << std::endl;
for (unsigned int i(2); i<fPar.size(); i++)
fParForBofZ[i-2] = par[i];
@@ -433,7 +432,7 @@ double TLondon1D1L::operator()(double t, const vector<double> &par) const {
for(unsigned int i(6); i<8; i++)
weights.push_back(par[i]);
// cout << "Weighting has changed, re-calculating n(z) now..." << endl;
// std::cout << "Weighting has changed, re-calculating n(z) now..." << std::endl;
fImpProfile->WeightLayers(par[1], interfaces, weights);
interfaces.clear();
@@ -456,7 +455,7 @@ double TLondon1D1L::operator()(double t, const vector<double> &par) const {
fPofT->DoFFT();
}/* else {
cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << endl;
std::cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << std::endl;
}*/
fPofT->CalcPol(fParForPofT);
@@ -466,11 +465,11 @@ double TLondon1D1L::operator()(double t, const vector<double> &par) const {
// // Debugging start
// if (!(fCallCounter%10000)){
// cout << fCallCounter-1 << "\t";
// std::cout << fCallCounter-1 << "\t";
// for (unsigned int i(0); i<fPar.size(); i++){
// cout << fPar[i] << "\t";
// std::cout << fPar[i] << "\t";
// }
// cout << endl;
// std::cout << std::endl;
// }
// // Debugging end
@@ -597,7 +596,7 @@ double TLondon1D2L::operator()(double t, const vector<double> &par) const {
if(!only_phase_changed) {
// cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << endl;
// std::cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << std::endl;
for (unsigned int i(2); i<par.size(); i++)
fParForBofZ[i-2] = par[i];
@@ -615,7 +614,7 @@ double TLondon1D2L::operator()(double t, const vector<double> &par) const {
for(unsigned int i(8); i<11; i++)
weights.push_back(par[i]);
// cout << "Weighting has changed, re-calculating n(z) now..." << endl;
// std::cout << "Weighting has changed, re-calculating n(z) now..." << std::endl;
fImpProfile->WeightLayers(par[1], interfaces, weights);
interfaces.clear();
@@ -638,7 +637,7 @@ double TLondon1D2L::operator()(double t, const vector<double> &par) const {
}/* else {
cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << endl;
std::cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << std::endl;
}*/
fPofT->CalcPol(fParForPofT);
@@ -766,7 +765,7 @@ double TProximity1D1LHS::operator()(double t, const vector<double> &par) const {
if(!only_phase_changed) {
// cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << endl;
// std::cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << std::endl;
for (unsigned int i(2); i<fPar.size(); i++)
fParForBofZ[i-2] = par[i];
@@ -789,7 +788,7 @@ double TProximity1D1LHS::operator()(double t, const vector<double> &par) const {
}/* else {
cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << endl;
std::cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << std::endl;
}*/
fPofT->CalcPol(fParForPofT);
@@ -920,7 +919,7 @@ double TLondon1D3L::operator()(double t, const vector<double> &par) const {
if(!only_phase_changed) {
// cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << endl;
// std::cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << std::endl;
for (unsigned int i(2); i<par.size(); i++)
fParForBofZ[i-2] = par[i];
@@ -939,7 +938,7 @@ double TLondon1D3L::operator()(double t, const vector<double> &par) const {
for(unsigned int i(10); i<14; i++)
weights.push_back(par[i]);
// cout << "Weighting has changed, re-calculating n(z) now..." << endl;
// std::cout << "Weighting has changed, re-calculating n(z) now..." << std::endl;
fImpProfile->WeightLayers(par[1], interfaces, weights);
interfaces.clear();
@@ -961,7 +960,7 @@ double TLondon1D3L::operator()(double t, const vector<double> &par) const {
fPofT->DoFFT();
}/* else {
cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << endl;
std::cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << std::endl;
}*/
fPofT->CalcPol(fParForPofT);
@@ -1092,7 +1091,7 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
if(!only_phase_changed) {
// cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << endl;
// std::cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << std::endl;
for (unsigned int i(2); i<par.size(); i++)
fParForBofZ[i-2] = par[i];
@@ -1111,7 +1110,7 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
for(unsigned int i(9); i<13; i++)
weights.push_back(par[i]);
// cout << "Weighting has changed, re-calculating n(z) now..." << endl;
// std::cout << "Weighting has changed, re-calculating n(z) now..." << std::endl;
fImpProfile->WeightLayers(par[1], interfaces, weights);
interfaces.clear();
@@ -1133,7 +1132,7 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
fPofT->DoFFT();
}/* else {
cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << endl;
std::cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << std::endl;
}*/
fPofT->CalcPol(fParForPofT);
@@ -1163,7 +1162,7 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
// int status = parseXmlFile(saxParser, startup_path_name.c_str());
// // check for parse errors
// if (status) { // error
// cout << endl << "**WARNING** Reading/parsing " << startup_path_name << " failed." << endl;
// std::cout << endl << "**WARNING** Reading/parsing " << startup_path_name << " failed." << std::endl;
// }
//
// fNSteps = startupHandler->GetNSteps();
@@ -1213,12 +1212,12 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
// fPar = par;
//
// /* for (unsigned int i(0); i<fPar.size(); i++){
// cout << "fPar[" << i << "] = " << fPar[i] << endl;
// std::cout << "fPar[" << i << "] = " << fPar[i] << std::endl;
// }
// */
// for (unsigned int i(2); i<fPar.size(); i++){
// fParForBofZ.push_back(fPar[i]);
// // cout << "fParForBofZ[" << i-2 << "] = " << fParForBofZ[i-2] << endl;
// // std::cout << "fParForBofZ[" << i-2 << "] = " << fParForBofZ[i-2] << std::endl;
// }
// fFirstCall=false;
// }
@@ -1253,7 +1252,7 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
//
// if(!only_phase_changed) {
//
// // cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << endl;
// // std::cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << std::endl;
//
// for (unsigned int i(2); i<par.size(); i++)
// fParForBofZ[i-2] = par[i];
@@ -1262,15 +1261,15 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
//
// /* DEBUG ---------------------------
// for(unsigned int i(0); i<fParForBofZ.size(); i++) {
// cout << "ParForBofZ[" << i << "] = " << fParForBofZ[i] << endl;
// std::cout << "ParForBofZ[" << i << "] = " << fParForBofZ[i] << std::endl;
// }
//
// for(unsigned int i(0); i<fParForPofB.size(); i++) {
// cout << "ParForPofB[" << i << "] = " << fParForPofB[i] << endl;
// std::cout << "ParForPofB[" << i << "] = " << fParForPofB[i] << std::endl;
// }
//
// for(unsigned int i(0); i<fParForPofT.size(); i++) {
// cout << "ParForPofT[" << i << "] = " << fParForPofT[i] << endl;
// std::cout << "ParForPofT[" << i << "] = " << fParForPofT[i] << std::endl;
// }
// ------------------------------------*/
//
@@ -1284,7 +1283,7 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
// for(unsigned int i(par.size()-4); i<par.size(); i++)
// weights.push_back(par[i]);
//
// // cout << "Weighting has changed, re-calculating n(z) now..." << endl;
// // std::cout << "Weighting has changed, re-calculating n(z) now..." << std::endl;
// fImpProfile->WeightLayers(par[1], interfaces, weights);
// }
//
@@ -1293,7 +1292,7 @@ double TLondon1D3LS::operator()(double t, const vector<double> &par) const {
// fPofT->DoFFT(PofB4);
//
// }/* else {
// cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << endl;
// std::cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << std::endl;
// }*/
//
// fPofT->CalcPol(fParForPofT);

View File

@@ -46,7 +46,7 @@
#include <ctime>
/-------------------------------------------------------*/
TPofBCalc::TPofBCalc(const vector<double> &para) : fBmin(0.0), fBmax(0.0), fDT(para[0]), fDB(para[1]), fPBExists(false) {
TPofBCalc::TPofBCalc(const std::vector<double> &para) : fBmin(0.0), fBmax(0.0), fDT(para[0]), fDB(para[1]), fPBExists(false) {
fPBSize = static_cast<int>(1.0/(gBar*fDT*fDB));
if (fPBSize % 2) {
fPBSize += 1;
@@ -74,7 +74,7 @@ TPofBCalc::TPofBCalc(const vector<double> &para) : fBmin(0.0), fBmax(0.0), fDT(p
// Do not actually calculate P(B) but take it from a B and a P(B) vector of the same size
TPofBCalc::TPofBCalc(const vector<double>& b, const vector<double>& pb, double dt) {
TPofBCalc::TPofBCalc(const std::vector<double>& b, const std::vector<double>& pb, double dt) {
assert(b.size() == pb.size() && b.size() >= 2);
fPBSize = pb.size();
@@ -94,7 +94,7 @@ TPofBCalc::TPofBCalc(const vector<double>& b, const vector<double>& pb, double d
fPB[i] = pb[i];
}
vector<double>::const_iterator iter, iterB;
std::vector<double>::const_iterator iter, iterB;
iterB = b.begin();
for(iter = pb.begin(); iter != pb.end(); ++iter){
@@ -165,7 +165,7 @@ void TPofBCalc::Normalize(unsigned int minFilledIndex = 0, unsigned int maxFille
// Do not actually calculate P(B) but take it from a B and a P(B) vector of the same size
void TPofBCalc::SetPB(const vector<double> &pb) const {
void TPofBCalc::SetPB(const std::vector<double> &pb) const {
assert(fPBSize == pb.size());
int i;
@@ -183,7 +183,7 @@ void TPofBCalc::SetPB(const vector<double> &pb) const {
return;
}
void TPofBCalc::Calculate(const string &type, const vector<double> &para) {
void TPofBCalc::Calculate(const std::string &type, const std::vector<double> &para) {
if (type == "skg"){ // skewed Gaussian
@@ -235,7 +235,7 @@ void TPofBCalc::Calculate(const string &type, const vector<double> &para) {
// Parameters: dt[us], dB[G], Energy[keV], Bbg[G], width[us^{-1}], weight[1]
//-----------
void TPofBCalc::Calculate(const TBofZCalcInverse *BofZ, const TTrimSPData *dataTrimSP, const vector<double> &para) {
void TPofBCalc::Calculate(const TBofZCalcInverse *BofZ, const TTrimSPData *dataTrimSP, const std::vector<double> &para) {
if(fPBExists)
return;
@@ -261,7 +261,7 @@ void TPofBCalc::Calculate(const TBofZCalcInverse *BofZ, const TTrimSPData *dataT
for (i = firstZerosEnd; i <= lastZerosStart; ++i) {
vector< pair<double, double> > inv;
std::vector< std::pair<double, double> > inv;
inv = BofZ->GetInverseAndDerivative(fB[i]);
for (unsigned int j(0); j < inv.size(); ++j) {
@@ -285,7 +285,7 @@ void TPofBCalc::Calculate(const TBofZCalcInverse *BofZ, const TTrimSPData *dataT
// Parameters: dt[us], dB[G], Energy[keV]
//-----------
void TPofBCalc::Calculate(const TBofZCalc *BofZ, const TTrimSPData *dataTrimSP, const vector<double> &para, unsigned int zonk) {
void TPofBCalc::Calculate(const TBofZCalc *BofZ, const TTrimSPData *dataTrimSP, const std::vector<double> &para, unsigned int zonk) {
if(fPBExists)
return;
@@ -306,8 +306,8 @@ void TPofBCalc::Calculate(const TBofZCalc *BofZ, const TTrimSPData *dataTrimSP,
// calculate p(B) from B(z)
vector<double> *bofzZ = BofZ->DataZ();
vector<double> *bofzBZ = BofZ->DataBZ();
std::vector<double> *bofzZ = BofZ->DataZ();
std::vector<double> *bofzBZ = BofZ->DataBZ();
double ddZ(BofZ->GetDZ());
/* USED FOR DEBUGGING-----------------------------------
@@ -439,7 +439,7 @@ void TPofBCalc::Calculate(const TBofZCalc *BofZ, const TTrimSPData *dataTrimSP,
// Parameters: dt[us], dB[G] [, Bbg[G], width[us^{-1}], weight[1] ]
//-----------
void TPofBCalc::Calculate(const TBulkVortexFieldCalc *vortexLattice, const vector<double> &para) {
void TPofBCalc::Calculate(const TBulkVortexFieldCalc *vortexLattice, const std::vector<double> &para) {
if(fPBExists)
return;
@@ -569,7 +569,7 @@ void TPofBCalc::Calculate(const TBulkVortexFieldCalc *vortexLattice, const vecto
if (chunk < 10)
chunk = 10;
vector< vector<unsigned int> > pBvec(n, vector<unsigned int>(fPBSize, 0));
std::vector< std::vector<unsigned int> > pBvec(n, std::vector<unsigned int>(fPBSize, 0));
int indexStep(static_cast<int>(floor(static_cast<float>(numberOfSteps_2)/static_cast<float>(n))));

View File

@@ -66,12 +66,12 @@
// Parameters: phase, dt, dB
//------------------
TPofTCalc::TPofTCalc (const TPofBCalc *PofB, const string &wisdom, const vector<double> &par) : fWisdom(wisdom) {
TPofTCalc::TPofTCalc (const TPofBCalc *PofB, const std::string &wisdom, const std::vector<double> &par) : fWisdom(wisdom) {
#if !defined(_WIN32GCC) && defined(HAVE_LIBFFTW3_THREADS) && defined(HAVE_GOMP)
int init_threads(fftw_init_threads());
if (!init_threads)
cout << "TPofTCalc::TPofTCalc: Couldn't initialize multiple FFTW-threads ..." << endl;
std::cout << "TPofTCalc::TPofTCalc: Couldn't initialize multiple FFTW-threads ..." << std::endl;
else
fftw_plan_with_nthreads(omp_get_num_procs());
#endif
@@ -144,7 +144,7 @@ TPofTCalc::~TPofTCalc() {
FILE *wordsOfWisdomW;
wordsOfWisdomW = fopen(fWisdom.c_str(), "w");
if (wordsOfWisdomW == NULL) {
cout << "TPofTCalc::~TPofTCalc(): Could not open file ... No wisdom is exported..." << endl;
std::cout << "TPofTCalc::~TPofTCalc(): Could not open file ... No wisdom is exported..." << std::endl;
} else {
fftw_export_wisdom_to_file(wordsOfWisdomW);
fclose(wordsOfWisdomW);
@@ -180,7 +180,7 @@ void TPofTCalc::DoFFT() {
// Parameters: phase, dt, dB
//---------------------
void TPofTCalc::CalcPol(const vector<double> &par) {
void TPofTCalc::CalcPol(const std::vector<double> &par) {
double sinph(sin(par[0]*PI/180.0)), cosph(cos(par[0]*PI/180.0));
int i;
@@ -206,7 +206,7 @@ double TPofTCalc::Eval(double t) const {
if (i < fNFFT/2){
return fPT[i]+(fPT[i+1]-fPT[i])/(fT[i+1]-fT[i])*(t-fT[i]);
}
cout << "TPofTCalc::Eval: No data for the time " << t << " us available! Returning -999.0 ..." << endl;
std::cout << "TPofTCalc::Eval: No data for the time " << t << " us available! Returning -999.0 ..." << std::endl;
return -999.0;
}
@@ -217,7 +217,7 @@ double TPofTCalc::Eval(double t) const {
// Parameters: output filename, par(dt, dB, timeres, channels, asyms, phases, t0s, N0s, bgs) optPar(field, energy)
//---------------------
void TPofTCalc::FakeData(const string &rootOutputFileName, const vector<double> &par, const vector<double> *optPar = 0) {
void TPofTCalc::FakeData(const string &rootOutputFileName, const std::vector<double> &par, const std::vector<double> *optPar = 0) {
//determine the number of histograms to be built
unsigned int numHist(0);
@@ -225,18 +225,18 @@ void TPofTCalc::FakeData(const string &rootOutputFileName, const vector<double>
numHist=(par.size()-4)/5;
if(!numHist){
cout << "TPofTCalc::FakeData: The number of parameters for the histogram creation is not correct. Do nothing." << endl;
std::cout << "TPofTCalc::FakeData: The number of parameters for the histogram creation is not correct. Do nothing." << std::endl;
return;
}
cout << "TPofTCalc::FakeData: " << numHist << " histograms to be built" << endl;
std::cout << "TPofTCalc::FakeData: " << numHist << " histograms to be built" << std::endl;
int nChannels = int(par[3]);
vector<int> t0;
vector<double> asy0;
vector<double> phase0;
vector<double> N0;
vector<double> bg;
std::vector<int> t0;
std::vector<double> asy0;
std::vector<double> phase0;
std::vector<double> N0;
std::vector<double> bg;
for(unsigned int i(0); i<numHist; ++i) {
t0.push_back(int(par[i+4+numHist*2]));
@@ -246,13 +246,13 @@ void TPofTCalc::FakeData(const string &rootOutputFileName, const vector<double>
bg.push_back(par[i+4+numHist*4]);
}
vector<double> param; // Parameters for TPofTCalc::CalcPol
std::vector<double> param; // Parameters for TPofTCalc::CalcPol
param.push_back(0.0); // phase
param.push_back(par[0]); // dt
param.push_back(par[1]); // dB
vector< vector<double> > asy;
vector<double> asydata(nChannels);
std::vector< std::vector<double> > asy;
std::vector<double> asydata(nChannels);
double ttime;
int j,k;
@@ -286,12 +286,12 @@ void TPofTCalc::FakeData(const string &rootOutputFileName, const vector<double>
// }
asy.push_back(asydata);
// asydata.clear();
cout << "TPofTCalc::FakeData: " << i+1 << "/" << numHist << " calculated!" << endl;
std::cout << "TPofTCalc::FakeData: " << i+1 << "/" << numHist << " calculated!" << std::endl;
}
// calculate the histograms
vector< vector<double> > histo;
vector<double> data(nChannels);
std::vector< std::vector<double> > histo;
std::vector<double> data(nChannels);
for (unsigned int i(0); i<numHist; ++i) { // loop over all histos
@@ -307,16 +307,16 @@ void TPofTCalc::FakeData(const string &rootOutputFileName, const vector<double>
// end omp
histo.push_back(data);
cout << "TPofTCalc::FakeData: " << i+1 << "/" << numHist << " done ..." << endl;
std::cout << "TPofTCalc::FakeData: " << i+1 << "/" << numHist << " done ..." << std::endl;
}
// add Poisson noise to the histograms
cout << "TPofTCalc::FakeData: Adding Poisson noise ..." << endl;
std::cout << "TPofTCalc::FakeData: Adding Poisson noise ..." << std::endl;
TH1F* theoHisto;
TH1F* fakeHisto;
vector<TH1F*> histoData;
std::vector<TH1F*> histoData;
TString name;
for (unsigned int i(0); i<numHist; ++i) { // loop over all histos
@@ -351,7 +351,7 @@ void TPofTCalc::FakeData(const string &rootOutputFileName, const vector<double>
}
}
cout << "TPofTCalc::FakeData: Write histograms and header information to the file ..." << endl;
std::cout << "TPofTCalc::FakeData: Write histograms and header information to the file ..." << std::endl;
// save the histograms as root files
// create run info folder and content
@@ -385,7 +385,7 @@ void TPofTCalc::FakeData(const string &rootOutputFileName, const vector<double>
for (unsigned int i(0); i<histoData.size(); i++)
decayAnaModule->Add(histoData[i]);
// post pileup corrected (PPC)
vector<TH1F*> histoDataPPC;
std::vector<TH1F*> histoDataPPC;
for (unsigned int i(0); i<histoData.size(); i++) {
histoDataPPC.push_back(dynamic_cast<TH1F*>(histoData[i]->Clone()));
if (i < 10)
@@ -434,7 +434,7 @@ void TPofTCalc::FakeData(const string &rootOutputFileName, const vector<double>
N0.clear();
bg.clear();
cout << "TPofTCalc::FakeData: DONE." << endl << endl;
std::cout << "TPofTCalc::FakeData: DONE." << std::endl << std::endl;
return;
}

View File

@@ -29,7 +29,6 @@
#include "TSkewedGss.h"
#include <iostream>
#include <cassert>
using namespace std;
#include <TSAXParser.h>
#include "BMWStartupHandler.h"
@@ -57,7 +56,7 @@ TSkewedGss::~TSkewedGss() {
TSkewedGss::TSkewedGss() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -104,7 +103,7 @@ TSkewedGss::TSkewedGss() : fCalcNeeded(true), fFirstCall(true) {
// Parameters: all the parameters for the function to be fitted through TSkewedGss (phase,freq0,sigma-,sigma+)
//------------------
double TSkewedGss::operator()(double t, const vector<double> &par) const {
double TSkewedGss::operator()(double t, const std::vector<double> &par) const {
assert(par.size() == 4);
@@ -146,7 +145,7 @@ double TSkewedGss::operator()(double t, const vector<double> &par) const {
if(!only_phase_changed) {
// cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << endl;
// std::cout << " Parameters have changed, (re-)calculating p(B) and P(t) now..." << std::endl;
fParForPofB[2] = par[1]; // nu0
fParForPofB[3] = par[2]; // sigma-
@@ -156,7 +155,7 @@ double TSkewedGss::operator()(double t, const vector<double> &par) const {
fPofT->DoFFT();
}/* else {
cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << endl;
std::cout << "Only the phase parameter has changed, (re-)calculating P(t) now..." << std::endl;
}*/
fPofT->CalcPol(fParForPofT);

View File

@@ -30,7 +30,6 @@
#include <iostream>
#include <cassert>
#include <cmath>
using namespace std;
#include <TSAXParser.h>
#include "BMWStartupHandler.h"
@@ -158,7 +157,7 @@ TBulkTriVortexNGL::~TBulkTriVortexNGL() {
TBulkTriVortexLondon::TBulkTriVortexLondon() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -218,7 +217,7 @@ TBulkTriVortexLondon::TBulkTriVortexLondon() : fCalcNeeded(true), fFirstCall(tru
TBulkSqVortexLondon::TBulkSqVortexLondon() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -274,7 +273,7 @@ TBulkSqVortexLondon::TBulkSqVortexLondon() : fCalcNeeded(true), fFirstCall(true)
// Parameters: all the parameters for the function to be fitted through TBulkTriVortexLondon (phase, av.field, lambda, xi, [not implemented: bkg weight])
//------------------
double TBulkTriVortexLondon::operator()(double t, const vector<double> &par) const {
double TBulkTriVortexLondon::operator()(double t, const std::vector<double> &par) const {
assert(par.size() == 4 || par.size() == 5 || par.size() == 7 || par.size() == 8); // normal, +BkgWeight, +VortexWeighting, +AFfield
@@ -365,7 +364,7 @@ double TBulkTriVortexLondon::operator()(double t, const vector<double> &par) con
// Parameters: all the parameters for the function to be fitted through TBulkSqVortexLondon (phase, av.field, lambda, xi, [not implemented: bkg weight])
//------------------
double TBulkSqVortexLondon::operator()(double t, const vector<double> &par) const {
double TBulkSqVortexLondon::operator()(double t, const std::vector<double> &par) const {
assert(par.size() == 4 || par.size() == 5);
@@ -448,7 +447,7 @@ double TBulkSqVortexLondon::operator()(double t, const vector<double> &par) cons
TBulkTriVortexML::TBulkTriVortexML() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -504,7 +503,7 @@ TBulkTriVortexML::TBulkTriVortexML() : fCalcNeeded(true), fFirstCall(true) {
// Parameters: all the parameters for the function to be fitted through TBulkTriVortexML (phase, av.field, lambda, xi, [not implemented: bkg weight])
//------------------
double TBulkTriVortexML::operator()(double t, const vector<double> &par) const {
double TBulkTriVortexML::operator()(double t, const std::vector<double> &par) const {
assert(par.size() == 4 || par.size() == 5);
@@ -587,7 +586,7 @@ double TBulkTriVortexML::operator()(double t, const vector<double> &par) const {
TBulkTriVortexAGL::TBulkTriVortexAGL() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -643,7 +642,7 @@ TBulkTriVortexAGL::TBulkTriVortexAGL() : fCalcNeeded(true), fFirstCall(true) {
// Parameters: all the parameters for the function to be fitted through TBulkTriVortexAGL (phase, av.field, lambda, xi, [not implemented: bkg weight])
//------------------
double TBulkTriVortexAGL::operator()(double t, const vector<double> &par) const {
double TBulkTriVortexAGL::operator()(double t, const std::vector<double> &par) const {
assert(par.size() == 4 || par.size() == 5);
@@ -725,7 +724,7 @@ double TBulkTriVortexAGL::operator()(double t, const vector<double> &par) const
TBulkTriVortexAGLII::TBulkTriVortexAGLII() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -783,7 +782,7 @@ TBulkTriVortexAGLII::TBulkTriVortexAGLII() : fCalcNeeded(true), fFirstCall(true)
// Parameters: all the parameters for the function to be fitted through TBulkTriVortexAGLII (phase, av.field, lambda, core-radius, [not implemented: bkg weight])
//------------------
double TBulkTriVortexAGLII::operator()(double t, const vector<double> &par) const {
double TBulkTriVortexAGLII::operator()(double t, const std::vector<double> &par) const {
assert(par.size() == 4 || par.size() == 5 || par.size() == 7 || par.size() == 8);
@@ -876,7 +875,7 @@ double TBulkTriVortexAGLII::operator()(double t, const vector<double> &par) cons
TBulkTriVortexNGL::TBulkTriVortexNGL() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -932,7 +931,7 @@ TBulkTriVortexNGL::TBulkTriVortexNGL() : fCalcNeeded(true), fFirstCall(true) {
// Parameters: all the parameters for the function to be fitted through TBulkTriVortexNGL (phase, appl.field, lambda, xi, [not implemented: bkg weight])
//------------------
double TBulkTriVortexNGL::operator()(double t, const vector<double> &par) const {
double TBulkTriVortexNGL::operator()(double t, const std::vector<double> &par) const {
assert(par.size() == 4 || par.size() == 5);
@@ -1031,7 +1030,7 @@ TBulkAnisotropicTriVortexLondonGlobal::~TBulkAnisotropicTriVortexLondonGlobal()
TBulkAnisotropicTriVortexLondonGlobal::TBulkAnisotropicTriVortexLondonGlobal() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -1081,7 +1080,7 @@ TBulkAnisotropicTriVortexLondonGlobal::TBulkAnisotropicTriVortexLondonGlobal() :
}
}
void TBulkAnisotropicTriVortexLondonGlobal::Calc(const vector<double> &par) const {
void TBulkAnisotropicTriVortexLondonGlobal::Calc(const std::vector<double> &par) const {
assert(par.size() == 6);
/*
@@ -1191,7 +1190,7 @@ TBulkAnisotropicTriVortexLondon::~TBulkAnisotropicTriVortexLondon()
* \param globalPart reference to the global user function object vector
* \param idx global user function index within the theory tree
*/
void TBulkAnisotropicTriVortexLondon::SetGlobalPart(vector<void *> &globalPart, UInt_t idx)
void TBulkAnisotropicTriVortexLondon::SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx)
{
fIdxGlobal = static_cast<Int_t>(idx);
@@ -1273,7 +1272,7 @@ TBulkAnisotropicTriVortexMLGlobal::~TBulkAnisotropicTriVortexMLGlobal() {
TBulkAnisotropicTriVortexMLGlobal::TBulkAnisotropicTriVortexMLGlobal() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -1323,7 +1322,7 @@ TBulkAnisotropicTriVortexMLGlobal::TBulkAnisotropicTriVortexMLGlobal() : fCalcNe
}
}
void TBulkAnisotropicTriVortexMLGlobal::Calc(const vector<double> &par) const {
void TBulkAnisotropicTriVortexMLGlobal::Calc(const std::vector<double> &par) const {
assert(par.size() == 6);
/*
@@ -1433,7 +1432,7 @@ TBulkAnisotropicTriVortexML::~TBulkAnisotropicTriVortexML()
* \param globalPart reference to the global user function object vector
* \param idx global user function index within the theory tree
*/
void TBulkAnisotropicTriVortexML::SetGlobalPart(vector<void *> &globalPart, UInt_t idx)
void TBulkAnisotropicTriVortexML::SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx)
{
fIdxGlobal = static_cast<Int_t>(idx);
@@ -1515,7 +1514,7 @@ TBulkAnisotropicTriVortexAGLGlobal::~TBulkAnisotropicTriVortexAGLGlobal() {
TBulkAnisotropicTriVortexAGLGlobal::TBulkAnisotropicTriVortexAGLGlobal() : fCalcNeeded(true), fFirstCall(true) {
// read startup file
string startup_path_name("BMW_startup.xml");
std::string startup_path_name("BMW_startup.xml");
TSAXParser *saxParser = new TSAXParser();
BMWStartupHandler *startupHandler = new BMWStartupHandler();
@@ -1565,7 +1564,7 @@ TBulkAnisotropicTriVortexAGLGlobal::TBulkAnisotropicTriVortexAGLGlobal() : fCalc
}
}
void TBulkAnisotropicTriVortexAGLGlobal::Calc(const vector<double> &par) const {
void TBulkAnisotropicTriVortexAGLGlobal::Calc(const std::vector<double> &par) const {
assert(par.size() == 6);
/*
@@ -1676,7 +1675,7 @@ TBulkAnisotropicTriVortexAGL::~TBulkAnisotropicTriVortexAGL()
* \param globalPart reference to the global user function object vector
* \param idx global user function index within the theory tree
*/
void TBulkAnisotropicTriVortexAGL::SetGlobalPart(vector<void *> &globalPart, UInt_t idx)
void TBulkAnisotropicTriVortexAGL::SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx)
{
fIdxGlobal = static_cast<Int_t>(idx);