modernized code to C++11 and newer.

This allows to analyze the code by external code analyzers. Since a lot is adopted,
the version is changed to 1.4.3
This commit is contained in:
2019-04-16 15:34:49 +02:00
parent e6d424e900
commit 795cd75b1e
136 changed files with 6870 additions and 7085 deletions

View File

@ -8,7 +8,7 @@
***************************************************************************/
/***************************************************************************
* Copyright (C) 2007-2016 by Andreas Suter *
* Copyright (C) 2007-2019 by Andreas Suter *
* andreas.suter@psi.ch *
* *
* This program is free software; you can redistribute it and/or modify *
@ -31,9 +31,7 @@
#include <iostream>
#include <iomanip>
using namespace std;
#include "TH1F.h"
#include "TF1.h"
#include "TAxis.h"
@ -67,17 +65,18 @@ PFTPhaseCorrection::PFTPhaseCorrection(const Int_t minBin, const Int_t maxBin) :
/**
*
*/
PFTPhaseCorrection::PFTPhaseCorrection(vector<Double_t> &reFT, vector<Double_t> &imFT, const Int_t minBin, const Int_t maxBin) :
PFTPhaseCorrection::PFTPhaseCorrection(std::vector<Double_t> &reFT, std::vector<Double_t> &imFT, const Int_t minBin, const Int_t maxBin) :
fReal(reFT), fImag(imFT), fMinBin(minBin), fMaxBin(maxBin)
{
Init();
Int_t realSize = static_cast<Int_t>(fReal.size());
if (fMinBin == -1)
fMinBin = 0;
if (fMaxBin == -1)
fMaxBin = fReal.size();
if (fMaxBin > fReal.size())
fMaxBin = fReal.size();
fMaxBin = realSize;
if (fMaxBin > realSize)
fMaxBin = realSize;
fRealPh.resize(fReal.size());
fImagPh.resize(fReal.size());
@ -110,7 +109,7 @@ void PFTPhaseCorrection::Minimize()
} else {
fMin = -1.0;
fValid = false;
cout << endl << ">> **WARNING** minimize failed to find a minimum for the real FT phase correction ..." << endl;
std::cout << std::endl << ">> **WARNING** minimize failed to find a minimum for the real FT phase correction ..." << std::endl;
return;
}
}
@ -130,7 +129,7 @@ Double_t PFTPhaseCorrection::GetPhaseCorrectionParam(UInt_t idx)
else if (idx == 1)
result = fPh_c1;
else
cerr << ">> **ERROR** requested phase correction parameter with index=" << idx << " does not exist!" << endl;
std::cerr << ">> **ERROR** requested phase correction parameter with index=" << idx << " does not exist!" << std::endl;
return result;
}
@ -144,7 +143,7 @@ Double_t PFTPhaseCorrection::GetPhaseCorrectionParam(UInt_t idx)
Double_t PFTPhaseCorrection::GetMinimum()
{
if (!fValid) {
cerr << ">> **ERROR** requested minimum is invalid!" << endl;
std::cerr << ">> **ERROR** requested minimum is invalid!" << std::endl;
return -1.0;
}
@ -178,7 +177,7 @@ void PFTPhaseCorrection::CalcPhasedFT() const
Double_t w=0.0;
for (UInt_t i=0; i<fRealPh.size(); i++) {
w = (Double_t)i / (Double_t)fReal.size();
w = static_cast<Double_t>(i) / static_cast<Double_t>(fReal.size());
phi = fPh_c0 + fPh_c1 * w;
fRealPh[i] = fReal[i]*cos(phi) - fImag[i]*sin(phi);
fImagPh[i] = fReal[i]*sin(phi) + fImag[i]*cos(phi);
@ -253,7 +252,7 @@ Double_t PFTPhaseCorrection::Entropy() const
/**
*
*/
double PFTPhaseCorrection::operator()(const vector<double> &par) const
double PFTPhaseCorrection::operator()(const std::vector<double> &par) const
{
// par : [0]: c0, [1]: c1
@ -287,15 +286,15 @@ PFourier::PFourier(TH1F *data, Int_t unitTag, Double_t startTime, Double_t endTi
fDCCorrected(dcCorrected), fZeroPaddingPower(zeroPaddingPower)
{
// some necessary checks and initialization
if (fData == 0) {
cerr << endl << "**ERROR** PFourier::PFourier: no valid data" << endl << endl;
if (fData == nullptr) {
std::cerr << std::endl << "**ERROR** PFourier::PFourier: no valid data" << std::endl << std::endl;
fValid = false;
return;
}
fValid = true;
fIn = 0;
fOut = 0;
fIn = nullptr;
fOut = nullptr;
//as fPhCorrectedReFT = 0;
fApodization = F_APODIZATION_NONE;
@ -317,7 +316,7 @@ PFourier::PFourier(TH1F *data, Int_t unitTag, Double_t startTime, Double_t endTi
}
// calculate start and end bin
fNoOfData = (UInt_t)((fEndTime-fStartTime)/fTimeResolution);
fNoOfData = static_cast<UInt_t>((fEndTime-fStartTime)/fTimeResolution);
// check if zero padding is whished
if (fZeroPaddingPower > 0) {
@ -348,21 +347,20 @@ PFourier::PFourier(TH1F *data, Int_t unitTag, Double_t startTime, Double_t endTi
default:
fValid = false;
return;
break;
}
// allocate necessary memory
fIn = (fftw_complex *)fftw_malloc(sizeof(fftw_complex)*fNoOfBins);
fOut = (fftw_complex *)fftw_malloc(sizeof(fftw_complex)*fNoOfBins);
fIn = static_cast<fftw_complex *>(fftw_malloc(sizeof(fftw_complex)*fNoOfBins));
fOut = static_cast<fftw_complex *>(fftw_malloc(sizeof(fftw_complex)*fNoOfBins));
// check if memory allocation has been successful
if ((fIn == 0) || (fOut == 0)) {
if ((fIn == nullptr) || (fOut == nullptr)) {
fValid = false;
return;
}
// get the FFTW3 plan (see FFTW3 manual)
fFFTwPlan = fftw_plan_dft_1d(fNoOfBins, fIn, fOut, FFTW_FORWARD, FFTW_ESTIMATE);
fFFTwPlan = fftw_plan_dft_1d(static_cast<Int_t>(fNoOfBins), fIn, fOut, FFTW_FORWARD, FFTW_ESTIMATE);
// check if a valid plan has been generated
if (!fFFTwPlan) {
@ -455,7 +453,7 @@ TH1F* PFourier::GetRealFourier(const Double_t scale)
{
// check if valid flag is set
if (!fValid)
return 0;
return nullptr;
// invoke realFourier
Char_t name[256];
@ -469,15 +467,15 @@ TH1F* PFourier::GetRealFourier(const Double_t scale)
else
noOfFourierBins = (fNoOfBins+1)/2;
TH1F *realFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (realFourier == 0) {
TH1F *realFourier = new TH1F(name, title, static_cast<Int_t>(noOfFourierBins), -fResolution/2.0, static_cast<Double_t>(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (realFourier == nullptr) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << endl;
return 0;
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << std::endl;
return nullptr;
}
// fill realFourier vector
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
realFourier->SetBinContent(i+1, scale*fOut[i][0]);
realFourier->SetBinError(i+1, 0.0);
}
@ -499,11 +497,11 @@ TH1F* PFourier::GetRealFourier(const Double_t scale)
* \param min minimal freq / field from which to optimise. Given in the choosen unit.
* \param max maximal freq / field up to which to optimise. Given in the choosen unit.
*/
TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Double_t> &phase,
TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, std::vector<Double_t> &phase,
const Double_t scale, const Double_t min, const Double_t max)
{
if ((re == 0) || (im == 0))
return 0;
if ((re == nullptr) || (im == nullptr))
return nullptr;
phase.resize(2); // c0, c1
@ -519,7 +517,7 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
minBin = axis->FindFixBin(min);
if ((minBin == 0) || (minBin > maxBin)) {
minBin = 1;
cerr << "**WARNING** minimum frequency/field out of range. Will adopted it." << endl;
std::cerr << "**WARNING** minimum frequency/field out of range. Will adopted it." << std::endl;
}
}
@ -528,12 +526,12 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
maxBin = axis->FindFixBin(max);
if ((maxBin == 0) || (maxBin > axis->GetNbins())) {
maxBin = axis->GetNbins();
cerr << "**WARNING** maximum frequency/field out of range. Will adopted it." << endl;
std::cerr << "**WARNING** maximum frequency/field out of range. Will adopted it." << std::endl;
}
}
// copy the real/imag Fourier from min to max
vector<Double_t> realF, imagF;
std::vector<Double_t> realF, imagF;
for (Int_t i=minBin; i<=maxBin; i++) {
realF.push_back(re->GetBinContent(i));
imagF.push_back(im->GetBinContent(i));
@ -541,15 +539,15 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
// optimize real FT phase
PFTPhaseCorrection *phCorrectedReFT = new PFTPhaseCorrection(realF, imagF);
if (phCorrectedReFT == 0) {
cerr << endl << "**SEVERE ERROR** couldn't invoke PFTPhaseCorrection object." << endl;
return 0;
if (phCorrectedReFT == nullptr) {
std::cerr << std::endl << "**SEVERE ERROR** couldn't invoke PFTPhaseCorrection object." << std::endl;
return nullptr;
}
phCorrectedReFT->Minimize();
if (!phCorrectedReFT->IsValid()) {
cerr << endl << "**ERROR** could not find a valid phase correction minimum." << endl;
return 0;
std::cerr << std::endl << "**ERROR** could not find a valid phase correction minimum." << std::endl;
return nullptr;
}
phase[0] = phCorrectedReFT->GetPhaseCorrectionParam(0);
phase[1] = phCorrectedReFT->GetPhaseCorrectionParam(1);
@ -557,7 +555,7 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
// clean up
if (phCorrectedReFT) {
delete phCorrectedReFT;
phCorrectedReFT = 0;
phCorrectedReFT = nullptr;
}
realF.clear();
imagF.clear();
@ -568,16 +566,16 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
snprintf(name, sizeof(name), "%s_Fourier_PhOptRe", re->GetName());
snprintf(title, sizeof(title), "%s_Fourier_PhOptRe", re->GetTitle());
TH1F *realPhaseOptFourier = new TH1F(name, title, noOfBins, -res/2.0, (Double_t)(noOfBins-1)*res+res/2.0);
if (realPhaseOptFourier == 0) {
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << endl;
return 0;
TH1F *realPhaseOptFourier = new TH1F(name, title, noOfBins, -res/2.0, static_cast<Double_t>(noOfBins-1)*res+res/2.0);
if (realPhaseOptFourier == nullptr) {
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << std::endl;
return nullptr;
}
// fill realFourier vector
Double_t ph;
for (Int_t i=0; i<noOfBins; i++) {
ph = phase[0] + phase[1] * (Double_t)((Int_t)i-(Int_t)minBin) / (Double_t)(maxBin-minBin);
ph = phase[0] + phase[1] * static_cast<Double_t>(i-static_cast<Int_t>(minBin)) / static_cast<Double_t>(maxBin-minBin);
realPhaseOptFourier->SetBinContent(i+1, scale*(re->GetBinContent(i+1)*cos(ph) - im->GetBinContent(i+1)*sin(ph)));
realPhaseOptFourier->SetBinError(i+1, 0.0);
}
@ -597,7 +595,7 @@ TH1F* PFourier::GetImaginaryFourier(const Double_t scale)
{
// check if valid flag is set
if (!fValid)
return 0;
return nullptr;
// invoke imaginaryFourier
Char_t name[256];
@ -611,15 +609,15 @@ TH1F* PFourier::GetImaginaryFourier(const Double_t scale)
else
noOfFourierBins = (fNoOfBins+1)/2;
TH1F* imaginaryFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (imaginaryFourier == 0) {
TH1F* imaginaryFourier = new TH1F(name, title, static_cast<Int_t>(noOfFourierBins), -fResolution/2.0, static_cast<Double_t>(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (imaginaryFourier == nullptr) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the imaginary part of the Fourier transform." << endl;
return 0;
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the imaginary part of the Fourier transform." << std::endl;
return nullptr;
}
// fill imaginaryFourier vector
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
imaginaryFourier->SetBinContent(i+1, scale*fOut[i][1]);
imaginaryFourier->SetBinError(i+1, 0.0);
}
@ -639,7 +637,7 @@ TH1F* PFourier::GetPowerFourier(const Double_t scale)
{
// check if valid flag is set
if (!fValid)
return 0;
return nullptr;
// invoke powerFourier
Char_t name[256];
@ -653,15 +651,15 @@ TH1F* PFourier::GetPowerFourier(const Double_t scale)
else
noOfFourierBins = (fNoOfBins+1)/2;
TH1F* pwrFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (pwrFourier == 0) {
TH1F* pwrFourier = new TH1F(name, title, static_cast<Int_t>(noOfFourierBins), -fResolution/2.0, static_cast<Double_t>(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (pwrFourier == nullptr) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the power part of the Fourier transform." << endl;
return 0;
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the power part of the Fourier transform." << std::endl;
return nullptr;
}
// fill powerFourier vector
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
pwrFourier->SetBinContent(i+1, scale*sqrt(fOut[i][0]*fOut[i][0]+fOut[i][1]*fOut[i][1]));
pwrFourier->SetBinError(i+1, 0.0);
}
@ -681,7 +679,7 @@ TH1F* PFourier::GetPhaseFourier(const Double_t scale)
{
// check if valid flag is set
if (!fValid)
return 0;
return nullptr;
// invoke phaseFourier
Char_t name[256];
@ -695,18 +693,18 @@ TH1F* PFourier::GetPhaseFourier(const Double_t scale)
else
noOfFourierBins = (fNoOfBins+1)/2;
TH1F* phaseFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (phaseFourier == 0) {
TH1F* phaseFourier = new TH1F(name, title, static_cast<Int_t>(noOfFourierBins), -fResolution/2.0, static_cast<Double_t>(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (phaseFourier == nullptr) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the phase part of the Fourier transform." << endl;
return 0;
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the phase part of the Fourier transform." << std::endl;
return nullptr;
}
// fill phaseFourier vector
Double_t value = 0.0;
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
// calculate the phase
if (fOut[i][0] == 0) {
if (fOut[i][0] == 0.0) {
if (fOut[i][1] >= 0.0)
value = PI_HALF;
else
@ -758,14 +756,14 @@ void PFourier::PrepareFFTwInputData(UInt_t apodizationTag)
Double_t mean = 0.0;
if (fDCCorrected) {
for (UInt_t i=0; i<fNoOfData; i++) {
mean += fData->GetBinContent(i+start);
mean += fData->GetBinContent(static_cast<Int_t>(i+start));
}
mean /= (Double_t)fNoOfData;
mean /= static_cast<Double_t>(fNoOfData);
}
// 2nd fill fIn
for (UInt_t i=0; i<fNoOfData; i++) {
fIn[i][0] = fData->GetBinContent(i+start) - mean;
fIn[i][0] = fData->GetBinContent(static_cast<Int_t>(i+start)) - mean;
fIn[i][1] = 0.0;
}
for (UInt_t i=fNoOfData; i<fNoOfBins; i++) {
@ -774,7 +772,7 @@ void PFourier::PrepareFFTwInputData(UInt_t apodizationTag)
}
// 3rd apodize data (if wished)
ApodizeData(apodizationTag);
ApodizeData(static_cast<Int_t>(apodizationTag));
}
//--------------------------------------------------------------------------
@ -801,7 +799,6 @@ void PFourier::ApodizeData(Int_t apodizationTag) {
switch (apodizationTag) {
case F_APODIZATION_NONE:
return;
break;
case F_APODIZATION_WEAK:
c[0] = cweak[0]+cweak[1]+cweak[2];
c[1] = -(cweak[1]+2.0*cweak[2]);
@ -820,7 +817,7 @@ void PFourier::ApodizeData(Int_t apodizationTag) {
c[4] = cstrong[2];
break;
default:
cerr << endl << ">> **ERROR** User Apodization tag " << apodizationTag << " unknown, sorry ..." << endl;
std::cerr << std::endl << ">> **ERROR** User Apodization tag " << apodizationTag << " unknown, sorry ..." << std::endl;
break;
}
@ -828,7 +825,7 @@ void PFourier::ApodizeData(Int_t apodizationTag) {
for (UInt_t i=0; i<fNoOfData; i++) {
q = c[0];
for (UInt_t j=1; j<5; j++) {
q += c[j] * pow((Double_t)i/(Double_t)fNoOfData, 2.0*(Double_t)j);
q += c[j] * pow(static_cast<Double_t>(i)/static_cast<Double_t>(fNoOfData), 2.0*static_cast<Double_t>(j));
}
fIn[i][0] *= q;
}