added docu for the GbG LF user function
This commit is contained in:
parent
d5f7d9eb9d
commit
666f2c49c3
BIN
src/external/libGbGLF/doc/GbG-LF.pdf
vendored
Normal file
BIN
src/external/libGbGLF/doc/GbG-LF.pdf
vendored
Normal file
Binary file not shown.
184
src/external/libGbGLF/doc/GbG-LF.tex
vendored
Normal file
184
src/external/libGbGLF/doc/GbG-LF.tex
vendored
Normal file
@ -0,0 +1,184 @@
|
|||||||
|
\documentclass[twoside]{article}
|
||||||
|
|
||||||
|
\usepackage[english]{babel}
|
||||||
|
%\usepackage{a4}
|
||||||
|
\usepackage{amssymb,amsmath,bm}
|
||||||
|
\usepackage{graphicx,tabularx}
|
||||||
|
\usepackage{fancyhdr}
|
||||||
|
\usepackage{array}
|
||||||
|
\usepackage{float}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
\usepackage{xspace}
|
||||||
|
\usepackage{rotating}
|
||||||
|
\usepackage{dcolumn}
|
||||||
|
\usepackage{geometry}
|
||||||
|
\usepackage{color}
|
||||||
|
|
||||||
|
\geometry{a4paper,left=20mm,right=20mm,top=20mm,bottom=20mm}
|
||||||
|
|
||||||
|
% \setlength{\topmargin}{10mm}
|
||||||
|
% \setlength{\topmargin}{-13mm}
|
||||||
|
% % \setlength{\oddsidemargin}{0.5cm}
|
||||||
|
% % \setlength{\evensidemargin}{0cm}
|
||||||
|
% \setlength{\oddsidemargin}{1cm}
|
||||||
|
% \setlength{\evensidemargin}{1cm}
|
||||||
|
% \setlength{\textwidth}{15cm}
|
||||||
|
\setlength{\textheight}{23.8cm}
|
||||||
|
|
||||||
|
\pagestyle{fancyplain}
|
||||||
|
\addtolength{\headwidth}{0.6cm}
|
||||||
|
\fancyhead{}%
|
||||||
|
\fancyhead[RE,LO]{\bf \textsc{GapIntegrals}}%
|
||||||
|
\fancyhead[LE,RO]{\thepage}
|
||||||
|
\cfoot{--- A.~Suter -- \today~ ---}
|
||||||
|
\rfoot{\includegraphics[width=2cm]{PSI-Logo_narrow.jpg}}
|
||||||
|
|
||||||
|
\DeclareMathAlphabet{\bi}{OML}{cmm}{b}{it}
|
||||||
|
|
||||||
|
\newcommand{\mean}[1]{\langle #1 \rangle}
|
||||||
|
\newcommand{\ie}{\emph{i.e.}\xspace}
|
||||||
|
\newcommand{\musrfithead}{MUSRFIT\xspace}
|
||||||
|
\newcommand{\musrfit}{\textsc{musrfit}\xspace}
|
||||||
|
|
||||||
|
\newcolumntype{d}[1]{D{.}{.}{#1}}
|
||||||
|
\newcolumntype{C}[1]{>{\centering\arraybackslash}p{#1}}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
% Header info --------------------------------------------------
|
||||||
|
\thispagestyle{empty}
|
||||||
|
\noindent
|
||||||
|
\begin{tabular}{@{\hspace{-0.2cm}}l@{\hspace{6cm}}r}
|
||||||
|
\noindent\includegraphics[width=3.4cm]{PSI-Logo_narrow.jpg} &
|
||||||
|
{\Huge\sf Memorandum}
|
||||||
|
\end{tabular}
|
||||||
|
%
|
||||||
|
\vskip 1cm
|
||||||
|
%
|
||||||
|
\begin{tabular}{@{\hspace{-0.5cm}}ll@{\hspace{4cm}}ll}
|
||||||
|
Date: & \today & & \\[3ex]
|
||||||
|
From: & A. Suter & & \\
|
||||||
|
E-Mail: & \verb?andreas.suter@psi.ch? &&
|
||||||
|
\end{tabular}
|
||||||
|
%
|
||||||
|
\vskip 0.3cm
|
||||||
|
\noindent\hrulefill
|
||||||
|
\vskip 1cm
|
||||||
|
%
|
||||||
|
\section*{Homogenous Disorder Model: GbG in Longitudinal Fields}%
|
||||||
|
|
||||||
|
Noakes and Kalvius \cite{noakes1997} derived a phenomenological model for
|
||||||
|
homogenous disorder: Gaussian-broadened Gaussian disorder (see also
|
||||||
|
Ref.\,\cite{yaouanc2011}). In both mentioned references only the zero field
|
||||||
|
case and the weak transverse field case are discussed. Here I briefly summarize
|
||||||
|
the longitudinal field (LF) case under the assumption that the applied field doesn't
|
||||||
|
polarize the impurties, \ie the applied field is ``innocent''.
|
||||||
|
|
||||||
|
The Gauss-Kubo-Toyabe LF polarization function is
|
||||||
|
|
||||||
|
\begin{eqnarray}\label{eq:GKT_LF}
|
||||||
|
P_{Z,{\rm GKT}}^{\rm LF} &=& 1 - 2 \frac{\sigma^2}{\omega_{\rm ext}^2}\left[ 1 - \cos(\omega_{\rm ext} t)\,\exp\left(-1/2 (\sigma t)^2\right) \right] + \label{eq:GKT_LF_1}\\
|
||||||
|
& & + 2 \frac{\sigma^2}{\omega_{\rm ext}^3} \int_0^t \sin(\omega_{\rm ext} \tau)\,\exp\left(-1/2 (\omega_{\rm ext} \tau)^2\right) d\tau. \label{eq:GKT_LF_2}
|
||||||
|
\end{eqnarray}
|
||||||
|
|
||||||
|
\noindent The Gaussian disorder is assumed to have the funtional form
|
||||||
|
|
||||||
|
\begin{equation}\label{eq:GaussianDisorder}
|
||||||
|
\varrho = \frac{1}{\sqrt{2\pi}}\,\frac{1}{\sigma_1} \exp\left( -\frac{1}{2} \, \left[ \frac{\sigma - \sigma_0}{\sigma_1} \right]^2 \right).
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent In Ref.\cite{yaouanc2011} a slightly different notation is used: $\sigma \to \Delta_{\rm G}$, $\sigma_0 \to \Delta_{0}$, and
|
||||||
|
$\sigma_1 \to \Delta_{\rm GbG}$.
|
||||||
|
|
||||||
|
\noindent The GbG LF polarizatio function is given by
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
P_{Z,{\rm GbG}}^{\rm LF} = \int_0^\infty d\sigma \left\{ \varrho \cdot P_{Z,{\rm GKT}}^{\rm LF} \right\}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent Assuming that $\sigma_0 \gg \sigma_1$ this can be approximated by
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
P_{Z,{\rm GbG}}^{\rm LF} \simeq \int_{-\infty}^\infty d\sigma \left\{ \varrho \cdot P_{Z,{\rm GKT}}^{\rm LF} \right\}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent Integrating
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
P_{Z,{\rm GbG}}^{\rm LF, (1)} = \int_{-\infty}^\infty d\sigma \left\{ \varrho \cdot P_{Z,{\rm GKT}}^{\rm LF, (1)} \right\},
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
\noindent where $P_{Z,{\rm GKT}}^{\rm LF, (1)}$ is given by Eq.(\ref{eq:GKT_LF_1}), leads to
|
||||||
|
|
||||||
|
\begin{equation}\label{eq:GbG_LF_1}
|
||||||
|
P_{Z,{\rm GbG}}^{\rm LF, (1)} = 1 - 2 \frac{\sigma_0^2+\sigma_1^2}{\omega_{\rm ext}^2} +
|
||||||
|
2 \frac{\sigma_0^2 + \sigma_1^2 (1 + \sigma_1^2 t^2)}{\omega_{\rm ext}^2 (1 + \sigma_1^2 t^2)^{5/2}}\, \cos(\omega_{\rm ext} t)\,
|
||||||
|
\exp\left[-\frac{1}{2} \frac{\sigma_0^2 t^2}{1+\sigma_1^2 t^2}\right],
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent and Eq.(\ref{eq:GKT_LF_2}) leads to the non-analytic integral
|
||||||
|
|
||||||
|
\begin{eqnarray}
|
||||||
|
P_{Z,{\rm GbG}}^{\rm LF, (2)} &=& \int_{-\infty}^\infty d\sigma \left\{ \varrho \cdot P_{Z,{\rm GKT}}^{\rm LF, (2)} \right\} \nonumber \\
|
||||||
|
&=& \int_0^t d\tau \left\{ \frac{\sigma_0^4 + 3 \sigma_1^4 (1 + \sigma_1^2 \tau^2)^2 + 6 \sigma_0^2 \sigma_1^2 (1+\sigma_1^2 \tau^2)}{\omega_{\rm ext}^3 (1+\sigma_1^2 \tau^2)^{9/2}}
|
||||||
|
\sin(\omega_{\rm ext} \tau)\, \exp\left[-\frac{1}{2} \frac{\sigma_0^2 t^2}{1+\sigma_1^2 t^2}\right] \right\}. \label{eq:GbG_LF_2}
|
||||||
|
\end{eqnarray}
|
||||||
|
|
||||||
|
\noindent The full GbG LF polarization function is hence
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
P_{Z,{\rm GbG}}^{\rm LF} = P_{Z,{\rm GbG}}^{\rm LF, (1)} + P_{Z,{\rm GbG}}^{\rm LF, (2)}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection*{The GbG LF Polarization Function as a User Function in \musrfithead}
|
||||||
|
|
||||||
|
Eqs.(\ref{eq:GbG_LF_1})\&(\ref{eq:GbG_LF_2}) are implemented in \musrfit as user function. The current implementation is far from being efficient but stable.
|
||||||
|
The typical call from within the msr-file would be
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
###############################################################
|
||||||
|
FITPARAMETER
|
||||||
|
# Nr. Name Value Step Pos_Error Boundaries
|
||||||
|
1 PlusOne 1 0 none
|
||||||
|
2 MinusOne -1 0 none
|
||||||
|
3 Alpha 0.78699 -0.00036 0.00036 0 none
|
||||||
|
4 Asy 0.06682 0.00027 none 0 0.33
|
||||||
|
5 Sig0 0.3046 -0.0087 0.0093 0 100
|
||||||
|
6 Rb 1.0000 0.0027 none 0 1
|
||||||
|
7 Field0 0 0 none
|
||||||
|
8 Field1 20.03 0 none
|
||||||
|
9 Field2 99.32 0 none
|
||||||
|
|
||||||
|
###############################################################
|
||||||
|
THEORY
|
||||||
|
asymmetry fun1
|
||||||
|
userFcn libGbGLF PGbGLF map2 5 fun2 (field sigma0 Rb)
|
||||||
|
|
||||||
|
###############################################################
|
||||||
|
FUNCTIONS
|
||||||
|
fun1 = map1 * par4
|
||||||
|
fun2 = par5 * par6
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\noindent where \texttt{PGbGLF} takes 3 arguments:
|
||||||
|
|
||||||
|
\begin{enumerate}
|
||||||
|
\item field in Gauss
|
||||||
|
\item $\sigma_0$ in ($1/\mu s$)
|
||||||
|
\item $R_b = \sigma_1 / \sigma_0$
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\noindent \textbf{Be aware that we explicitly assumed $\sigma_1 \ll \sigma_0$, \ie $R_b < 1$.}
|
||||||
|
|
||||||
|
\bibliographystyle{plain}
|
||||||
|
\begin{thebibliography}{1}
|
||||||
|
|
||||||
|
\bibitem{noakes1997} D.~R.~Noakes, G.~M.~Kalvius, Phys.~Rev.~B, \textbf{56}, 2352
|
||||||
|
(1997).
|
||||||
|
\bibitem{yaouanc2011} A.~Yaouanc, P.~Dalmas~de~R\'{e}otier, ``Muon Spin
|
||||||
|
Rotation, Relaxation, and Resonance'', Oxford University Press (2011).
|
||||||
|
|
||||||
|
\end{thebibliography}
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
BIN
src/external/libGbGLF/doc/PSI-Logo_narrow.jpg
vendored
Normal file
BIN
src/external/libGbGLF/doc/PSI-Logo_narrow.jpg
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 49 KiB |
Loading…
x
Reference in New Issue
Block a user