From 60aeab2239d47a5c0b68c5aa20a5596b90180bde Mon Sep 17 00:00:00 2001 From: Andreas Suter Date: Wed, 28 May 2025 12:46:37 +0200 Subject: [PATCH] changed the integral approximation approach for Gaussian/Lorentzian. --- src/external/LF_GL/PLGKT_LF.cpp | 43 +++++++++------------------------ 1 file changed, 11 insertions(+), 32 deletions(-) diff --git a/src/external/LF_GL/PLGKT_LF.cpp b/src/external/LF_GL/PLGKT_LF.cpp index 66023aaf..63bb458f 100644 --- a/src/external/LF_GL/PLGKT_LF.cpp +++ b/src/external/LF_GL/PLGKT_LF.cpp @@ -31,6 +31,7 @@ #include #include #include +#include #include "PLGKT_LF.h" #include "PGKT_LF.h" @@ -49,43 +50,17 @@ PLGKT_LF::PLGKT_LF(std::vector ¶m, const double tmax) : fParam(param * \f$r = \frac{\Delta_{\rm G}}{\Delta_{\rm L}}\f$ * (see A. Yaouanc and P. Dalmas de Reotier, ``Muon Spin Rotation, Relaxation, and Resonance'', p.129) * - *

Integration method: Simpson on the \f$r-\f$ intervals: - * \f$[0.2, 0.6], [0.6, 1.0], [1.0, 3.0], [3.0, 5.0], [5.0, 7.5], [7.5, 10.0], [10.0, 55.0], [55.0, 100.0]\f$ + *

Integration method is described in the docu directory. * - *

This leads to - * \f{eqnarray*}{ - * P_z(t, \Delta_{\rm L}, B, \nu) &=& \frac{0.4}{6} \left[f(0.2) + 4 f(0.4) + f(0.6) \right] + - * \frac{0.4}{6} \left[f(0.6) + 4 f(0.8) + f(1.0) \right] \\ - * & & \frac{2}{6} \left[f(1.0) + 4 f(2.0) + f(3.0) \right] + - * \frac{2}{6} \left[f(3.0) + 4 f(4.0) + f(5.0) \right] \\ - * & & \frac{2.5}{6} \left[f(5.0) + 4 f(6.25) + f(7.5) \right] + - * \frac{2.5}{6} \left[f(7.5) + 4 f(8.75) + f(10.0) \right] \\ - * & & \frac{45}{6} \left[f(10.0) + 4 f(32.5) + f(55.0) \right] + - * \frac{45}{6} \left[f(55.0) + 4 f(77.5) + f(100.0) \right] \\ - * &=& \frac{1}{6} \left[ - * 0.4 f(0.2) + 1.6 f(0.4) + 0.8 f(0.6) + 1.6 f(0.8) + 2.4 f(1.0) +\\ - * & & 8.0 f(2.0) + 4 f(3.0) + 8 f(4.0) + 4.5 f(5.0) + 10.0 f(6.25) +\\ - * & & 5 f(7.5) + 10.0 f(8.75) + 47.5 f(10.0) + 180.0 f(32.5) + 90 f(55.0) +\\ - * & & 180 f(77.5) + 45 f(100.0) - * \right]. - * \f} - * - *

where - * \f[ - * f(r) = P_z(t, \Delta_{\rm G} = r\cdot\Delta_{\rm L}, B, \nu) \cdot \sqrt{\frac{2}{\pi}} \frac{1}{r^2} \, \exp(-\frac{1}{2 r^2}) - * \f] * @return 0 on success, >0 otherwise */ int PLGKT_LF::DynamicLGKTLF() { -// std::vector rr={0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.25, 7.5, 8.75, 10.0, 32.5, 55.0, 77.5, 100.0}; -// std::vector ww={0.4, 1.6, 0.8, 1.6, 2.4, 8.0, 4.0, 8.0, 4.5, 10.0, 5.0, 10.0, 47.5, 180.0, 90.0, 180.0, 45.0}; std::vector rr={0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0, 7.5, 10.0, 12.8125, 15.625, 18.4375, 21.25, 26.875, 32.5, 43.75, 55.0, 77.5, 100.0}; - std::vector ww={0.4, 1.6, 0.8, 1.6, 0.9, 2.0, 1.0, 2.0, 1.5, 4.0, 3.0, 8.0, 7.0, 20.0, 10.625, 22.5, 11.25, 22.5, 16.875, 45.0, 33.75, 90.0, 67.5, 180.0, 45.0}; std::vector pp={fParam[0], 0.0, fParam[2]}; std::vector pol; - double scale, rr2; + double scale, up{0.0}, low{-1.0}; fTime.clear(); fPol.clear(); @@ -105,6 +80,8 @@ int PLGKT_LF::DynamicLGKTLF() return 0; } + auto t_start = std::chrono::high_resolution_clock::now(); + double sqrtTwoInv = 1.0/sqrt(2.0); for (unsigned int i=0; i, 0.5)/6.0; - std::transform(fPol.begin(), fPol.end(), fPol.begin(), [&scale](double el) { return el *= scale;}); + auto t_end = std::chrono::high_resolution_clock::now(); + std::cout << ">> time used: " << std::chrono::duration(t_end-t_start).count() << " ms." << std::endl; return 0; }