some more bits into the direction of musrview

This commit is contained in:
nemu
2008-04-16 14:32:42 +00:00
parent 9105df85e4
commit 499684fc8b
5 changed files with 246 additions and 38 deletions

View File

@ -137,28 +137,7 @@ double PRunSingleHisto::CalcChiSquare(const std::vector<double>& par)
}
}
// static int counter = 0;
// TString fln=fRunInfo->fRunName+"_"+(Long_t)fRunInfo->fForwardHistoNo+"_data.dat";
// ofstream f(fln.Data(),ios_base::out);
// for (unsigned int i=0; i<fData.fValue.size(); i++) {
// time = fData.fDataTimeStart + (double)i*fData.fDataTimeStep;
// f << endl << time << " " << fData.fValue[i] << " " << fData.fError[i];
// }
// f.close();
//
// fln=fRunInfo->fRunName+"_"+(Long_t)fRunInfo->fForwardHistoNo+"_theo.dat";
// ofstream ft(fln.Data(),ios_base::out);
// for (unsigned int i=0; i<fData.fValue.size(); i++) {
// time = fData.fDataTimeStart + (double)i*fData.fDataTimeStep;
// ft << endl << time << " " << N0*TMath::Exp(-time/tau)*(1.0+fTheory->Func(time, par, fFuncValues))+bkg;
// }
// ft.close();
// counter++;
// if (counter == 4) exit(0);
//cout << endl << ">> " << chisq*fRunInfo->fPacking;
return chisq*fRunInfo->fPacking;
return chisq;
}
//--------------------------------------------------------------------------
@ -407,7 +386,7 @@ bool PRunSingleHisto::PrepareFitData()
if (value == 0.0)
fData.fError.push_back(1.0);
else
fData.fError.push_back(TMath::Sqrt(value));
fData.fError.push_back(TMath::Sqrt(value/fRunInfo->fPacking));
value = 0.0;
}
value += runData->fDataBin[histoNo][i];
@ -506,17 +485,17 @@ bool PRunSingleHisto::PrepareRawViewData()
}
// 2nd check if start is within proper bounds
if ((start < 0) || (start > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareData(): **ERROR** start data bin doesn't make any sense!";
cout << endl << "PRunSingleHisto::PrepareRawViewData(): **ERROR** start data bin doesn't make any sense!";
return false;
}
// 3rd check if end is within proper bounds
if ((end < 0) || (end > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareData(): **ERROR** end data bin doesn't make any sense!";
cout << endl << "PRunSingleHisto::PrepareRawViewData(): **ERROR** end data bin doesn't make any sense!";
return false;
}
// 4th check if t0 is within proper bounds
if ((t0 < 0) || (t0 > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareData(): **ERROR** t0 data bin doesn't make any sense!";
cout << endl << "PRunSingleHisto::PrepareRawViewData(): **ERROR** t0 data bin doesn't make any sense!";
return false;
}
@ -535,7 +514,7 @@ bool PRunSingleHisto::PrepareRawViewData()
if (value == 0.0)
fData.fError.push_back(1.0);
else
fData.fError.push_back(TMath::Sqrt(value));
fData.fError.push_back(TMath::Sqrt(value/fRunInfo->fPacking));
value = 0.0;
}
value += runData->fDataBin[histoNo][i];
@ -595,10 +574,176 @@ bool PRunSingleHisto::PrepareRawViewData()
// PrepareViewData
//--------------------------------------------------------------------------
/**
* <p> Muon life time corrected data
*
* <p> Muon life time corrected data: Starting from
* \f[ N(t) = N_0 e^{-t/\tau} [ 1 + A(t) ] + \mathrm{Bkg} \f]
* it follows that
* \f[ A(t) = (-1) + e^{+t/\tau}\, \frac{N(t)-\mathrm{Bkg}}{N_0}. \f]
* For the error estimate only the statistical error of \f$ N(t) \f$ is used, and hence
* \f[ \Delta A(t) = \frac{e^{t/\tau}}{N_0}\,\sqrt{\frac{N(t)}{p}} \f]
* where \f$ p \f$ is the packing, and \f$ N(t) \f$ are the packed data, i.e.
* \f[ N(t_i) = \frac{1}{p}\, \sum_{j=i}^{i+p} n_j \f]
* with \f$ n_j \f$ the raw histogram data bins.
*/
bool PRunSingleHisto::PrepareViewData()
{
// get the proper run
PRawRunData* runData = fRawData->GetRunData(fRunInfo->fRunName);
if (!runData) { // couldn't get run
cout << endl << "PRunSingleHisto::PrepareViewData(): **ERROR** Couldn't get run " << fRunInfo->fRunName.Data() << "!";
return false;
}
// keep the time resolution in (us)
fTimeResolution = runData->fTimeResolution/1.0e3;
// check if the t0's are given in the msr-file
if (fRunInfo->fT0[0] == -1) { // t0's are NOT in the msr-file
// check if the t0's are in the data file
if (runData->fT0s.size() != 0) { // t0's in the run data
// keep the proper t0's. For single histo runs, forward is holding the histo no
// fForwardHistoNo starts with 1 not with 0 ;-)
fT0s.push_back(runData->fT0s[fRunInfo->fForwardHistoNo-1]);
} else { // t0's are neither in the run data nor in the msr-file -> not acceptable!
cout << endl << "PRunSingleHisto::PrepareViewData(): **ERROR** NO t0's found, neither in the run data nor in the msr-file!";
return false;
}
} else { // t0's in the msr-file
// check if t0's are given in the data file
if (runData->fT0s.size() != 0) {
// compare t0's of the msr-file with the one in the data file
if (fabs(fRunInfo->fT0[0]-runData->fT0s[fRunInfo->fForwardHistoNo-1])>5.0) { // given in bins!!
cout << endl << "PRunSingleHisto::PrepareViewData(): **WARNING**:";
cout << endl << " t0 from the msr-file is " << fRunInfo->fT0[0];
cout << endl << " t0 from the data file is " << runData->fT0s[fRunInfo->fForwardHistoNo-1];
cout << endl << " This is quite a deviation! Is this done intentionally??";
cout << endl;
}
}
fT0s.push_back(fRunInfo->fT0[0]);
}
// check if post pile up data shall be used
unsigned int histoNo;
if (fRunInfo->fFileFormat.Contains("ppc")) {
histoNo = runData->fDataBin.size()/2 + fRunInfo->fForwardHistoNo-1;
} else {
histoNo = fRunInfo->fForwardHistoNo-1;
}
if ((runData->fDataBin.size() < histoNo) || (histoNo < 0)) {
cout << endl << "PRunSingleHisto::PrepareViewData(): **PANIC ERROR**:";
cout << endl << " histoNo found = " << histoNo << ", but there are only " << runData->fDataBin.size() << " runs!?!?";
cout << endl << " Will quite :-(";
cout << endl;
return false;
}
// transform raw histo data. This is done the following way (for details see the manual):
// for the single histo fit, just the rebinned raw data are copied
// first get start data, end data, and t0
unsigned int start;
unsigned int end;
double t0 = fT0s[0];
// raw data, since PMusrCanvas is doing ranging etc.
// start = the first bin which is a multiple of packing backward from t0
start = (int)t0 - ((int)t0/fRunInfo->fPacking)*fRunInfo->fPacking;
// end = last bin starting from start which is a multipl of packing and still within the data
end = start + ((runData->fDataBin[histoNo].size()-start-1)/fRunInfo->fPacking)*fRunInfo->fPacking;
// check if start, end, and t0 make any sense
// 1st check if start and end are in proper order
if (end < start) { // need to swap them
int keep = end;
end = start;
start = keep;
}
// 2nd check if start is within proper bounds
if ((start < 0) || (start > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareViewData(): **ERROR** start data bin doesn't make any sense!";
return false;
}
// 3rd check if end is within proper bounds
if ((end < 0) || (end > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareViewData(): **ERROR** end data bin doesn't make any sense!";
return false;
}
// 4th check if t0 is within proper bounds
if ((t0 < 0) || (t0 > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareViewData(): **ERROR** t0 data bin doesn't make any sense!";
return false;
}
// everything looks fine, hence fill data set
// feed the parameter vector
std::vector<double> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (unsigned int i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// calculate asymmetry
double N0 = par[fRunInfo->fNormParamNo-1];
//cout << endl << ">> N0 = " << N0;
// get tau
double tau;
if (fRunInfo->fLifetimeParamNo != -1)
tau = par[fRunInfo->fLifetimeParamNo-1];
else
tau = PMUON_LIFETIME;
//cout << endl << ">> tau = " << tau;
// get background
double bkg = par[fRunInfo->fBkgFitParamNo-1];
//cout << endl << ">> bkg = " << bkg;
double value = 0.0;
double expval;
double time;
// data start at data_start-t0
// time shifted so that packing is included correctly, i.e. t0 == t0 after packing
fData.fDataTimeStart = fTimeResolution*(((double)start-t0)+(double)fRunInfo->fPacking/2.0);
fData.fDataTimeStep = fTimeResolution*fRunInfo->fPacking;
//cout << endl << ">> start = " << fData.fDataTimeStart << ", step = " << fData.fDataTimeStep;
for (unsigned i=start; i<end; i++) {
if (((i-start) % fRunInfo->fPacking == 0) && (i != start)) { // fill data
// in order that after rebinning the fit does not need to be redone (important for plots)
// the value is normalize to per bin
value /= fRunInfo->fPacking;
time = fData.fDataTimeStart+(double)i*fData.fDataTimeStep/fRunInfo->fPacking;
expval = TMath::Exp(+time/tau)/N0;
fData.fValue.push_back(-1.0+expval*(value-bkg));
fData.fError.push_back(expval*TMath::Sqrt(value/fRunInfo->fPacking));
//cout << endl << ">> " << time << ", " << expval << ", " << -1.0+expval*(value-bkg) << ", " << expval*TMath::Sqrt(value/fRunInfo->fPacking);
value = 0.0;
}
value += runData->fDataBin[histoNo][i];
}
// count the number of bins to be fitted
fNoOfFitBins=0;
for (unsigned int i=0; i<fData.fValue.size(); i++) {
time = fData.fDataTimeStart + (double)i*fData.fDataTimeStep;
if ((time >= fFitStartTime) && (time <= fFitStopTime))
fNoOfFitBins++;
}
// calculate functions
for (int i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), fRunInfo->fMap, par);
}
// calculate theory
unsigned int size = runData->fDataBin[histoNo].size();
double startTime = -fT0s[0]*fTimeResolution;
fData.fTheoryTimeStart = startTime;
fData.fTheoryTimeStep = fTimeResolution;
for (unsigned int i=0; i<size; i++) {
time = startTime + (double)i*fTimeResolution;
fData.fTheory.push_back(fTheory->Func(time, par, fFuncValues));
}
// clean up
par.clear();
return true;
}