J'en ai marre! J'ai fait les modifications dans le code de MUD que D. Arseneau a proposé. Au moins il est possible maintenant d'utiliser l'architecture EM64T.
This commit is contained in:
@ -170,10 +170,19 @@ TMeanFieldsForScSingleLayer::TMeanFieldsForScSingleLayer() {
|
||||
}
|
||||
|
||||
// Operator-method that returns the mean field for a given implantation energy
|
||||
// Parameters: field, deadlayer, thicknessSC, lambda
|
||||
// Parameters: field, deadlayer, thicknessSC, lambda, weight (deadlayer), weight (SC), weight (substrate)
|
||||
|
||||
double TMeanFieldsForScSingleLayer::operator()(double E, const vector<double> &par_vec) const{
|
||||
|
||||
vector<double> interfaces;
|
||||
interfaces.push_back(par_vec[1]);
|
||||
interfaces.push_back(par_vec[1]+par_vec[2]);
|
||||
|
||||
vector<double> weights;
|
||||
weights.push_back(par_vec[4]);
|
||||
weights.push_back(par_vec[5]);
|
||||
weights.push_back(par_vec[6]);
|
||||
|
||||
// Calculate field profile
|
||||
vector<double> parForBofZ(par_vec);
|
||||
|
||||
@ -184,12 +193,12 @@ double TMeanFieldsForScSingleLayer::operator()(double E, const vector<double> &p
|
||||
energyIter = find(energies.begin(), energies.end(), E);
|
||||
|
||||
if (energyIter != energies.end()) { // implantation profile found - no interpolation needed
|
||||
return CalcMeanB(E, BofZ);
|
||||
return CalcMeanB(E, interfaces, weights, BofZ);
|
||||
} else {
|
||||
if (E < *energies.begin())
|
||||
return CalcMeanB(*energies.begin(), BofZ);
|
||||
return CalcMeanB(*energies.begin(), interfaces, weights, BofZ);
|
||||
if (E > *(energies.end()-1))
|
||||
return CalcMeanB(*(energies.end()-1), BofZ);
|
||||
return CalcMeanB(*(energies.end()-1), interfaces, weights, BofZ);
|
||||
|
||||
energyIter = find_if(energies.begin(), energies.end(), bind2nd( greater<double>(), E));
|
||||
// cout << *(energyIter - 1) << " " << *(energyIter) << endl;
|
||||
@ -197,16 +206,16 @@ double TMeanFieldsForScSingleLayer::operator()(double E, const vector<double> &p
|
||||
double E1(*(energyIter - 1));
|
||||
double E2(*(energyIter));
|
||||
|
||||
double B1(CalcMeanB(E1, BofZ));
|
||||
double B2(CalcMeanB(E2, BofZ));
|
||||
double B1(CalcMeanB(E1, interfaces, weights, BofZ));
|
||||
double B2(CalcMeanB(E2, interfaces, weights, BofZ));
|
||||
|
||||
return B1 + (B2-B1)/(E2-E1)*(E-E1);
|
||||
}
|
||||
}
|
||||
|
||||
double TMeanFieldsForScSingleLayer::CalcMeanB (double E, const TLondon1D_1L& BofZ) const {
|
||||
double TMeanFieldsForScSingleLayer::CalcMeanB (double E, const vector<double>& interfaces, const vector<double>& weights, const TLondon1D_1L& BofZ) const {
|
||||
//calcData->UseHighResolution(E);
|
||||
|
||||
fImpProfile->WeightLayers(E, interfaces, weights);
|
||||
fImpProfile->Normalize(E);
|
||||
|
||||
vector<double> z(fImpProfile->DataZ(E));
|
||||
@ -217,7 +226,7 @@ double TMeanFieldsForScSingleLayer::CalcMeanB (double E, const TLondon1D_1L& Bof
|
||||
double meanB(0.);
|
||||
|
||||
for (unsigned int i(0); i<z.size(); i++) {
|
||||
meanB += (z[1]-z[0])*nz[i]*BofZ.GetBofZ(z[i]/10.);
|
||||
meanB += (z[1]-z[0])*nz[i]*BofZ.GetBofZ(0.1*z[i]);
|
||||
}
|
||||
return meanB;
|
||||
}
|
||||
|
@ -58,7 +58,7 @@ public:
|
||||
~TMeanFieldsForScSingleLayer() {delete fImpProfile; fImpProfile = 0;}
|
||||
|
||||
double operator()(double, const vector<double>&) const;
|
||||
double CalcMeanB (double, const TLondon1D_1L&) const;
|
||||
double CalcMeanB (double, const vector<double>&, const vector<double>&, const TLondon1D_1L&) const;
|
||||
|
||||
private:
|
||||
TTrimSPData *fImpProfile;
|
||||
|
Reference in New Issue
Block a user