Added Mu0 spin-flip process

This commit is contained in:
Thomas Prokscha 2016-02-17 14:22:21 +01:00
parent 352ac5db21
commit 1c31fc88d0
3 changed files with 700 additions and 483 deletions

View File

@ -104,6 +104,7 @@ PSimulateMuTransition::PSimulateMuTransition(UInt_t seed)
fBfield = 0.01; // magnetic field (T)
fCaptureRate = 0.01; // Mu+ capture rate (MHz)
fIonizationRate = 10.; // Mu0 ionization rate (MHz)
fSpinFlipRate = 0.001; // Mu0 spin flip rate (MHz)
fInitialPhase = 0.;
fMuonPhase = fInitialPhase;
fMuonDecayTime = 0.;
@ -142,7 +143,9 @@ void PSimulateMuTransition::PrintSettings() const
cout << endl << "Mu precession frequency 14 (MHz) = " << fMuPrecFreq14;
cout << endl << "B field (T) = " << fBfield;
cout << endl << "Mu+ electron capture rate (MHz) = " << fCaptureRate;
cout << endl << "Mu ionizatioan rate (MHz) = " << fIonizationRate;
cout << endl << "Mu0 ionizatioan rate (MHz) = " << fIonizationRate;
cout << endl << "Mu0 spin-flip rate (MHz) = " << fSpinFlipRate;
cout << endl << "!!! Note: if spin-flip rate > 0.001 only spin-flip process is considered!!!";
cout << endl << "Decay asymmetry = " << fAsymmetry;
cout << endl << "Muonium fraction = " << fMuFraction;
cout << endl << "Muonium fraction state12 = " << fMuFractionState12;
@ -184,12 +187,17 @@ void PSimulateMuTransition::Run(TH1F *histoForward, TH1F *histoBackward)
for (i = 0; i<fNmuons; i++){
fMuonPhase = TMath::TwoPi() * fInitialPhase/360.; // transform to radians
fMuonDecayTime = NextEventTime(fMuonDecayRate);
// initial muon state Mu+ or Mu0?
if (fRandom->Rndm() <= 1.-fMuFraction)
Event("Mu+");
else
Event("");
if (fSpinFlipRate > 0.001){// consider only Mu0 spin-flip in this case
fMuonPhase = TMath::ACos(GTSpinFlip(fMuonDecayTime));
}
else{
// initial muon state Mu+ or Mu0?
if (fRandom->Rndm() <= 1.-fMuFraction)
Event("Mu+");
else
Event("");
}
// fill 50% in "forward", and 50% in "backward" detector to get independent
// events in "forward" and "backward" histograms. This allows "normal" uSR
// analysis of the data
@ -228,7 +236,7 @@ Double_t PSimulateMuTransition::NextEventTime(const Double_t &EventRate)
* <p>Determines phase of the muon spin
*
* \param time duration of precession (us);
* \param frequency muon spin precession frequency (MHz);
* \param chargeState charge state of Mu ("Mu+" or "Mu0")
*/
Double_t PSimulateMuTransition::PrecessionPhase(const Double_t &time, const TString chargeState)
{
@ -238,9 +246,7 @@ Double_t PSimulateMuTransition::PrecessionPhase(const Double_t &time, const TStr
if (chargeState == "Mu+")
muonPhaseX = TMath::TwoPi()*fMuonPrecFreq*time;
else if (chargeState == "Mu0"){
muoniumPolX = 0.5 *
(fMuFractionState12 * (TMath::Cos(TMath::TwoPi()*fMuPrecFreq12*time) + TMath::Cos(TMath::TwoPi()*fMuPrecFreq34*time)) +
fMuFractionState23 * (TMath::Cos(TMath::TwoPi()*fMuPrecFreq23*time) + TMath::Cos(TMath::TwoPi()*fMuPrecFreq14*time)));
muoniumPolX = GTFunction(time);
muonPhaseX = TMath::ACos(muoniumPolX);
}
else
@ -249,6 +255,60 @@ Double_t PSimulateMuTransition::PrecessionPhase(const Double_t &time, const TStr
return muonPhaseX;
}
//--------------------------------------------------------------------------
// Mu0 transverse field polarization function (private)
//--------------------------------------------------------------------------
/**
* <p>Calculates Mu0 polarization in x direction by superposition of four Mu0 frequencies
*
* \param time (us);
*/
Double_t PSimulateMuTransition::GTFunction(const Double_t &time)
{
Double_t muoniumPolX = 0;
muoniumPolX = 0.5 *
(fMuFractionState12 * (TMath::Cos(TMath::TwoPi()*fMuPrecFreq12*time) + TMath::Cos(TMath::TwoPi()*fMuPrecFreq34*time)) +
fMuFractionState23 * (TMath::Cos(TMath::TwoPi()*fMuPrecFreq23*time) + TMath::Cos(TMath::TwoPi()*fMuPrecFreq14*time)));
return muoniumPolX;
}
//--------------------------------------------------------------------------
// Mu0 transverse field polarization function after n spin-flip collisions (private)
//--------------------------------------------------------------------------
/**
* <p>Calculates Mu0 polarization in x direction after n spin flip collisions.
* See M. Senba, J.Phys. B24, 3531 (1991), equation (17)
*
* \param time (us);
*/
Double_t PSimulateMuTransition::GTSpinFlip(const Double_t &time)
{
Double_t muoniumPolX = 1.0; //initial polarization in x direction
Double_t eventTime = 0;
Double_t eventDiffTime = 0;
Double_t lastEventTime = 0;
eventTime += NextEventTime(fSpinFlipRate);
if (eventTime >= time){
muoniumPolX = GTFunction(time);
}
else{
while (eventTime < time){
eventDiffTime = eventTime - lastEventTime;
muoniumPolX = muoniumPolX * GTFunction(eventDiffTime);
lastEventTime = eventTime;
eventTime += NextEventTime(fSpinFlipRate);
}
// calculate for the last collision
eventDiffTime = time - lastEventTime;
muoniumPolX = muoniumPolX * GTFunction(eventDiffTime);
}
return muoniumPolX;
}
//--------------------------------------------------------------------------
// Event (private)
//--------------------------------------------------------------------------

View File

@ -55,6 +55,7 @@ class PSimulateMuTransition : public TObject
virtual void SetMuPrecFreq14(Double_t value) { fMuPrecFreq14 = value; } //!< sets Mu transition frequency (MHz)
virtual void SetCaptureRate(Double_t value){ fCaptureRate = value; } //!< sets Mu+ electron capture rate (MHz)
virtual void SetIonizationRate(Double_t value){ fIonizationRate = value; } //!< sets Mu0 ionization rate (MHz)
virtual void SetSpinFlipRate(Double_t value){ fSpinFlipRate = value; } //!< sets Mu0 spin flip rate (MHz)
virtual void SetDecayAsymmetry(Double_t value){ fAsymmetry = value; } //!< muon decay asymmetry
virtual void SetMuFraction(Double_t value){ fMuFraction = value; } //!< Muonium fraction
virtual void SetMuFractionState12(Double_t value){ fMuFractionState12 = value; }
@ -80,6 +81,7 @@ class PSimulateMuTransition : public TObject
Double_t fMuonPrecFreq; //!< muon precession frequency (MHz)
Double_t fCaptureRate; //!< Mu+ electron capture rate (MHz)
Double_t fIonizationRate; //!< Mu0 ionization rate (MHz)
Double_t fSpinFlipRate; //!< Mu0 spin-flip rate (MHz)
Double_t fInitialPhase; //!< initial muon spin phase
Double_t fMuonDecayTime; //!< muon decay time (us)
Double_t fMuonPhase; //!< phase of muon spin
@ -93,6 +95,8 @@ class PSimulateMuTransition : public TObject
virtual Double_t NextEventTime(const Double_t &EventRate);
// virtual Double_t PrecessionPhase(const Double_t &time, const Double_t &frequency);
virtual Double_t PrecessionPhase(const Double_t &time, const TString chargeState);
virtual Double_t GTFunction(const Double_t &time); //!< transverse field polarization function of Mu0
virtual Double_t GTSpinFlip(const Double_t &time); //!< transverse field polarization function after spin-flip collisions
virtual void Event(const TString muonString);
ClassDef(PSimulateMuTransition, 0)

View File

@ -1,3 +1,155 @@
<<<<<<< HEAD
/***************************************************************************
runMuSimulation.C
Author: Thomas Prokscha
Date: 25-Feb-2010
$Id$
***************************************************************************/
/***************************************************************************
* Copyright (C) 2010 by Thomas Prokscha, Paul Scherrer Institut *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
void runMuSimulation()
{
// load library
gSystem->Load("$ROOTSYS/lib/libPSimulateMuTransition");
// generate data
TFolder *histosFolder;
TFolder *decayAnaModule;
TFolder *runInfo;
histosFolder = gROOT->GetRootFolder()->AddFolder("histos", "Histograms");
gROOT->GetListOfBrowsables()->Add(histosFolder, "histos");
decayAnaModule = histosFolder->AddFolder("DecayAnaModule", "muSR decay histograms");
//prepare to run simulation; here: isotropic Mu in Germanium
UInt_t runNo = 9903;
Double_t T = 300.; //temperature
Double_t capRate = 1.0;//*sqrt(T/200.);
Double_t spinFlipRate = 0.001;
//assume that capture rate varies as sqrt(T), capRate = sigma*v*p , v ~ sqrt(T)
Double_t ionRate; //assume Arrhenius behaviour ionRate = preFac*exp(-EA/kT)
Double_t EA = 100.; //activation energy (meV)
ionRate = 2.9e7 * exp(-EA/(0.08625*T)); // Ge: 2.9*10^7MHz "attempt" frequency; 1K = 0.08625 meV
Double_t B = 100.; //field in G
Double_t Freq12 = 4463; //Mu freq of the 12 transition
Double_t Freq34 = 4463; //Mu freq of the 34 transition
Double_t Freq23 = 4463; //Mu freq of the 23 transition
Double_t Freq14 = 4463; //Mu freq of the 14 transition
Double_t MuFrac = 1.0; //total Mu fraction
Double_t MuFrac12 = 0.5; //Mu in states 12 and 34
Double_t MuFrac23 = 0.5; //Mu in states 23 and 14
Int_t Nmuons = 1e7; //number of muons
Double_t Asym = 0.27; //muon decay asymmetry
// feed run info header
TString tstr;
runInfo = gROOT->GetRootFolder()->AddFolder("RunInfo", "LEM RunInfo");
gROOT->GetListOfBrowsables()->Add(runInfo, "RunInfo");
header = new TLemRunHeader();
tstr = TString("0");
tstr += runNo;
tstr += TString(" - Mu-frac 1.0, Mu12 -4463MHz (0.5), Mu34 -4463MHz(0.5), T=300K/EA=100meV, Cap. 1.0MHz, 10mT");
header->SetRunTitle(tstr.Data());
header->SetLemSetup("trivial");
header->SetRunNumber(runNo);
header->SetStartTime(0);
header->SetStopTime(1);
header->SetModeratorHV(32.0, 0.01);
header->SetSampleHV(0.0, 0.01);
header->SetImpEnergy(31.8);
header->SetSampleTemperature(T, 0.001);
header->SetSampleBField(B, 0.1);
header->SetTimeResolution(1.);
header->SetNChannels(12001);
header->SetNHist(2);
header->SetOffsetPPCHistograms(20);
header->SetCuts("none");
header->SetModerator("none");
Double_t tt0[2] = {0., 0.};
header->SetTimeZero(tt0);
runInfo->Add(header); //add header to RunInfo folder
TH1F *histo[4];
char str[128];
for (UInt_t i=0; i<2; i++) {
sprintf(str, "hDecay0%d", (Int_t)i);
histo[i] = new TH1F(str, str, 12001, -0.5, 12000.5);
sprintf(str, "hDecay2%d", (Int_t)i);
histo[i+2] = new TH1F(str, str, 12001, -0.5, 12000.5);
}
PSimulateMuTransition *simulateMuTransition = new PSimulateMuTransition();
if (!simulateMuTransition->IsValid()) {
cerr << endl << "**ERROR** while invoking PSimulateTransition" << endl;
return;
}
simulateMuTransition->SetMuPrecFreq12(Freq12); // MHz
simulateMuTransition->SetMuPrecFreq34(Freq34); // MHz
simulateMuTransition->SetMuPrecFreq23(Freq23); // MHz
simulateMuTransition->SetMuPrecFreq14(Freq14); // MHz
simulateMuTransition->SetMuFraction(MuFrac); // initial Mu fraction
simulateMuTransition->SetMuFractionState12(MuFrac12); // Mu in states 12, 34
simulateMuTransition->SetMuFractionState23(MuFrac23); // Mu in states 23, 14
simulateMuTransition->SetBfield(B/10000.); // Tesla
simulateMuTransition->SetCaptureRate(capRate); // MHz
simulateMuTransition->SetIonizationRate(ionRate); // MHz
simulateMuTransition->SetSpinFlipRate(spinFlipRate); // MHz
simulateMuTransition->SetNmuons(Nmuons);
simulateMuTransition->SetDecayAsymmetry(Asym);
simulateMuTransition->SetDebugFlag(kFALSE); // to print time and phase during charge-changing cycle
simulateMuTransition->PrintSettings();
simulateMuTransition->Run(histo[0], histo[1]);
for (UInt_t i=0; i<4; i++)
decayAnaModule->Add(histo[i]);
// write file
tstr = TString("0");
tstr += runNo;
tstr += TString(".root");
TFile *fout = new TFile(tstr.Data(), "RECREATE", "Midas Fake Histograms");
if (fout == 0) {
cout << endl << "**ERROR** Couldn't create ROOT file";
cout << endl << endl;
exit(0);
}
fout->cd();
runInfo->Write();
histosFolder->Write();
fout->Close();
cout << "Histograms written to " << tstr.Data() << endl;
delete fout;
delete [] histo;
}
=======
/***************************************************************************
runMuSimulation.C
@ -146,3 +298,4 @@ void runMuSimulation()
delete [] histo;
}
>>>>>>> 4fec25e423493c58fa21cedec161430f90ffc10d