Added Mu0 spin-flip process
This commit is contained in:
@ -1,382 +1,442 @@
|
||||
/***************************************************************************
|
||||
|
||||
PSimulateMuTransition.cpp
|
||||
|
||||
Author: Thomas Prokscha
|
||||
Date: 25-Feb-2010
|
||||
|
||||
$Id$
|
||||
|
||||
Use root macros runMuSimulation.C and testAnalysis.C to run the simulation
|
||||
and to get a quick look on the data. Data are saved to a root histogram file
|
||||
with a structure similar to LEM histogram files; musrfit can be used to
|
||||
analyze the simulated data.
|
||||
|
||||
Description:
|
||||
Root class to simulate muon spin phase under successive Mu+/Mu0 charge-exchange
|
||||
processes by a Monte-Carlo method. Consider transverse field geometry, and assume
|
||||
initial muon spin direction in x, and field applied along z. For PxMu(t) in
|
||||
muonium use the equation 8.22 of the muSR book of Yaounc and Dalmas de Réotier, in
|
||||
slightly modified form (see Senba, J. Phys. B 23, 1545 (1990)); note that PxMu(t)
|
||||
is given by a superposition of the four frequencies "nu_12", "nu_34", "nu_23", "nu_14".
|
||||
These frequencies and the corresponding probabilities ("SetMuFractionState12" for
|
||||
transitions 12 and 34, "SetMuFractionState23" for states 23 and 14) can be calculated
|
||||
for a given field with the root macro AnisotropicMu.C
|
||||
|
||||
Parameters:
|
||||
1) Precession frequencies of "nu_12", "nu_34", "nu_23", "nu_14"
|
||||
2) fractions of nu_12, nu_34; and nu_23 and nu_14
|
||||
3) total Mu0 fraction
|
||||
4) electron-capture rate
|
||||
5) Mu ionization rate
|
||||
6) initial muon spin phase
|
||||
7) total muon decay asymmetry
|
||||
8) number of muon decays to be generated.
|
||||
9) debug flag: if TRUE print capture/ionization events on screen
|
||||
|
||||
Output:
|
||||
Two histograms ("forward" and "backward") are written to a root file.
|
||||
|
||||
The muon event simulation with a sequence of charge-changing processes is
|
||||
done in Event():
|
||||
simulate muon spin phase under charge-exchange with "4 Mu transitions"
|
||||
1) according to Mu+/Mu0 fraction begin either with a Mu+ state or Mu state
|
||||
2) Mu+: determine next electron-capture time t_c. If t_c is larger than decay time t_d
|
||||
calculate muon spin precession for t_d; else calculate spin precession for t_c.
|
||||
3) Determine next ionization time t_i; calculate Px(t_i) in Muonium; calculate the
|
||||
muon spin phase by acos(Px(t_i)).
|
||||
4) get the next electron capture time, continue until t_d is reached; accumulate muon spin
|
||||
phase.
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
/***************************************************************************
|
||||
* Copyright (C) 2010 by Thomas Prokscha, Paul Scherrer Institut *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License for more details. *
|
||||
* *
|
||||
* You should have received a copy of the GNU General Public License *
|
||||
* along with this program; if not, write to the *
|
||||
* Free Software Foundation, Inc., *
|
||||
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
||||
***************************************************************************/
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
#include <TMath.h>
|
||||
|
||||
#include "PSimulateMuTransition.h"
|
||||
|
||||
ClassImp(PSimulateMuTransition)
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Constructor
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p> Constructor.
|
||||
*
|
||||
* \param seed for the random number generator
|
||||
*/
|
||||
PSimulateMuTransition::PSimulateMuTransition(UInt_t seed)
|
||||
{
|
||||
fValid = true;
|
||||
|
||||
fRandom = new TRandom2(seed);
|
||||
if (fRandom == 0) {
|
||||
fValid = false;
|
||||
}
|
||||
|
||||
fNmuons = 100; // number of muons to simulate
|
||||
fMuPrecFreq34 = 4463.; // vacuum Mu hyperfine coupling constant
|
||||
fMuPrecFreq12 = 0.; // Mu precession frequency of a 12 transition
|
||||
fMuPrecFreq23 = 0.; // Mu precession frequency of a 23 transition
|
||||
fMuPrecFreq14 = 0.; // Mu precession frequency of a 14 transition
|
||||
fMuonPrecFreq = 0.; // muon precession frequency
|
||||
fBfield = 0.01; // magnetic field (T)
|
||||
fCaptureRate = 0.01; // Mu+ capture rate (MHz)
|
||||
fIonizationRate = 10.; // Mu0 ionization rate (MHz)
|
||||
fInitialPhase = 0.;
|
||||
fMuonPhase = fInitialPhase;
|
||||
fMuonDecayTime = 0.;
|
||||
fAsymmetry = 0.27;
|
||||
fMuFraction = 0.;
|
||||
fMuFractionState12 = 0.;
|
||||
fMuFractionState23 = 0.;
|
||||
fDebugFlag = kFALSE;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Destructor
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p> Destructor.
|
||||
*
|
||||
*/
|
||||
PSimulateMuTransition::~PSimulateMuTransition()
|
||||
{
|
||||
if (fRandom) {
|
||||
delete fRandom;
|
||||
fRandom = 0;
|
||||
}
|
||||
}
|
||||
//--------------------------------------------------------------------------
|
||||
// Output of current settings
|
||||
//--------------------------------------------------------------------------
|
||||
/*!
|
||||
* <p>Prints the current settings onto std output.
|
||||
*/
|
||||
void PSimulateMuTransition::PrintSettings() const
|
||||
{
|
||||
cout << endl << "Mu precession frequency 12 (MHz) = " << fMuPrecFreq12;
|
||||
cout << endl << "Mu precession frequency 34 (MHz) = " << fMuPrecFreq34;
|
||||
cout << endl << "Mu precession frequency 23 (MHz) = " << fMuPrecFreq23;
|
||||
cout << endl << "Mu precession frequency 14 (MHz) = " << fMuPrecFreq14;
|
||||
cout << endl << "B field (T) = " << fBfield;
|
||||
cout << endl << "Mu+ electron capture rate (MHz) = " << fCaptureRate;
|
||||
cout << endl << "Mu ionizatioan rate (MHz) = " << fIonizationRate;
|
||||
cout << endl << "Decay asymmetry = " << fAsymmetry;
|
||||
cout << endl << "Muonium fraction = " << fMuFraction;
|
||||
cout << endl << "Muonium fraction state12 = " << fMuFractionState12;
|
||||
cout << endl << "Muonium fraction state23 = " << fMuFractionState23;
|
||||
cout << endl << "Number of particles to simulate = " << fNmuons;
|
||||
cout << endl << "Initial muon spin phase (degree) = " << fInitialPhase;
|
||||
cout << endl << "Debug flag = " << fDebugFlag;
|
||||
cout << endl << endl;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// SetSeed (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Sets the seed of the random generator.
|
||||
*
|
||||
* \param seed for the random number generator
|
||||
*/
|
||||
void PSimulateMuTransition::SetSeed(UInt_t seed)
|
||||
{
|
||||
if (!fValid)
|
||||
return;
|
||||
|
||||
fRandom->SetSeed(seed);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Run (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* \param histoForward
|
||||
*/
|
||||
void PSimulateMuTransition::Run(TH1F *histoForward, TH1F *histoBackward)
|
||||
{
|
||||
Int_t i;
|
||||
if (histoForward == 0 || histoBackward == 0)
|
||||
return;
|
||||
|
||||
for (i = 0; i<fNmuons; i++){
|
||||
fMuonPhase = TMath::TwoPi() * fInitialPhase/360.; // transform to radians
|
||||
fMuonDecayTime = NextEventTime(fMuonDecayRate);
|
||||
// initial muon state Mu+ or Mu0?
|
||||
if (fRandom->Rndm() <= 1.-fMuFraction)
|
||||
Event("Mu+");
|
||||
else
|
||||
Event("");
|
||||
|
||||
// fill 50% in "forward", and 50% in "backward" detector to get independent
|
||||
// events in "forward" and "backward" histograms. This allows "normal" uSR
|
||||
// analysis of the data
|
||||
// change muon decay time to ns
|
||||
if (fRandom->Rndm() <= 0.5)
|
||||
histoForward->Fill(fMuonDecayTime*1000., 1. + fAsymmetry*TMath::Cos(fMuonPhase));
|
||||
else
|
||||
histoBackward->Fill(fMuonDecayTime*1000., 1. - fAsymmetry*TMath::Cos(fMuonPhase));
|
||||
|
||||
if ( (i%100000) == 0) cout << "number of events processed: " << i << endl;
|
||||
}
|
||||
cout << "number of events processed: " << i << endl;
|
||||
return;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// NextEventTime (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Determine time of next event, assuming "Poisson" distribution in time
|
||||
*
|
||||
* \param EventRate event rate in MHz; returns next event time in micro-seconds
|
||||
*/
|
||||
Double_t PSimulateMuTransition::NextEventTime(const Double_t &EventRate)
|
||||
{
|
||||
if (EventRate <= 0.)
|
||||
return -1.; // signal error
|
||||
|
||||
return -1./EventRate * TMath::Log(fRandom->Rndm());
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Phase (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Determines phase of the muon spin
|
||||
*
|
||||
* \param time duration of precession (us);
|
||||
* \param frequency muon spin precession frequency (MHz);
|
||||
*/
|
||||
Double_t PSimulateMuTransition::PrecessionPhase(const Double_t &time, const TString chargeState)
|
||||
{
|
||||
Double_t muonPhaseX;
|
||||
Double_t muoniumPolX = 0;
|
||||
|
||||
if (chargeState == "Mu+")
|
||||
muonPhaseX = TMath::TwoPi()*fMuonPrecFreq*time;
|
||||
else if (chargeState == "Mu0"){
|
||||
muoniumPolX = 0.5 *
|
||||
(fMuFractionState12 * (TMath::Cos(TMath::TwoPi()*fMuPrecFreq12*time) + TMath::Cos(TMath::TwoPi()*fMuPrecFreq34*time)) +
|
||||
fMuFractionState23 * (TMath::Cos(TMath::TwoPi()*fMuPrecFreq23*time) + TMath::Cos(TMath::TwoPi()*fMuPrecFreq14*time)));
|
||||
muonPhaseX = TMath::ACos(muoniumPolX);
|
||||
}
|
||||
else
|
||||
muonPhaseX = 0.;
|
||||
|
||||
return muonPhaseX;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Event (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p> Generates "muon event": simulate muon spin phase under charge-exchange with
|
||||
* a neutral muonium state in transverse field, where the polarization evolution
|
||||
* PxMu(t) of the muon spin in muonium is determined by a superposition of the
|
||||
* four "Mu transitions" nu_12, nu_34, nu_23, and nu_14.
|
||||
* 1) according to Mu+/Mu0 fraction begin either with a Mu+ state or Mu state
|
||||
* 2) Mu+: determine next electron-capture time t_c. If t_c is larger than decay time t_d
|
||||
* calculate muon spin precession for t_d; else calculate spin precession for t_c.
|
||||
* 3) Determine next ionization time t_i; calculate Px(t_i) in Muonium; calculate the
|
||||
* muon spin phase by acos(Px(t_i)).
|
||||
* 4) get the next electron capture time, continue until t_d is reached.
|
||||
*
|
||||
* <p> For isotropic muonium, TF:
|
||||
* nu_12 and nu_34 with equal probabilities, probability for both states fMuFractionState12
|
||||
* ni_23 and nu_14 with equal probabilities, probability for both states fMuFractionState23
|
||||
*
|
||||
* \param muonString if eq. "Mu+" begin with Mu+ precession
|
||||
*/
|
||||
void PSimulateMuTransition::Event(const TString muonString)
|
||||
{
|
||||
Double_t eventTime, eventDiffTime, captureTime, ionizationTime;
|
||||
// Double_t muonPrecessionFreq, muoniumPrecessionFreq; // MHz
|
||||
// Double_t rndm, frac1, frac2;
|
||||
|
||||
fMuonPrecFreq = fMuonGyroRatio * fBfield;
|
||||
|
||||
// charge-exchange loop until muon decay
|
||||
eventTime = 0.;
|
||||
eventDiffTime = 0.;
|
||||
|
||||
if (fDebugFlag) cout << "Decay time = " << fMuonDecayTime << endl;
|
||||
//cout << muonString << endl;
|
||||
while (1) {
|
||||
if (muonString == "Mu+"){
|
||||
// Mu+ initial state; get next electron capture time
|
||||
captureTime = NextEventTime(fCaptureRate);
|
||||
eventTime += captureTime;
|
||||
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
|
||||
if (eventTime < fMuonDecayTime)
|
||||
fMuonPhase += PrecessionPhase(captureTime, "Mu+");
|
||||
else{ //muon decays; handle precession prior to muon decay
|
||||
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
|
||||
fMuonPhase += PrecessionPhase(eventDiffTime, "Mu+");
|
||||
break;
|
||||
}
|
||||
|
||||
// now, we have Mu0; get next ionization time
|
||||
ionizationTime = NextEventTime(fIonizationRate);
|
||||
eventTime += ionizationTime;
|
||||
// determine Mu state
|
||||
// rndm = fRandom->Rndm();
|
||||
// frac1 = 1. - fMuFractionState1 - fMuFractionState2; // non-precessing Mu states
|
||||
// frac2 = 1. - fMuFractionState2;
|
||||
// if ( rndm < frac1 )
|
||||
// muoniumPrecessionFreq = 0.;
|
||||
// else if (rndm >= frac1 && rndm <= frac2){
|
||||
// if (fRandom->Rndm() <= 0.5)
|
||||
// muoniumPrecessionFreq = fMuPrecFreq12;
|
||||
// else
|
||||
// muoniumPrecessionFreq = fMuPrecFreq34;
|
||||
// }
|
||||
// else{
|
||||
// if (fRandom->Rndm() <= 0.5)
|
||||
// muoniumPrecessionFreq = fMuPrecFreq23;
|
||||
// else
|
||||
// muoniumPrecessionFreq = fMuPrecFreq14;
|
||||
// }
|
||||
|
||||
if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " Phase = " << fMuonPhase << endl;
|
||||
if (eventTime < fMuonDecayTime)
|
||||
fMuonPhase += PrecessionPhase(ionizationTime, "Mu0");
|
||||
else{ //muon decays; handle precession prior to muon decay
|
||||
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
|
||||
fMuonPhase += PrecessionPhase(eventDiffTime, "Mu0");
|
||||
break;
|
||||
}
|
||||
}
|
||||
else{
|
||||
// Mu0 as initial state; get next ionization time
|
||||
ionizationTime = NextEventTime(fIonizationRate);
|
||||
eventTime += ionizationTime;
|
||||
// determine Mu state
|
||||
// rndm = fRandom->Rndm();
|
||||
// frac1 = 1. - fMuFractionState1 - fMuFractionState2; // non-precessing Mu states
|
||||
// frac2 = 1. - fMuFractionState2;
|
||||
// if ( rndm < frac1 )
|
||||
// muoniumPrecessionFreq = 0.;
|
||||
// else if (rndm >= frac1 && rndm <= frac2){
|
||||
// if (fRandom->Rndm() <= 0.5)
|
||||
// muoniumPrecessionFreq = fMuPrecFreq12;
|
||||
// else
|
||||
// muoniumPrecessionFreq = fMuPrecFreq34;
|
||||
// }
|
||||
// else{
|
||||
// if (fRandom->Rndm() <= 0.5)
|
||||
// muoniumPrecessionFreq = fMuPrecFreq23;
|
||||
// else
|
||||
// muoniumPrecessionFreq = fMuPrecFreq14;
|
||||
// }
|
||||
|
||||
if (fDebugFlag)
|
||||
cout << "Mu Ioniza. time = " << ionizationTime << " Phase = " << fMuonPhase << endl;
|
||||
if (eventTime < fMuonDecayTime)
|
||||
fMuonPhase += PrecessionPhase(ionizationTime, "Mu0");
|
||||
else{ //muon decays; handle precession prior to muon decay
|
||||
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
|
||||
fMuonPhase += PrecessionPhase(eventDiffTime, "Mu0");
|
||||
break;
|
||||
}
|
||||
|
||||
// Mu+ state; get next electron capture time
|
||||
captureTime = NextEventTime(fCaptureRate);
|
||||
eventTime += captureTime;
|
||||
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
|
||||
if (eventTime < fMuonDecayTime)
|
||||
fMuonPhase += PrecessionPhase(captureTime, "Mu+");
|
||||
else{ //muon decays; handle precession prior to muon decay
|
||||
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
|
||||
fMuonPhase += PrecessionPhase(eventDiffTime, "Mu+");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (fDebugFlag) cout << " Final Phase = " << fMuonPhase << endl;
|
||||
//fMuonPhase = TMath::ACos(TMath::Cos(fMuonPhase))*360./TMath::TwoPi(); //transform back to [0, 180] degree interval
|
||||
return;
|
||||
}
|
||||
/***************************************************************************
|
||||
|
||||
PSimulateMuTransition.cpp
|
||||
|
||||
Author: Thomas Prokscha
|
||||
Date: 25-Feb-2010
|
||||
|
||||
$Id$
|
||||
|
||||
Use root macros runMuSimulation.C and testAnalysis.C to run the simulation
|
||||
and to get a quick look on the data. Data are saved to a root histogram file
|
||||
with a structure similar to LEM histogram files; musrfit can be used to
|
||||
analyze the simulated data.
|
||||
|
||||
Description:
|
||||
Root class to simulate muon spin phase under successive Mu+/Mu0 charge-exchange
|
||||
processes by a Monte-Carlo method. Consider transverse field geometry, and assume
|
||||
initial muon spin direction in x, and field applied along z. For PxMu(t) in
|
||||
muonium use the equation 8.22 of the muSR book of Yaounc and Dalmas de Réotier, in
|
||||
slightly modified form (see Senba, J. Phys. B 23, 1545 (1990)); note that PxMu(t)
|
||||
is given by a superposition of the four frequencies "nu_12", "nu_34", "nu_23", "nu_14".
|
||||
These frequencies and the corresponding probabilities ("SetMuFractionState12" for
|
||||
transitions 12 and 34, "SetMuFractionState23" for states 23 and 14) can be calculated
|
||||
for a given field with the root macro AnisotropicMu.C
|
||||
|
||||
Parameters:
|
||||
1) Precession frequencies of "nu_12", "nu_34", "nu_23", "nu_14"
|
||||
2) fractions of nu_12, nu_34; and nu_23 and nu_14
|
||||
3) total Mu0 fraction
|
||||
4) electron-capture rate
|
||||
5) Mu ionization rate
|
||||
6) initial muon spin phase
|
||||
7) total muon decay asymmetry
|
||||
8) number of muon decays to be generated.
|
||||
9) debug flag: if TRUE print capture/ionization events on screen
|
||||
|
||||
Output:
|
||||
Two histograms ("forward" and "backward") are written to a root file.
|
||||
|
||||
The muon event simulation with a sequence of charge-changing processes is
|
||||
done in Event():
|
||||
simulate muon spin phase under charge-exchange with "4 Mu transitions"
|
||||
1) according to Mu+/Mu0 fraction begin either with a Mu+ state or Mu state
|
||||
2) Mu+: determine next electron-capture time t_c. If t_c is larger than decay time t_d
|
||||
calculate muon spin precession for t_d; else calculate spin precession for t_c.
|
||||
3) Determine next ionization time t_i; calculate Px(t_i) in Muonium; calculate the
|
||||
muon spin phase by acos(Px(t_i)).
|
||||
4) get the next electron capture time, continue until t_d is reached; accumulate muon spin
|
||||
phase.
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
/***************************************************************************
|
||||
* Copyright (C) 2010 by Thomas Prokscha, Paul Scherrer Institut *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License for more details. *
|
||||
* *
|
||||
* You should have received a copy of the GNU General Public License *
|
||||
* along with this program; if not, write to the *
|
||||
* Free Software Foundation, Inc., *
|
||||
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
||||
***************************************************************************/
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
#include <TMath.h>
|
||||
|
||||
#include "PSimulateMuTransition.h"
|
||||
|
||||
ClassImp(PSimulateMuTransition)
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Constructor
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p> Constructor.
|
||||
*
|
||||
* \param seed for the random number generator
|
||||
*/
|
||||
PSimulateMuTransition::PSimulateMuTransition(UInt_t seed)
|
||||
{
|
||||
fValid = true;
|
||||
|
||||
fRandom = new TRandom2(seed);
|
||||
if (fRandom == 0) {
|
||||
fValid = false;
|
||||
}
|
||||
|
||||
fNmuons = 100; // number of muons to simulate
|
||||
fMuPrecFreq34 = 4463.; // vacuum Mu hyperfine coupling constant
|
||||
fMuPrecFreq12 = 0.; // Mu precession frequency of a 12 transition
|
||||
fMuPrecFreq23 = 0.; // Mu precession frequency of a 23 transition
|
||||
fMuPrecFreq14 = 0.; // Mu precession frequency of a 14 transition
|
||||
fMuonPrecFreq = 0.; // muon precession frequency
|
||||
fBfield = 0.01; // magnetic field (T)
|
||||
fCaptureRate = 0.01; // Mu+ capture rate (MHz)
|
||||
fIonizationRate = 10.; // Mu0 ionization rate (MHz)
|
||||
fSpinFlipRate = 0.001; // Mu0 spin flip rate (MHz)
|
||||
fInitialPhase = 0.;
|
||||
fMuonPhase = fInitialPhase;
|
||||
fMuonDecayTime = 0.;
|
||||
fAsymmetry = 0.27;
|
||||
fMuFraction = 0.;
|
||||
fMuFractionState12 = 0.;
|
||||
fMuFractionState23 = 0.;
|
||||
fDebugFlag = kFALSE;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Destructor
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p> Destructor.
|
||||
*
|
||||
*/
|
||||
PSimulateMuTransition::~PSimulateMuTransition()
|
||||
{
|
||||
if (fRandom) {
|
||||
delete fRandom;
|
||||
fRandom = 0;
|
||||
}
|
||||
}
|
||||
//--------------------------------------------------------------------------
|
||||
// Output of current settings
|
||||
//--------------------------------------------------------------------------
|
||||
/*!
|
||||
* <p>Prints the current settings onto std output.
|
||||
*/
|
||||
void PSimulateMuTransition::PrintSettings() const
|
||||
{
|
||||
cout << endl << "Mu precession frequency 12 (MHz) = " << fMuPrecFreq12;
|
||||
cout << endl << "Mu precession frequency 34 (MHz) = " << fMuPrecFreq34;
|
||||
cout << endl << "Mu precession frequency 23 (MHz) = " << fMuPrecFreq23;
|
||||
cout << endl << "Mu precession frequency 14 (MHz) = " << fMuPrecFreq14;
|
||||
cout << endl << "B field (T) = " << fBfield;
|
||||
cout << endl << "Mu+ electron capture rate (MHz) = " << fCaptureRate;
|
||||
cout << endl << "Mu0 ionizatioan rate (MHz) = " << fIonizationRate;
|
||||
cout << endl << "Mu0 spin-flip rate (MHz) = " << fSpinFlipRate;
|
||||
cout << endl << "!!! Note: if spin-flip rate > 0.001 only spin-flip process is considered!!!";
|
||||
cout << endl << "Decay asymmetry = " << fAsymmetry;
|
||||
cout << endl << "Muonium fraction = " << fMuFraction;
|
||||
cout << endl << "Muonium fraction state12 = " << fMuFractionState12;
|
||||
cout << endl << "Muonium fraction state23 = " << fMuFractionState23;
|
||||
cout << endl << "Number of particles to simulate = " << fNmuons;
|
||||
cout << endl << "Initial muon spin phase (degree) = " << fInitialPhase;
|
||||
cout << endl << "Debug flag = " << fDebugFlag;
|
||||
cout << endl << endl;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// SetSeed (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Sets the seed of the random generator.
|
||||
*
|
||||
* \param seed for the random number generator
|
||||
*/
|
||||
void PSimulateMuTransition::SetSeed(UInt_t seed)
|
||||
{
|
||||
if (!fValid)
|
||||
return;
|
||||
|
||||
fRandom->SetSeed(seed);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Run (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* \param histoForward
|
||||
*/
|
||||
void PSimulateMuTransition::Run(TH1F *histoForward, TH1F *histoBackward)
|
||||
{
|
||||
Int_t i;
|
||||
if (histoForward == 0 || histoBackward == 0)
|
||||
return;
|
||||
|
||||
for (i = 0; i<fNmuons; i++){
|
||||
fMuonPhase = TMath::TwoPi() * fInitialPhase/360.; // transform to radians
|
||||
fMuonDecayTime = NextEventTime(fMuonDecayRate);
|
||||
|
||||
if (fSpinFlipRate > 0.001){// consider only Mu0 spin-flip in this case
|
||||
fMuonPhase = TMath::ACos(GTSpinFlip(fMuonDecayTime));
|
||||
}
|
||||
else{
|
||||
// initial muon state Mu+ or Mu0?
|
||||
if (fRandom->Rndm() <= 1.-fMuFraction)
|
||||
Event("Mu+");
|
||||
else
|
||||
Event("");
|
||||
}
|
||||
// fill 50% in "forward", and 50% in "backward" detector to get independent
|
||||
// events in "forward" and "backward" histograms. This allows "normal" uSR
|
||||
// analysis of the data
|
||||
// change muon decay time to ns
|
||||
if (fRandom->Rndm() <= 0.5)
|
||||
histoForward->Fill(fMuonDecayTime*1000., 1. + fAsymmetry*TMath::Cos(fMuonPhase));
|
||||
else
|
||||
histoBackward->Fill(fMuonDecayTime*1000., 1. - fAsymmetry*TMath::Cos(fMuonPhase));
|
||||
|
||||
if ( (i%100000) == 0) cout << "number of events processed: " << i << endl;
|
||||
}
|
||||
cout << "number of events processed: " << i << endl;
|
||||
return;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// NextEventTime (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Determine time of next event, assuming "Poisson" distribution in time
|
||||
*
|
||||
* \param EventRate event rate in MHz; returns next event time in micro-seconds
|
||||
*/
|
||||
Double_t PSimulateMuTransition::NextEventTime(const Double_t &EventRate)
|
||||
{
|
||||
if (EventRate <= 0.)
|
||||
return -1.; // signal error
|
||||
|
||||
return -1./EventRate * TMath::Log(fRandom->Rndm());
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Phase (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Determines phase of the muon spin
|
||||
*
|
||||
* \param time duration of precession (us);
|
||||
* \param chargeState charge state of Mu ("Mu+" or "Mu0")
|
||||
*/
|
||||
Double_t PSimulateMuTransition::PrecessionPhase(const Double_t &time, const TString chargeState)
|
||||
{
|
||||
Double_t muonPhaseX;
|
||||
Double_t muoniumPolX = 0;
|
||||
|
||||
if (chargeState == "Mu+")
|
||||
muonPhaseX = TMath::TwoPi()*fMuonPrecFreq*time;
|
||||
else if (chargeState == "Mu0"){
|
||||
muoniumPolX = GTFunction(time);
|
||||
muonPhaseX = TMath::ACos(muoniumPolX);
|
||||
}
|
||||
else
|
||||
muonPhaseX = 0.;
|
||||
|
||||
return muonPhaseX;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Mu0 transverse field polarization function (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Calculates Mu0 polarization in x direction by superposition of four Mu0 frequencies
|
||||
*
|
||||
* \param time (us);
|
||||
*/
|
||||
Double_t PSimulateMuTransition::GTFunction(const Double_t &time)
|
||||
{
|
||||
Double_t muoniumPolX = 0;
|
||||
|
||||
muoniumPolX = 0.5 *
|
||||
(fMuFractionState12 * (TMath::Cos(TMath::TwoPi()*fMuPrecFreq12*time) + TMath::Cos(TMath::TwoPi()*fMuPrecFreq34*time)) +
|
||||
fMuFractionState23 * (TMath::Cos(TMath::TwoPi()*fMuPrecFreq23*time) + TMath::Cos(TMath::TwoPi()*fMuPrecFreq14*time)));
|
||||
|
||||
return muoniumPolX;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Mu0 transverse field polarization function after n spin-flip collisions (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Calculates Mu0 polarization in x direction after n spin flip collisions.
|
||||
* See M. Senba, J.Phys. B24, 3531 (1991), equation (17)
|
||||
*
|
||||
* \param time (us);
|
||||
*/
|
||||
Double_t PSimulateMuTransition::GTSpinFlip(const Double_t &time)
|
||||
{
|
||||
Double_t muoniumPolX = 1.0; //initial polarization in x direction
|
||||
Double_t eventTime = 0;
|
||||
Double_t eventDiffTime = 0;
|
||||
Double_t lastEventTime = 0;
|
||||
|
||||
eventTime += NextEventTime(fSpinFlipRate);
|
||||
if (eventTime >= time){
|
||||
muoniumPolX = GTFunction(time);
|
||||
}
|
||||
else{
|
||||
while (eventTime < time){
|
||||
eventDiffTime = eventTime - lastEventTime;
|
||||
muoniumPolX = muoniumPolX * GTFunction(eventDiffTime);
|
||||
lastEventTime = eventTime;
|
||||
eventTime += NextEventTime(fSpinFlipRate);
|
||||
}
|
||||
// calculate for the last collision
|
||||
eventDiffTime = time - lastEventTime;
|
||||
muoniumPolX = muoniumPolX * GTFunction(eventDiffTime);
|
||||
}
|
||||
|
||||
return muoniumPolX;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Event (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p> Generates "muon event": simulate muon spin phase under charge-exchange with
|
||||
* a neutral muonium state in transverse field, where the polarization evolution
|
||||
* PxMu(t) of the muon spin in muonium is determined by a superposition of the
|
||||
* four "Mu transitions" nu_12, nu_34, nu_23, and nu_14.
|
||||
* 1) according to Mu+/Mu0 fraction begin either with a Mu+ state or Mu state
|
||||
* 2) Mu+: determine next electron-capture time t_c. If t_c is larger than decay time t_d
|
||||
* calculate muon spin precession for t_d; else calculate spin precession for t_c.
|
||||
* 3) Determine next ionization time t_i; calculate Px(t_i) in Muonium; calculate the
|
||||
* muon spin phase by acos(Px(t_i)).
|
||||
* 4) get the next electron capture time, continue until t_d is reached.
|
||||
*
|
||||
* <p> For isotropic muonium, TF:
|
||||
* nu_12 and nu_34 with equal probabilities, probability for both states fMuFractionState12
|
||||
* ni_23 and nu_14 with equal probabilities, probability for both states fMuFractionState23
|
||||
*
|
||||
* \param muonString if eq. "Mu+" begin with Mu+ precession
|
||||
*/
|
||||
void PSimulateMuTransition::Event(const TString muonString)
|
||||
{
|
||||
Double_t eventTime, eventDiffTime, captureTime, ionizationTime;
|
||||
// Double_t muonPrecessionFreq, muoniumPrecessionFreq; // MHz
|
||||
// Double_t rndm, frac1, frac2;
|
||||
|
||||
fMuonPrecFreq = fMuonGyroRatio * fBfield;
|
||||
|
||||
// charge-exchange loop until muon decay
|
||||
eventTime = 0.;
|
||||
eventDiffTime = 0.;
|
||||
|
||||
if (fDebugFlag) cout << "Decay time = " << fMuonDecayTime << endl;
|
||||
//cout << muonString << endl;
|
||||
while (1) {
|
||||
if (muonString == "Mu+"){
|
||||
// Mu+ initial state; get next electron capture time
|
||||
captureTime = NextEventTime(fCaptureRate);
|
||||
eventTime += captureTime;
|
||||
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
|
||||
if (eventTime < fMuonDecayTime)
|
||||
fMuonPhase += PrecessionPhase(captureTime, "Mu+");
|
||||
else{ //muon decays; handle precession prior to muon decay
|
||||
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
|
||||
fMuonPhase += PrecessionPhase(eventDiffTime, "Mu+");
|
||||
break;
|
||||
}
|
||||
|
||||
// now, we have Mu0; get next ionization time
|
||||
ionizationTime = NextEventTime(fIonizationRate);
|
||||
eventTime += ionizationTime;
|
||||
// determine Mu state
|
||||
// rndm = fRandom->Rndm();
|
||||
// frac1 = 1. - fMuFractionState1 - fMuFractionState2; // non-precessing Mu states
|
||||
// frac2 = 1. - fMuFractionState2;
|
||||
// if ( rndm < frac1 )
|
||||
// muoniumPrecessionFreq = 0.;
|
||||
// else if (rndm >= frac1 && rndm <= frac2){
|
||||
// if (fRandom->Rndm() <= 0.5)
|
||||
// muoniumPrecessionFreq = fMuPrecFreq12;
|
||||
// else
|
||||
// muoniumPrecessionFreq = fMuPrecFreq34;
|
||||
// }
|
||||
// else{
|
||||
// if (fRandom->Rndm() <= 0.5)
|
||||
// muoniumPrecessionFreq = fMuPrecFreq23;
|
||||
// else
|
||||
// muoniumPrecessionFreq = fMuPrecFreq14;
|
||||
// }
|
||||
|
||||
if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " Phase = " << fMuonPhase << endl;
|
||||
if (eventTime < fMuonDecayTime)
|
||||
fMuonPhase += PrecessionPhase(ionizationTime, "Mu0");
|
||||
else{ //muon decays; handle precession prior to muon decay
|
||||
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
|
||||
fMuonPhase += PrecessionPhase(eventDiffTime, "Mu0");
|
||||
break;
|
||||
}
|
||||
}
|
||||
else{
|
||||
// Mu0 as initial state; get next ionization time
|
||||
ionizationTime = NextEventTime(fIonizationRate);
|
||||
eventTime += ionizationTime;
|
||||
// determine Mu state
|
||||
// rndm = fRandom->Rndm();
|
||||
// frac1 = 1. - fMuFractionState1 - fMuFractionState2; // non-precessing Mu states
|
||||
// frac2 = 1. - fMuFractionState2;
|
||||
// if ( rndm < frac1 )
|
||||
// muoniumPrecessionFreq = 0.;
|
||||
// else if (rndm >= frac1 && rndm <= frac2){
|
||||
// if (fRandom->Rndm() <= 0.5)
|
||||
// muoniumPrecessionFreq = fMuPrecFreq12;
|
||||
// else
|
||||
// muoniumPrecessionFreq = fMuPrecFreq34;
|
||||
// }
|
||||
// else{
|
||||
// if (fRandom->Rndm() <= 0.5)
|
||||
// muoniumPrecessionFreq = fMuPrecFreq23;
|
||||
// else
|
||||
// muoniumPrecessionFreq = fMuPrecFreq14;
|
||||
// }
|
||||
|
||||
if (fDebugFlag)
|
||||
cout << "Mu Ioniza. time = " << ionizationTime << " Phase = " << fMuonPhase << endl;
|
||||
if (eventTime < fMuonDecayTime)
|
||||
fMuonPhase += PrecessionPhase(ionizationTime, "Mu0");
|
||||
else{ //muon decays; handle precession prior to muon decay
|
||||
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
|
||||
fMuonPhase += PrecessionPhase(eventDiffTime, "Mu0");
|
||||
break;
|
||||
}
|
||||
|
||||
// Mu+ state; get next electron capture time
|
||||
captureTime = NextEventTime(fCaptureRate);
|
||||
eventTime += captureTime;
|
||||
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
|
||||
if (eventTime < fMuonDecayTime)
|
||||
fMuonPhase += PrecessionPhase(captureTime, "Mu+");
|
||||
else{ //muon decays; handle precession prior to muon decay
|
||||
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
|
||||
fMuonPhase += PrecessionPhase(eventDiffTime, "Mu+");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (fDebugFlag) cout << " Final Phase = " << fMuonPhase << endl;
|
||||
//fMuonPhase = TMath::ACos(TMath::Cos(fMuonPhase))*360./TMath::TwoPi(); //transform back to [0, 180] degree interval
|
||||
return;
|
||||
}
|
||||
|
Reference in New Issue
Block a user