Updated docu in LineProfile.pdf.

This commit is contained in:
JAK 2018-08-17 10:56:28 +02:00
parent c19d1f473a
commit 12d36cc91b
2 changed files with 2 additions and 2 deletions

View File

@ -81,14 +81,14 @@ The \texttt{libLineProfile} library currently contains the following functions:
\begin{description} \begin{description}
\item[LineGauss] \item[LineGauss]
\begin{equation} \begin{equation}
A(f)=e^{-\frac{(f-f_0)^2}{2 \sigma^2}} A(f)=e^{-\frac{4\ln 2 (f-f_0)^2}{ \sigma^2}}
\end{equation} \end{equation}
Gaussian line shape around $f_0$ with width $\sigma$ and height~$1$.\\[1.5ex] Gaussian line shape around $f_0$ with width $\sigma$ and height~$1$.\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile LineGauss 1 2?\\[1.5ex] \musrfit theory line: \verb?userFcn libLineProfile LineGauss 1 2?\\[1.5ex]
Parameters: $f_0$, $\sigma$. Parameters: $f_0$, $\sigma$.
\item[LineLaplace] \item[LineLaplace]
\begin{equation} \begin{equation}
A(f)=e^{-\frac{|f-f_0|}{\sigma}} A(f)=e^{-2\ln 2 \left|\frac{f-f_0}{\sigma}\right|}
\end{equation} \end{equation}
Laplaceian line shape around $f_0$ with width $\sigma$ and Laplaceian line shape around $f_0$ with width $\sigma$ and
height~$1$.\\[1.5ex] height~$1$.\\[1.5ex]