Merge branch 'master' into root6

This commit is contained in:
suter_a 2016-03-29 17:11:43 +02:00
commit 0eb017c946
3 changed files with 184 additions and 0 deletions

BIN
src/external/libGbGLF/doc/GbG-LF.pdf vendored Normal file

Binary file not shown.

184
src/external/libGbGLF/doc/GbG-LF.tex vendored Normal file
View File

@ -0,0 +1,184 @@
\documentclass[twoside]{article}
\usepackage[english]{babel}
%\usepackage{a4}
\usepackage{amssymb,amsmath,bm}
\usepackage{graphicx,tabularx}
\usepackage{fancyhdr}
\usepackage{array}
\usepackage{float}
\usepackage{hyperref}
\usepackage{xspace}
\usepackage{rotating}
\usepackage{dcolumn}
\usepackage{geometry}
\usepackage{color}
\geometry{a4paper,left=20mm,right=20mm,top=20mm,bottom=20mm}
% \setlength{\topmargin}{10mm}
% \setlength{\topmargin}{-13mm}
% % \setlength{\oddsidemargin}{0.5cm}
% % \setlength{\evensidemargin}{0cm}
% \setlength{\oddsidemargin}{1cm}
% \setlength{\evensidemargin}{1cm}
% \setlength{\textwidth}{15cm}
\setlength{\textheight}{23.8cm}
\pagestyle{fancyplain}
\addtolength{\headwidth}{0.6cm}
\fancyhead{}%
\fancyhead[RE,LO]{\bf \textsc{GapIntegrals}}%
\fancyhead[LE,RO]{\thepage}
\cfoot{--- A.~Suter -- \today~ ---}
\rfoot{\includegraphics[width=2cm]{PSI-Logo_narrow.jpg}}
\DeclareMathAlphabet{\bi}{OML}{cmm}{b}{it}
\newcommand{\mean}[1]{\langle #1 \rangle}
\newcommand{\ie}{\emph{i.e.}\xspace}
\newcommand{\musrfithead}{MUSRFIT\xspace}
\newcommand{\musrfit}{\textsc{musrfit}\xspace}
\newcolumntype{d}[1]{D{.}{.}{#1}}
\newcolumntype{C}[1]{>{\centering\arraybackslash}p{#1}}
\begin{document}
% Header info --------------------------------------------------
\thispagestyle{empty}
\noindent
\begin{tabular}{@{\hspace{-0.2cm}}l@{\hspace{6cm}}r}
\noindent\includegraphics[width=3.4cm]{PSI-Logo_narrow.jpg} &
{\Huge\sf Memorandum}
\end{tabular}
%
\vskip 1cm
%
\begin{tabular}{@{\hspace{-0.5cm}}ll@{\hspace{4cm}}ll}
Date: & \today & & \\[3ex]
From: & A. Suter & & \\
E-Mail: & \verb?andreas.suter@psi.ch? &&
\end{tabular}
%
\vskip 0.3cm
\noindent\hrulefill
\vskip 1cm
%
\section*{Homogenous Disorder Model: GbG in Longitudinal Fields}%
Noakes and Kalvius \cite{noakes1997} derived a phenomenological model for
homogenous disorder: Gaussian-broadened Gaussian disorder (see also
Ref.\,\cite{yaouanc2011}). In both mentioned references only the zero field
case and the weak transverse field case are discussed. Here I briefly summarize
the longitudinal field (LF) case under the assumption that the applied field doesn't
polarize the impurties, \ie the applied field is ``innocent''.
The Gauss-Kubo-Toyabe LF polarization function is
\begin{eqnarray}\label{eq:GKT_LF}
P_{Z,{\rm GKT}}^{\rm LF} &=& 1 - 2 \frac{\sigma^2}{\omega_{\rm ext}^2}\left[ 1 - \cos(\omega_{\rm ext} t)\,\exp\left(-1/2 (\sigma t)^2\right) \right] + \label{eq:GKT_LF_1}\\
& & + 2 \frac{\sigma^2}{\omega_{\rm ext}^3} \int_0^t \sin(\omega_{\rm ext} \tau)\,\exp\left(-1/2 (\omega_{\rm ext} \tau)^2\right) d\tau. \label{eq:GKT_LF_2}
\end{eqnarray}
\noindent The Gaussian disorder is assumed to have the funtional form
\begin{equation}\label{eq:GaussianDisorder}
\varrho = \frac{1}{\sqrt{2\pi}}\,\frac{1}{\sigma_1} \exp\left( -\frac{1}{2} \, \left[ \frac{\sigma - \sigma_0}{\sigma_1} \right]^2 \right).
\end{equation}
\noindent In Ref.\cite{yaouanc2011} a slightly different notation is used: $\sigma \to \Delta_{\rm G}$, $\sigma_0 \to \Delta_{0}$, and
$\sigma_1 \to \Delta_{\rm GbG}$.
\noindent The GbG LF polarizatio function is given by
\begin{equation}
P_{Z,{\rm GbG}}^{\rm LF} = \int_0^\infty d\sigma \left\{ \varrho \cdot P_{Z,{\rm GKT}}^{\rm LF} \right\}.
\end{equation}
\noindent Assuming that $\sigma_0 \gg \sigma_1$ this can be approximated by
\begin{equation}
P_{Z,{\rm GbG}}^{\rm LF} \simeq \int_{-\infty}^\infty d\sigma \left\{ \varrho \cdot P_{Z,{\rm GKT}}^{\rm LF} \right\}.
\end{equation}
\noindent Integrating
\begin{equation*}
P_{Z,{\rm GbG}}^{\rm LF, (1)} = \int_{-\infty}^\infty d\sigma \left\{ \varrho \cdot P_{Z,{\rm GKT}}^{\rm LF, (1)} \right\},
\end{equation*}
\noindent where $P_{Z,{\rm GKT}}^{\rm LF, (1)}$ is given by Eq.(\ref{eq:GKT_LF_1}), leads to
\begin{equation}\label{eq:GbG_LF_1}
P_{Z,{\rm GbG}}^{\rm LF, (1)} = 1 - 2 \frac{\sigma_0^2+\sigma_1^2}{\omega_{\rm ext}^2} +
2 \frac{\sigma_0^2 + \sigma_1^2 (1 + \sigma_1^2 t^2)}{\omega_{\rm ext}^2 (1 + \sigma_1^2 t^2)^{5/2}}\, \cos(\omega_{\rm ext} t)\,
\exp\left[-\frac{1}{2} \frac{\sigma_0^2 t^2}{1+\sigma_1^2 t^2}\right],
\end{equation}
\noindent and Eq.(\ref{eq:GKT_LF_2}) leads to the non-analytic integral
\begin{eqnarray}
P_{Z,{\rm GbG}}^{\rm LF, (2)} &=& \int_{-\infty}^\infty d\sigma \left\{ \varrho \cdot P_{Z,{\rm GKT}}^{\rm LF, (2)} \right\} \nonumber \\
&=& \int_0^t d\tau \left\{ \frac{\sigma_0^4 + 3 \sigma_1^4 (1 + \sigma_1^2 \tau^2)^2 + 6 \sigma_0^2 \sigma_1^2 (1+\sigma_1^2 \tau^2)}{\omega_{\rm ext}^3 (1+\sigma_1^2 \tau^2)^{9/2}}
\sin(\omega_{\rm ext} \tau)\, \exp\left[-\frac{1}{2} \frac{\sigma_0^2 t^2}{1+\sigma_1^2 t^2}\right] \right\}. \label{eq:GbG_LF_2}
\end{eqnarray}
\noindent The full GbG LF polarization function is hence
\begin{equation}
P_{Z,{\rm GbG}}^{\rm LF} = P_{Z,{\rm GbG}}^{\rm LF, (1)} + P_{Z,{\rm GbG}}^{\rm LF, (2)}
\end{equation}
\subsection*{The GbG LF Polarization Function as a User Function in \musrfithead}
Eqs.(\ref{eq:GbG_LF_1})\&(\ref{eq:GbG_LF_2}) are implemented in \musrfit as user function. The current implementation is far from being efficient but stable.
The typical call from within the msr-file would be
\begin{verbatim}
###############################################################
FITPARAMETER
# Nr. Name Value Step Pos_Error Boundaries
1 PlusOne 1 0 none
2 MinusOne -1 0 none
3 Alpha 0.78699 -0.00036 0.00036 0 none
4 Asy 0.06682 0.00027 none 0 0.33
5 Sig0 0.3046 -0.0087 0.0093 0 100
6 Rb 1.0000 0.0027 none 0 1
7 Field0 0 0 none
8 Field1 20.03 0 none
9 Field2 99.32 0 none
###############################################################
THEORY
asymmetry fun1
userFcn libGbGLF PGbGLF map2 5 fun2 (field sigma0 Rb)
###############################################################
FUNCTIONS
fun1 = map1 * par4
fun2 = par5 * par6
\end{verbatim}
\noindent where \texttt{PGbGLF} takes 3 arguments:
\begin{enumerate}
\item field in Gauss
\item $\sigma_0$ in ($1/\mu s$)
\item $R_b = \sigma_1 / \sigma_0$
\end{enumerate}
\noindent \textbf{Be aware that we explicitly assumed $\sigma_1 \ll \sigma_0$, \ie $R_b < 1$.}
\bibliographystyle{plain}
\begin{thebibliography}{1}
\bibitem{noakes1997} D.~R.~Noakes, G.~M.~Kalvius, Phys.~Rev.~B, \textbf{56}, 2352
(1997).
\bibitem{yaouanc2011} A.~Yaouanc, P.~Dalmas~de~R\'{e}otier, ``Muon Spin
Rotation, Relaxation, and Resonance'', Oxford University Press (2011).
\end{thebibliography}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB