
Spirit
User’s
Guide

Table of Contents

Preface

Introduction

Quick Start

Basic Concepts

Organization

What’s New

Core

Primitives

Operators

Numerics

The Rule

Epsilon

Directives

The Scanner and Parsing

The Grammar

Subrules

Semantic Actions

In-depth: The Parser

In-depth: The Scanner

In-depth: The Parser Context

Actors

Predefined Actions

Attribute

Parametric Parsers

Functional

http://spirit.sf.net/

Phoenix

Closures

Dynamic

Dynamic Parsers

Storable Rules

The Lazy Parser

The Select Parser

The Switch Parser

Utility

Escape Character Parsers

Loop Parsers

Character Set Parser

Confix and Comment Parsers

List Parsers

Functor Parser

Refactoring Parsers

Regular Expression Parser

Scoped Lock

Distinct Parser

Symbols

The Symbol Table

Trees

Parse Trees and ASTs

Iterator

Multi Pass

File Iterator

Position Iterator

Debugging

Error Handling

Quick Reference

Includes

Portability

Style Guide

Techniques

FAQ

Rationale

Acknowledgments

References

Copyright © 1998-2003 Joel de Guzman
Portions of this document:

Copyright © 2001-2003 Hartmut Kaiser
Copyright © 2001-2002 Daniel C. Nuffer

Copyright © 2002 Chris Uzdavinis
Copyright © 2002 Jeff Westfahl

Copyright © 2002 Juan Carlos Arevalo-Baeza
Copyright © 2003 Martin Wille
Copyright © 2003 Ross Smith

Copyright © 2003 Jonathan de Halleux

Use, modification and distribution is subject to
the Boost Software License, Version 1.0. (See
accompanying file LICENSE_1_0.txt or copy
at http://www.boost.org/LICENSE_1_0.txt)

Spirit is hosted by SourceForge
http://spirit.sourceforge.net/

http://sourceforge.net/
http://spirit.sourceforge.net/
http://sourceforge.net/

Preface

"Examples of designs that meet most of the criteria for "goodness" (easy to
understand, flexible, efficient) are a recursive-descent parser, which is
traditional procedural code. Another example is the STL, which is a generic
library of containers and algorithms depending crucially on both traditional
procedural code and on parametric polymorphism."

Bjarne Stroustrup

History

A decade and a half ago, I wrote my first calculator in Pascal. It is one of my most unforgettable
coding experiences. I was amazed how a mutually recursive set of functions can model a grammar
specification. In time, the skills I acquired from that academic experience became very practical.
Periodically I was tasked to do some parsing. For instance, whenever I need to perform any form of
I/O, even in binary, I try to approach the task somewhat formally by writing a grammar using
Pascal-like syntax diagrams and then write a corresponding recursive-descent parser. This worked
very well.

The arrival of the Internet and the World Wide Web magnified this thousand-fold. At one point I had
to write an HTML parser for a Web browser project. I got a recursive-descent HTML parser working
based on the W3C formal specifications easily. I was certainly glad that HTML had a formal grammar
specification. Because of the influence of the Internet, I then had to do more parsing. RFC
specifications were everywhere. SGML, HTML, XML, even email addresses and those seemingly
trivial URLs were all formally specified using small EBNF-style grammar specifications. This made
me wish for a tool similar to big-time parser generators such as YACC and ANTLR, where a parser is
built automatically from a grammar specification. Yet, I want it to be extremely small; small enough to
fit in my pocket, yet scalable.

It must be able to practically parse simple grammars such as email addresses to moderately complex
grammars such as XML and perhaps some small to medium-sized scripting languages. Scalability is a
prime goal. You should be able to use it for small tasks such as parsing command lines without
incurring a heavy payload, as you do when you are using YACC or PCCTS. Even now that it has
evolved and matured to become a multi-module library, true to its original intent, Spirit can still be
used for extreme micro-parsing tasks. You only pay for features that you need. The power of Spirit
comes from its modularity and extensibility. Instead of giving you a sledgehammer, it gives you the
right ingredients to create a sledgehammer easily. For instance, it does not really have a lexer, but you
have all the raw ingredients to write one, if you need one.

The result was Spirit. Spirit was a personal project that was conceived when I was doing R&D in
Japan. Inspired by the GoF’s composite and interpreter patterns, I realized that I can model a
recursive-descent parser with hierarchical-object composition of primitives (terminals) and composites
(productions). The original version was implemented with run-time polymorphic classes. A parser is
generated at run time by feeding in production rule strings such as "prod ::= {‘A’ | ‘B’}
‘C’;" A compile function compiled the parser, dynamically creating a hierarchy of objects and

http://spirit.sf.net/
http://www.antlr.org/

linking semantic actions on the fly. A very early text can be found here.

The version that we have now is a complete rewrite of the original Spirit parser using expression
templates and static polymorphism, inspired by the works of Todd Veldhuizen (" Expression
Templates", C++ Report, June 1995). Initially, the static-Spirit version was meant only to replace the
core of the original dynamic-Spirit. Dynamic-spirit needed a parser to implement itself anyway. The
original employed a hand-coded recursive-descent parser to parse the input grammar specification
strings.

After its initial "open-source" debut in May 2001, static-Spirit became a success. At around November
2001, the Spirit website had an activity percentile of 98%, making it the number one parser tool at
Source Forge at the time. Not bad for such a niche project such as a parser library. The "static" portion
of Spirit was forgotten and static-Spirit simply became Spirit. The framework soon evolved to acquire
more dynamic features.

How to use this manual

The Spirit framework is organized in logical modules starting from the core. This documentation
provides a user’s guide and reference for each module in the framework. A simple and clear code
example is worth a hundred lines of documentation; therefore, the user’s guide is presented with
abundant examples annotated and explained in step-wise manner. The user’s guide is based on
examples -lots of them.

As much as possible, forward information (i.e. citing a specific piece of information that has not yet
been discussed) is avoided in the user’s manual portion of each module. In many cases, though, it is
unavoidable that advanced but related topics are interspersed with the normal flow of discussion. To
alleviate this problem, topics categorized as "advanced" may be skipped at first reading.

Some icons are used to mark certain topics indicative of their relevance. These icons precede some
text to indicate:

Icons

Note Information provided is moderately important and should be noted by the
reader.

Alert Information provided is of utmost importance.

Detail Information provided is auxiliary but will give the reader a deeper insight
into a specific topic. May be skipped.

Tip A potentially useful and helpful piece of information.

Support

Please direct all questions to Spirit’s mailing list. You can subscribe to the mailing list here. The
mailing list has a searchable archive. A search link to this archive is provided in Spirit’s home page.
You may also read and post messages to the mailing list through an NNTP news portal (thanks to
www.gmane.org). The news group mirrors the mailing list. Here are two links to the archives: via
gmane, via geocrawler.

http://spirit.sourceforge.net/dl_docs/pre-spirit.htm
http://www.extreme.indiana.edu/%7Etveldhui/papers/Expression-Templates/exprtmpl.html
http://www.extreme.indiana.edu/%7Etveldhui/papers/Expression-Templates/exprtmpl.html
https://lists.sourceforge.net/lists/listinfo/spirit-general
http://spirit.sf.net/
http://news.gmane.org/thread.php?group=gmane.comp.parsers.spirit.general
http://www.gmane.org/
http://dir.gmane.org/gmane.comp.parsers.spirit.general
http://sourceforge.net/mailarchive/forum.php?forum_id=1595gmane.org

To my dear daughter Phoenix

Joel de Guzman
September 2002

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Introduction

Spirit is an object-oriented recursive-descent parser generator framework implemented using template
meta-programming techniques. Expression templates allow us to approximate the syntax of Extended
Backus-Normal Form (EBNF) completely in C++.

The Spirit framework enables a target grammar to be written exclusively in C++. Inline EBNF
grammar specifications can mix freely with other C++ code and, thanks to the generative power of
C++ templates, are immediately executable. In retrospect, conventional compiler-compilers or
parser-generators have to perform an additional translation step from the source EBNF code to C or
C++ code.

A simple EBNF grammar snippet:

 group ::= ’(’ expression ’)’ factor ::= integer | group term ::= factor ((’*’ factor) | (’/’ factor))* expression ::= term ((’+’ term) | (’-’ term))*

is approximated using Spirit’s facilities as seen in this code snippet:

 group = ’(’ >> expression >> ’)’; factor = integer | group; term = factor >> *((’*’ >> factor) | (’/’ >> factor)); expression = term >> *((’+’ >> term) | (’-’ >> term));

Through the magic of expression templates, this is perfectly valid and executable C++ code. The
production rule expression is in fact an object that has a member function parse that does the work
given a source code written in the grammar that we have just declared. Yes, it’s a calculator. We shall
simplify for now by skipping the type declarations and the definition of the rule integer invoked by
factor . The production rule expression in our grammar specification, traditionally called the
start symbol, can recognize inputs such as:

 12345 -12345 +12345 1 + 2 1 * 2 1/2 + 3/4 1 + 2 + 3 + 4 1 * 2 * 3 * 4 (1 + 2) * (3 + 4) (-1 + 2) * (3 + -4) 1 + ((6 * 200) - 20) / 6

Certainly we have done some modifications to the original EBNF syntax. This is done to conform to
C++ syntax rules. Most notably we see the abundance of shift >> operators. Since there are no
’empty’ operators in C++, it is simply not possible to write something like:

 a b

as seen in math syntax, for example, to mean multiplication or, in our case, as seen in EBNF syntax to
mean sequencing (b should follow a). The framework uses the shift >> operator instead for this
purpose. We take the >> operator, with arrows pointing to the right, to mean "is followed by". Thus
we write:

 a >> b

The alternative operator | and the parentheses () remain as is. The assignment operator = is used in
place of EBNF’s ::= . Last but not least, the Kleene star * which used to be a postfix operator in
EBNF becomes a prefix. Instead of:

http://spirit.sf.net/

 a* //... in EBNF syntax,

we write:

 *a //... in Spirit.

since there are no postfix stars, "* ", in C/C++. Finally, we terminate each rule with the ubiquitous
semi-colon, "; ".

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Quick

Start

Why would you want to use Spirit?
Spirit is designed to be a practical parsing tool. At the very least, the ability to generate a
fully-working parser from a formal EBNF specification inlined in C++ significantly reduces
development time. While it may be practical to use a full-blown, stand-alone parser such as YACC or
ANTLR when we want to develop a computer language such as C or Pascal, it is certainly overkill to
bring in the big guns when we wish to write extremely small micro-parsers. At that end of the
spectrum, programmers typically approach the job at hand not as a formal parsing task but through ad
hoc hacks using primitive tools such as scanf . True, there are tools such as regular-expression
libraries (such as boost regex) or scanners (such as boost tokenizer), but these tools do not scale well
when we need to write more elaborate parsers. Attempting to write even a moderately-complex parser
using these tools leads to code that is hard to understand and maintain.

One prime objective is to make the tool easy to use. When one thinks of a parser generator, the usual
reaction is "it must be big and complex with a steep learning curve." Not so. Spirit is designed to be
fully scalable. The framework is structured in layers. This permits learning on an as-needed basis,
after only learning the minimal core and basic concepts.

For development simplicity and ease in deployment, the entire framework consists of only header
files, with no libraries to link against or build. Just put the spirit distribution in your include path,
compile and run. Code size? -very tight. In the quick start example that we shall present in a short
while, the code size is dominated by the instantiation of the std::vector and std::iostream .

Trivial Example #1
Create a parser that will parse a floating-point number.

 real_p

(You’ve got to admit, that’s trivial!) The above code actually generates a Spirit real_parser (a
built-in parser) which parses a floating point number. Take note that parsers that are meant to be used
directly by the user end with "_p" in their names as a Spirit convention. Spirit has many pre-defined
parsers and consistent naming conventions help you keep from going insane!

Trivial Example #2
Create a parser that will accept a line consisting of two floating-point numbers.

 real_p >> real_p

Here you see the familiar floating-point numeric parser real_p used twice, once for each number.
What’s that >> operator doing in there? Well, they had to be separated by something, and this was
chosen as the "followed by" sequence operator. The above program creates a parser from two simpler

http://spirit.sf.net/
http://www.boost.org/libs/regex/index.html
http://www.boost.org/libs/tokenizer/index.html

parsers, glueing them together with the sequence operator. The result is a parser that is a composition
of smaller parsers. Whitespace between numbers can implicitly be consumed depending on how the
parser is invoked (see below).

Note: when we combine parsers, we end up with a "bigger" parser, But it’s still a parser. Parsers can
get bigger and bigger, nesting more and more, but whenever you glue two parsers together, you end up
with one bigger parser. This is an important concept.

Trivial Example #3
Create a parser that will accept an arbitrary number of floating-point numbers. (Arbitrary means
anything from zero to infinity)

 *real_p

This is like a regular-expression Kleene Star, though the syntax might look a bit odd for a C++
programmer not used to seeing the * operator overloaded like this. Actually, if you know regular
expressions it may look odd too since the star is before the expression it modifies. C’est la vie. Blame
it on the fact that we must work with the syntax rules of C++.

Any expression that evaluates to a parser may be used with the Kleene Star. Keep in mind, though,
that due to C++ operator precedence rules you may need to put the expression in parentheses for
complex expressions. The Kleene Star is also known as a Kleene Closure, but we call it the Star in
most places.

Example #4 [A Just Slightly Less Trivial Example]

This example will create a parser that accepts a comma-delimited list of numbers and put the numbers
in a vector.

Step 1. Create the parser

 real_p >> *(ch_p(’,’) >> real_p)

Notice ch_p(’,’) . It is a literal character parser that can recognize the comma ’,’ . In this case, the
Kleene Star is modifying a more complex parser, namely, the one generated by the expression:

 (ch_p(’,’) >> real_p)

Note that this is a case where the parentheses are necessary. The Kleene star encloses the complete
expression above.

Step 2. Using a Parser (now that it’s created)

Now that we have created a parser, how do we use it? Like the result of any C++ temporary object, we
can either store it in a variable, or call functions directly on it.

We’ll gloss over some low-level C++ details and just get to the good stuff.

If r is a rule (don’t worry about what rules exactly are for now. This will be discussed later. Suffice it
to say that the rule is a placeholder variable that can hold a parser), then we store the parser as a rule
like this:

 r = real_p >> *(ch_p(’,’) >> real_p);

Not too exciting, just an assignment like any other C++ expression you’ve used for years. The cool
thing about storing a parser in a rule is this: rules are parsers, and now you can refer to it by name. (In
this case the name is r). Notice that this is now a full assignment expression, thus we terminate it with
a semicolon, "; ".

That’s it. We’re done with defining the parser. So the next step is now invoking this parser to do its
work. There are a couple of ways to do this. For now, we shall use the free parse function that takes
in a char const* . The function accepts three arguments:

 The null-terminated const char* input
 The parser object
 Another parser called the skip parser

In our example, we wish to skip spaces and tabs. Another parser named space_p is included in
Spirit’s repertoire of predefined parsers. It is a very simple parser that simply recognizes whitespace.
We shall use space_p as our skip parser. The skip parser is the one responsible for skipping
characters in between parser elements such as the real_p and the ch_p .

Ok, so now let’s parse!

 r = real_p >> *(ch_p(’,’) >> real_p); parse(str, r, space_p) // Not a full statement yet, patience...

The parse function returns an object (called parse_info) that holds, among other things, the result
of the parse. In this example, we need to know:

 Did the parser successfully recognize the input str ?
 Did the parser fully parse and consume the input up to its end?

To get a complete picture of what we have so far, let us also wrap this parser inside a function:

 bool parse_numbers(char const* str)
 { return parse(str, real_p >> *(’,’ >> real_p), space_p).full;
 }

Note in this case we dropped the named rule and inlined the parser directly in the call to parse. Upon
calling parse, the expression evaluates into a temporary, unnamed parser which is passed into the
parse() function, used, and then destroyed.

 char and wchar_t operands
The careful reader may notice that the parser expression has ’,’ instead of
ch_p(’,’) as the previous examples did. This is ok due to C++ syntax rules
of conversion. There are >> operators that are overloaded to accept a char or
wchar_t argument on its left or right (but not both). An operator may be
overloaded if at least one of its parameters is a user-defined type. In this case,
the real_p is the 2nd argument to operator>> , and so the proper
overload of >> is used, converting ’,’ into a character literal parser.
The problem with omiting the ch_p call should be obvious: ’a’ >> ’b’ is
not a spirit parser, it is a numeric expression, right-shifting the ASCII (or
another encoding) value of ’a’ by the ASCII value of ’b’ . However, both
ch_p(’a’) >> ’b’ and ’a’ >> ch_p(’b’) are Spirit sequence
parsers for the letter ’a’ followed by ’b’ . You’ll get used to it, sooner or
later.

Take note that the object returned from the parse function has a member called full which returns
true if both of our requirements above are met (i.e. the parser fully parsed the input).

Step 3. Semantic Actions

Our parser above is really nothing but a recognizer. It answers the question "did the input match our
grammar?", but it does not remember any data, nor does it perform any side effects. Remember: we
want to put the parsed numbers into a vector. This is done in an action that is linked to a particular
parser. For example, whenever we parse a real number, we wish to store the parsed number after a
successful match. We now wish to extract information from the parser. Semantic actions do this.
Semantic actions may be attached to any point in the grammar specification. These actions are C++
functions or functors that are called whenever a part of the parser successfully recognizes a portion of
the input. Say you have a parser P, and a C++ function F, you can make the parser call F whenever it
matches an input by attaching F:

 P[&F]

Or if F is a function object (a functor):

 P[F]

The function/functor signature depends on the type of the parser to which it is attached. The parser
real_p passes a single argument: the parsed number. Thus, if we were to attach a function F to
real_p , we need F to be declared as:

 void F(double n);

For our example however, again, we can take advantage of some predefined semantic functors and

functor generators (A functor generator is a function that returns a functor). For our purpose, Spirit
has a functor generator push_back_a(c) . In brief, this semantic action, when called, appends the
parsed value it receives from the parser it is attached to, to the container c .

Finally, here is our complete comma-separated list parser:

 bool parse_numbers(char const* str, vector<double>& v)
 { return parse(str,
 // Begin grammar (real_p[push_back_a(v)] >> *(’,’ >> real_p[push_back_a(v)])
) , // End grammar
 space_p).full;
 }

This is the same parser as above. This time with appropriate semantic actions attached to strategic
places to extract the parsed numbers and stuff them in the vector v . The parse_numbers function
returns true when successful.

 The full source code can be viewed here. This is part of the Spirit distribution.

Copyright © 1998-2003 Joel de Guzman
Copyright © 2002 Chris Uzdavinis
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/number_list.cpp

Basic
Concepts

There are a few fundamental concepts that need to be understood well: 1) The Parser, 2) Match, 3)
The Scanner, and 4) Semantic Actions. These basic concepts interact with one another, and the
functionalities of each interweave throughout the framework to make it one coherent whole.

The Parser
Central to the framework is the parser. The parser does the actual work of recognizing a linear input
stream of data read sequentially from start to end by the scanner. The parser attempts to match the
input following a well-defined set of specifications known as grammar rules. The parser reports the
success or failure to its client through a match object. When successful, the parser calls a
client-supplied semantic action. Finally, the semantic action extracts structural information depending
on the data passed by the parser and the hierarchical context of the parser it is attached to.

Parsers come in different flavors. The Spirit framework comes bundled with an extensive set of
pre-defined parsers that perform various parsing tasks from the trivial to the complex. The parser, as a
concept, has a public conceptual interface contract. Following the contract, anyone can write a
conforming parser that will play along well with the framework’s predefined components. We shall
provide a blueprint detailing the conceptual interface of the parser later.

Clients of the framework generally do not need to write their own hand-coded parsers at all. Spirit has
an immense repertoire of pre-defined parsers covering all aspects of syntax and semantic analysis. We
shall examine this repertoire of parsers in the following sections. In the rare case where a specific
functionality is not available, it is extremely easy to write a user-defined parser. The ease in writing a
parser entity is the main reason for Spirit’s extensibility.

http://spirit.sf.net/

Primitives and Composites
Spirit parsers fall into two categories: primitives and composites. These two categories are more or
less synonymous to terminals and non-terminals in parsing lingo. Primitives are non-decomposable
atomic units. Composites on the other hand are parsers that are composed of other parsers which can
in turn be a primitive or another composite. To illustrate, consider the Spirit expression:

 real_p >> *(’,’ >> real_p)

real_p is a primitive parser that can parse real numbers. The quoted comma ’,’ in the expression
is a shortcut and is equivalent to ch_p(’,’) , which is another primitive parser that recognizes single
characters.

The expression above corresponds to the following parse tree:

The expression:

 ’,’ >> real_p

composes a sequence parser. The sequence parser is a composite parser comprising two parsers:
the one on its left hand side (lhs), ch_p(’,’) ; and the other on its right hand side (rhs), real_p .
This composite parser, when called, calls its lhs and rhs in sequence and reports a successful match
only if both are successful.

The sequence parser is a binary composite. It is composed of two parsers. There are unary
composites as well. Unary composites hold only a single subject. Like the binary composite, the unary
composite may change the behavior of its embedded subject. One particular example is the Kleene
star. The Kleene star, when called to parse, calls its sole subject zero or more times. "Zero or more"
implies that the Kleene star always returns a successful match, possibly matching the null string: "".

The expression:

 *(’,’ >> real_p)

wraps the whole sequence composite above inside a kleene_star .

Finally, the full expression composes a real_p primitive parser and the kleene_star we have
above into another higher level sequence parser composite.

A few simple classes, when composed and structured in a hierarchy, form a very powerful
object-oriented recursive-descent parsing engine. These classes provide the infrastructure needed for
the construction of more-complex parsers. The final parser composite is a non-deterministic
recursive-descent parser with infinite look-ahead.

Top-down descent traverses the hierarchy. The outer sequence calls the leftmost real_p parser. If
successful, the kleene_star is called next. The kleene_star calls the inner sequence
repeatedly in a loop until it fails to match, or the input is exhausted. Inside, ch_p(’,’) and then
real_p are called in sequence. The following diagram illustrates what is happening, somewhat
reminiscent of Pascal syntax diagrams.

The flexibility of object embedding and composition combined with recursion opens up a unique
approach to parsing. Subclasses are free to form aggregates and algorithms of arbitrary complexity.
Complex parsers can be created with the composition of only a few primitive classes.

The framework is designed to be fully open-ended and extensible. New primitives or composites, from
the trivial to the complex, may be added any time. Composition happens (statically) at compile time.
This is possible through the expressive flexibility of C++ expression templates and template
meta-programming.

The result is a composite composed of primitives and smaller composites. This embedding strategy
gives us the ability to build hierarchical structures that fully model EBNF expressions of arbitrary
complexity. Later on, we shall see more primitive and composite building blocks.

The Scanner
Like the parser, the scanner is also an abstract concept. The task of the scanner is to feed the sequential
input data stream to the parser. The scanner is composed of two STL conforming forward iterators,
first and last, where first is held by reference and last, by value. The first iterator is held by reference
to allow re-positioning by the parser. A set of policies governs how the scanner behaves. Parsers
extract data from the scanner and position the iterator appropriately through its member functions.

Knowledge of the intricacies of these policies is not required at all in most cases. However, knowledge
of the scanner’s basic API is required to write fully-conforming Spirit parsers. The scanner’s API will
be outlined in a separate section. In addition, for the power users and the adventurous among us, a full
section will be devoted to covering the scanner policies. The scanner policies make Spirit very flexible
and extensible. For instance, some of the policies may be modified to filter data. A practical example
is a scanner policy that does not distinguish upper and lower case whereby making it useful for parsing
case insensitive input. Another example is a scanner policy that strips white spaces from the input.

The Match
The parser has a conceptual parse member function taking in a scanner and returning a match object.
The primary function of the match object is to report parsing success (or failure) back to the parser’s
caller; i.e., it evaluates to true if the parse function is successful, false otherwise. If the parse is
successful, the match object may also be queried to report the number of characters matched (using
match.length()). The length is non-negative if the match is successful, and the typical length of a
parse failure is -1. A zero length is perfectly valid and still represents a successful match.

Parsers may have attribute data associated with it. For example, the real_p parser has a numeric datum
associated with it. This attribute is the parsed number. This attribute is passed on to the returned match
object. The match object may be queried to get this attribute. This datum is valid only when the match
is successful.

Semantic Actions
A composite parser forms a hierarchy. Parsing proceeds from the topmost parent parser which
delegates and apportions the parsing task to its children recursively to its children’s children and so on
until a primitive is reached. By attaching semantic actions to various points in this hierarchy, in effect
we can transform the flat linear input stream into a structured representation. This is essentially what
parsers do.

Recall our example above:

 real_p >> *(’,’ >> real_p)

By hooking a function (or functor) into the real_p parsers, we can extract the numbers from the input:

 real_p[&f] >> *(’,’ >> real_p[&f])

where f is a function that takes in a single argument. The [&f] hooks the parser with the function
such that when real_p recognizes a valid number, the function f is called. It is up to the function
then to do what is appropriate. For example, it can stuff the numbers in a vector. Or perhaps, if the
grammar is changed slightly by replacing ’,’ with ’+’ , then we have a primitive calculator that
computes sums. The function f then can then be made to add all incoming numbers.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Organization

The framework is highly modular and is organized in layers:

iterator actor

debug

attribute dynamic error_handling symbols tree utility

meta

core

scanner primitives composite non_terminal

Spirit has four layers, plus an independent top layer. The independent layer, comprising of actor and
iterator, does not rely on the other layers. The framework’s architecture is completely orthogonal. The
relationship among the layers is acyclic. Lower layers do not depend nor know the existence of upper
layers. Modules in a layer do not depend on other modules in the same layer.

The client may use only the modules that she wants without incurring any compile time nor run time
penalty. A minimalistic approach is to use only the core as is. The highly streamlined core is usable by
itself. The core is sufficiently suitable for tasks such as micro parsing.

The iterator module is independent of Spirit and may be used in other non-Spirit applications. This
module is a compilation of stand-alone iterators and iterator wrappers compatible with Spirit. Over
time, these iterators have been found to be most useful for parsing with Spirit.

The actor module, also independent of Spirit, is a compilation of predefined semantic actions that
covers the most common semantics processing tasks.

The debug module provides library wide parser debugging. This module hooks itself up transparently
into the core non-intrusively and only when necessary.

The attribute module introduces advanced semantic action machinery with emphasis on extraction
and passing of data up and down the parser hierarchy through inherited and synthesized attributes.
Attributes may also be used to actually control the parsing. Parametric parsers are a form of dynamic
parsers that changes their behavior at run time based on some attribute or data.

The dynamic module focuses on parsers with behavior that can be modified at run-time.

http://spirit.sf.net/

error_handling . The framework would not be complete without Error Handling. C++’s exception
handling mechanism is a perfect match for Spirit due to its highly recursive functional nature. C++
Exceptions are used extensively by this module for handling errors.

The symbols module focuses on symbol table management. This module is rather basic now. The goal
is to build a sub-framework that will be able to accommodate C++ style multiple scope mechanisms.
C++ is a great model for the complexity of scoping that perhaps has no parallel in any other language.
There are classes and inheritance, private, protected and public access restrictions, friends,
namespaces, using declarations, using directives, Koenig lookup (Argument Dependent Lookup) and
more. The symbol table functionality we have now will be the basis of a complete facility that will
attempt to model this.

I wish that I could ever see, a structure as lovely as a tree...

Parse Tree and Abstract Syntax Tree (AST) generation are handled by the Tree module. There are
advantages with Parse Trees and Abstract Syntax Trees over semantic actions. You can make multiple
passes over the data without having to re-parse the input. You can perform transformations on the tree.
You can evaluate things in any order you want, whereas with attribute schemes you have to process in
a begin to end fashion. You do not have to worry about backtracking and action side effects that may
occur with an ambiguous grammar.

The utility module is a set of commonly useful parsers and support classes that were found to be
useful in handling common tasks such as list processing, comments, confix expressions, etc.

meta, provides metaprogramming facilities for advanced Spirit developers. This module facilitates
compile-time and run-time introspection of Spirit parsers.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Spirit Change Log

1.8.5
Miniboost reorganized and updated to Boost 1.34.1 .
Several small fixes.

1.8.4
Fixed no_actions bug where no_action is applied recursively.
Fixed the regex_p parser for Boost >= V1.33.0
Implemented a workaround for namespace issues VC++ has with Spirit’s file_iterators
Fixed bug in tree match policies that prevented using gen_pt/ast_node_d, reported by Jascha
Wetzel.
Made position_iterator usable with wchar_t based strings.

1.8.3
Config correction for Sun C++ by Steve Clamage (see this link).
Fixed multi_pass_iterator for 64 platforms, where sizeof(int) != sizeof(ptr_type).Fixed bug that
prevents the use of closures with grammars with multiple entry points, reported by David Pierre
Fixed bug that prevented embedding of grammars with multiple entry points, reported by David
Pierre
Added ’\0’ to the set of valid escaped characters for escape_ch_p.
Fixed a switch_p bug when used with a phoenix::actor as the conditional expression.
__LINE__ macro now gets expanded in BOOST_SPIRIT_ASSERT_EXCEPTION
Fixed a bug in the intersection parser reported by Yusaku Sugai
The symbol parser uses the null character internally. Checks were added so that:

tst.add asserts if string contains the null character
tst.find doesn’t match null characters in the input

Fixed match_attr_traits.ipp to allow non-POD to pass through. The previous version taking in the
ellipsis "..." does not allow PODs to pass through.
Allow evaluation to int as condition to if_p parser.
Applied performance improvement changes to the PT/AST code as suggested by Stefan Slapeta.
Fixed several problems with AST tree node directives (inner_node_d[], discard_first_node[],
discard_last_node[] and infix_node_d[]).

1.8.2
Maintenance release (almost the same as 1.8.1 plus a few fixes here and there)

Added specializations to str_p and ch_p to allow str_p(’c’) and ch_p("c") thus fixing some
non-bugs
Fixed bug where a match<T> is a variant.
added Jamfile/Jamrules from CVS to spirit-1.8.1/
added boost-build.jam from boost to spirit-1.8.1/
disabled template multi-threading in libs/spirit/test/Jamfile

http://article.gmane.org/gmane.comp.parsers.spirit.general/9013
http://article.gmane.org/gmane.comp.parsers.spirit.general/9013
https://sourceforge.net/tracker/?func=detail&atid=107586&aid=1220782&group_id=7586
http://article.gmane.org/gmane.comp.parsers.spirit.general/8868
http://article.gmane.org/gmane.comp.parsers.spirit.general/8860
http://article.gmane.org/gmane.comp.parsers.spirit.general/8860
http://article.gmane.org/gmane.comp.parsers.spirit.general/8544

added a boost-header-include rule (from spirit-header-include) pointing to miniboost in
libs/spirit/test/Jamfile
Fixed if_p inconsistency

1.6.2
The Spirit 1.6.2 release is a bug-fix release only, no new features were introduced.

wchar_t friendly implementation of graph_p
Modified escape_char_parser::parse() to use a static parser instead of a rule. This will make it
more friendly to use in trees. It should also be a little more efficient.
Moved to Boost Software license 1.0.
workaround for Error 322 name lookup in base class specialization finds type
fixed limit_d bug
[numerics] Workaround for aC++
Fixed a bug in the switch_p parser.
Fixed a EOI problem in multi_pass
added Jamfile/Jamrules from CVS to spirit-1.6.1/
added boost-build.jam from boost to spirit-1.6.1/
disabled template multi-threading in libs/spirit/test/Jamfile
added a boost-header-include rule (from spirit-header-include) pointing to miniboost in
libs/spirit/test/Jamfile

1.8.1 (Released with Boost 1.32.0)
The Spirit 1.8.1 release is a bug-fix release only, no new features were introduced.

Spirit now requires at least Boost 1.32.0 to compile correctly
Removed the support for the older iterator adaptor library and
Moved to use the new MPL library
Spirit was moved to use the Boost Software License 1.0.
Fixed several parsers to support post-skips more correctly.
Fixed a no_node_d[] bug.
Fixed a bug in shortest_d[].
Fixed a bug in limit_d[].
Fixed parser traversal meta code.
Fixed several bugs in switch_p.
Fixed AST generating problems, in particular with the loops related parsers.
Fixed several bugs in the multi_pass iterator.

Fixed a problem, when the used base iterator returned a value_type and not a reference from
its dereferencing operator.
Fixed iterator_traits problem
Fixed an EOI problem
Fixed a bug, when used with std::cin

Found a bug in grammar.ipp when BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE is
defined
Rewritten safe_bool to use CRTP - now works also on MWCW, fixed several bugs with the
implementation.

Fixed and extended the debug diagnostics printed by the parse tree code.

1.8.0 (Released with Boost 1.31.0; Includes unreleased 1.7.1)
Fixed a wchar_t problem in the regex_p parser.
removed code and workarounds for old compilers (VC6/7 and Borland)
Changed license to the new boost license.
Modified escape_char_parser::parse() to use a static parser instead of a rule. This will make it
more friendly to use in trees. It should also be a little more efficient.

1.7.1 (Unreleased; becomes 1.8.0)
Added a full suite of predefined actors.
Moved rule_alias and stored_rule from core/non-terminal to dynamic.
Made as_parser a public API in meta/as_parser.hpp
Separated Core.Meta into its own module
Refactored Utility module
Moved some files into Utility.Parsers

utilities
parsers

chset, regex, escape_char
confix, list, distinct
functor_parser

support
scoped_lock
flush_multi_pass
grammar_def

actors
assign

Stored rules
Added the switch_p and select_p dynamic parsers.
Multiple scanner support for rules.
The Rule’s Scanner, Context and Tag template parameters can be specified in any order now. If a
template parameter is missing, it will assume the defaults. See test/rule_tests.cpp.
Introduced the possibility to specify more than one start rule from a grammar.
Added an implementation of the file_iterator iterator based on the new Boost iterator_adaptors
(submitted originally by Thomas Witt).

[The transition to the new iterator_adaptors should be complete now.]

Added an implementation of the fixed_size_queue iterator based on the new Boost
iterator_adaptors.
wchar_t friendly implementation of graph_p
made the copy-constructor and assignment-operator of parser_error_base public to clear VC7.1
C4673 warning. Added copy-constructor and assignment operator to parser_error for clarity of
intent.

1.7.0
assign(string) semantic action now works in VC6
parsers need not be default constructible
simplified aggregation of binary and unary parsers (more compiler friendly)
epsilon workarounds for VC++
match’s attribute now uses boost.optional
subrules can now have closures
project wide 64 bit compatibility
dynamic_parser_tag, reissue of rule.set_id(id);
numerous primitives improvements and workarounds for problematic compilers
proper complement (~) of single char parser primitives and chsets
intuitive handling of lexeme_d
wide_phrase_scanner_t typedef
dynamic parser improvements (better support for more compilers)
complete rewrite of the file_iterator (using boost.iterator_adapters). Supports memory maps
wherever available
multi_pass updates (compatibility with more compilers (e.g VC7) and more)
position_iterator improvements
better phoenix support for more compilers
phoenix new_(...) construct
new lazy_p parser
utility.distinct parser (undocumented)
chset operators improvements
confix_p streamlining and improvements
numerous Boost integration improvements

Bug fixes (1.7.0 and 1.6.0)
Fixed. Using MSVC++6 (SP5), calling the assign action with a string value on parsers using the
file_iterator will not work.
Fixed: using assign semantic action in a grammar with a multi_pass iterator adaptor applied to an
std::istream_iterator resulted in a failure to compile under msvc 7.0.
Fixed: There is a bug in the "range_run<CharT>::set (range<CharT> const& r)" function in the
"boost\spirit\utility\impl\chset\range_run.ipp".
Fixed: handling of trailing whitespace bug (ast_parse/pt_parse related)
Fixed: comment_p and end of data bug
Fixed: Most trailing space bug:
Fixed:
chset<>::operator~(range<>) bug
operator&(chset<>, range<>) bug
operator&(range<>, chset<>) bug
Fixed: impl::detach_clear bug
Fixed: mismatch closure return type bug
Fixed: access_node_d[] and access_match_d[] iterator bugs
Fixed a bug regarding threadsafety of Phoenix/Spirit closures.
Added missing include files to miniboost

http://article.gmane.org/gmane.comp.parsers.spirit.general/4029
http://sourceforge.net/mailarchive/forum.php?thread_id=2008510&forum_id=25901
http://article.gmane.org/gmane.comp.parsers.spirit.general/3678
http://sf.net/mailarchive/forum.php?thread_id=1963157&forum_id=1595
http://sf.net/mailarchive/forum.php?thread_id=1966224&forum_id=1595

Copyright © 1998-2005 Joel de Guzman, Hartmut Kaiser

Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See
accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Primitives

The framework predefines some parser primitives. These are the most basic building blocks that the
client uses to build more complex parsers. These primitive parsers are template classes, making them
very flexible.

These primitive parsers can be instantiated directly or through a templatized helper function.
Generally, the helper function is far simpler to deal with as it involves less typing.

We have seen the character literal parser before through the generator function ch_p which is not
really a parser but, rather, a parser generator. Class chlit<CharT> is the actual template class
behind the character literal parser. To instantiate a chlit object, you must explicitly provide the
character type, CharT , as a template parameter which determines the type of the character. This type
typically corresponds to the input type, usually char or wchar_t . The following expression creates
a temporary parser object which will recognize the single letter ’X’.

 chlit<char>(’X’);

Using chlit ’s generator function ch_p simplifies the usage of the chlit<> class (this is true of
most Spirit parser classes since most have corresponding generator functions). It is convenient to call
the function because the compiler will deduce the template type through argument deduction for us.
The example above could be expressed less verbosely using the ch_p helper function.

 ch_p(’X’) // equivalent to chlit<char>(’X’) object

 Parser generators
Whenever you see an invocation of the parser generator function, it is
equivalent to the parser itself. Therefore, we often call ch_p a character
parser, even if, technically speaking, it is a function that generates a character
parser.

The following grammar snippet shows these forms in action:

 // a rule can "store" a parser object. They’re covered
 // later, but for now just consider a rule as an opaque type
 rule<> r1, r2, r3;

 chlit<char> x(’X’); // declare a parser named x

 r1 = chlit<char>(’X’); // explicit declaration
 r2 = x; // using x
 r3 = ch_p(’X’) // using the generator

http://spirit.sf.net/

chlit and ch_p
Matches a single character literal. chlit has a single template type parameter which defaults to
char (i.e. chlit<> is equivalent to chlit<char>). This type parameter is the character type that
chlit will recognize when parsing. The function generator version deduces the template type
parameters from the actual function arguments. The chlit class constructor accepts a single
parameter: the character it will match the input against. Examples:

 r1 = chlit<>(’X’);
 r2 = chlit<wchar_t>(L’X’);
 r3 = ch_p(’X’);

Going back to our original example:

 group = ’(’ >> expr >> ’)’;
 expr1 = integer | group;
 expr2 = expr1 >> *((’*’ >> expr1) | (’/’ >> expr1));
 expr = expr2 >> *((’+’ >> expr2) | (’-’ >> expr2));

the character literals ’(’ , ’)’ , ’+’ , ’-’ , ’*’ and ’/’ in the grammar declaration are chlit
objects that are implicitly created behind the scenes.

 char operands
The reason this works is from two special templatized overloads of
operator>> that takes a (char , ParserT), or (ParserT , char). These
functions convert the character into a chlit object.

One may prefer to declare these explicitly as:

 chlit<> plus(’+’);
 chlit<> minus(’-’);
 chlit<> times(’*’);
 chlit<> divide(’/’);
 chlit<> oppar(’(’);
 chlit<> clpar(’)’);

range and range_p
A range of characters is created from a low/high character pair. Such a parser matches a single
character that is in the range , including both endpoints. Like chlit , range has a single template
type parameter which defaults to char . The range class constructor accepts two parameters: the
character range (from and to, inclusive) it will match the input against. The function generator version
is range_p . Examples:

 range<>(’A’,’Z’) // matches ’A’..’Z’
 range_p(’a’,’z’) // matches ’a’..’z’

Note, the first character must be "before" the second, according to the underlying character encoding
characters. The range, like chlit is a single character parser.

 Character mapping
Character mapping to is inherently platform dependent. It is not guaranteed in
the standard for example that ’A’ < ’Z’, however, in many occasions, we are
well aware of the character set we are using such as ASCII, ISO-8859-1 or
Unicode. Take care though when porting to another platform.

strlit and str_p
This parser matches a string literal. strlit has a single template type parameter: an iterator type.
Internally, strlit holds a begin/end iterator pair pointing to a string or a container of characters.
The strlit attempts to match the current input stream with this string. The template type parameter
defaults to char const* . strlit has two constructors. The first accepts a null-terminated
character pointer. This constructor may be used to build strlits from quoted string literals. The
second constructor takes in a first/last iterator pair. The function generator version is str_p .
Examples:

 strlit<>("Hello World")
 str_p("Hello World")

 std::string msg("Hello World");
 strlit<std::string::const_iterator>(msg.begin(), msg.end());

 Character and phrase level parsing
Typical parsers regard the processing of characters (symbols that form words
or lexemes) and phrases (words that form sentences) as separate domains.
Entities such as reserved words, operators, literal strings, numerical constants,
etc., which constitute the terminals of a grammar are usually extracted first in
a separate lexical analysis stage.
At this point, as evident in the examples we have so far, it is important to note
that, contrary to standard practice, the Spirit framework handles parsing tasks
at both the character level as well as the phrase level. One may consider that a
lexical analyzer is seamlessly integrated in the Spirit framework.
Although the Spirit parser library does not need a separate lexical analyzer,
there is no reason why we cannot have one. One can always have as many
parser layers as needed. In theory, one may create a preprocessor, a lexical
analyzer and a parser proper, all using the same framework.

chseq and chseq_p
Matches a character sequence. chseq has the same template type parameters and constructor
parameters as strlit. The function generator version is chseq_p . Examples:

 chseq<>("ABCDEFG")
 chseq_p("ABCDEFG")

strlit is an implicit lexeme. That is, it works solely on the character level. chseq , strlit ’s
twin, on the other hand, can work on both the character and phrase levels. What this simply means is
that it can ignore white spaces in between the string characters. For example:

 chseq<>("ABCDEFG")

can parse:

 ABCDEFG
 A B C D E F G
 AB CD EFG

More character parsers
The framework also predefines the full repertoire of single character parsers:

Single character parsers

anychar_p
Matches any single character (including the null terminator:
’\0’)

alnum_p Matches alpha-numeric characters

alpha_p Matches alphabetic characters

blank_p Matches spaces or tabs

cntrl_p Matches control characters

digit_p Matches numeric digits

graph_p Matches non-space printing characters

lower_p Matches lower case letters

print_p Matches printable characters

punct_p Matches punctuation symbols

space_p Matches spaces, tabs, returns, and newlines

upper_p Matches upper case letters

xdigit_p Matches hexadecimal digits

negation ~
Single character parsers such as the chlit , range , anychar_p , alnum_p etc. can be negated.
For example:

 ~ch_p(’x’)

matches any character except ’x’ . Double negation of a character parser cancels out the negation.
~~alpha_p is equivalent to alpha_p .

eol_p
Matches the end of line (CR/LF and combinations thereof).

nothing_p
Never matches anything and always fails.

end_p
Matches the end of input (returns a sucessful match with 0 length when the input is exhausted)

Copyright © 1998-2003 Joel de Guzman
Copyright © 2003 Martin Wille
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Operators

Operators are used as a means for object composition and embedding. Simple parsers may be
composed to form composites through operator overloading, crafted to approximate the syntax of an
Extended Backus-Normal Form (EBNF) variant. An expression such as:

 a | b

actually yields a new parser type which is a composite of its operands, a and b. Taking this example
further, if a and b were of type chlit <>, the result would have the composite type:

 alternative<chlit<>, chlit<> >

In general, for any binary operator, it will take its two arguments, parser1 and parser2, and create a
new composed parser of the form

 op<parser1, parser2>

where parser1 and parser2 can be arbitrarily complex parsers themselves, with the only limitations
being what your compiler imposes.

Set Operators

Set operators

a | b Union Match a or b. Also referred to as alternative

a & b Intersection Match a and b

a - b Difference
Match a but not b. If both match and b’s
matched text is shorter than a’s matched text, a
successful match is made

a ^ b XOR Match a or b, but not both

Short-circuiting

Alternative operands are tried one by one on a first come first served basis starting from the leftmost
operand. After a successfully matched alternative is found, the parser concludes its search, essentially
short-circuiting the search for other potentially viable candidates. This short-circuiting implicitly gives
the highest priority to the leftmost alternative.

Short-circuiting is done in the same manner as C or C++’s logical expressions; e.g. if (x < 3 ||
y < 2) where, if x evaluates to be less than 3, the y < 2 test is not done at all. In addition to
providing an implicit priority rule for alternatives which is necessary, given the non-deterministic
nature of the Spirit parser compiler, short-circuiting improves the execution time. If the order of your
alternatives is logically irrelevant, strive to put the (expected) most common choice first for maximum
efficiency.

http://spirit.sf.net/

 Intersections
Some researchers assert that the intersections (e.g. a & b) let us define
context sensitive languages ("XBNF" [citing Leu-Weiner, 1973]). "The theory
of defining a language as the intersection of a finite number of context free
languages was developed by Leu and Weiner in 1973".

 ~ Operator
The complement operator ~ was originally put into consideration. Further
understanding of its value and meaning leads us to uncertainty. The basic
problem stems from the fact that ~a will yield U-a , where U is the universal
set of all strings. However, where it makes sense, some parsers can be
complemented (see the primitive character parsers for examples).

Sequencing Operators

Sequencing operators

a >> b Sequence Match a and b in sequence

a && b Sequential-and
Sequential-and. Same as above, match a and b
in sequence

a || b Sequential-or Match a or b in sequence

The sequencing operator >> can alternatively be thought of as the sequential-and operator. The
expression a && b reads as match a and b in sequence. Continuing this logic, we can also have a
sequential-or operator where the expression a || b reads as match a or b and in sequence. That is, if
both a and b match, it must be in sequence; this is equivalent to a >> !b | b .

Optional and Loops

Optional and Loops

*a Kleene star Match a zero (0) or more times

+a Positive Match a one (1) or more times

!a Optional Match a zero (0) or one (1) time

a % b List

Match a list of one or more repetitions of a
separated by occurrences of b. This is the same
as a >> *(b >> a) . Note that a must not
also match b

 If we look more closely, take note that we generalized the optional expression of the form !a in
the same category as loops. This is logical, considering that the optional matches the expression
following it zero (0) or one (1) time.

Primitive type operands

For binary operators, one of the operands but not both may be a char , wchar_t , char const* or
wchar_t const* . Where P is a parser object, here are some examples:

 P | ’x’
 P - L"Hello World"
 ’x’ >> P
 "bebop" >> P

It is important to emphasize that C++ mandates that operators may only be overloaded if at least one
argument is a user-defined type. Typically, in an expression involving multiple operators, explicitly
typing the leftmost operand as a parser is enough to cause propagation to all the rest of the operands to
its right to be regarded as parsers. Examples:

 r = ’a’ | ’b’ | ’c’ | ’d’; // ill formed
 r = ch_p(’a’) | ’b’ | ’c’ | ’d’; // OK

The second case is parsed as follows:

 r (((chlit<char> | char) | char) | char)

 a (chlit<char> | char)
 r (((a) | char) | char)

 b (a | char)
 r (((b)) | char)

 c (b | char)
 r (((c)))

Operator precedence and grouping

Since we are defining our meta-language in C++, we follow C/C++’s operator precedence rules.
Grouping expressions inside the parentheses override this (e.g., *(a | b) reads: match a or b zero
(0) or more times).

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Numerics

Similar to chlit , strlit etc. numeric parsers are also primitives. Numeric parsers are placed on a
section of their own to give this important building block better focus. The framework includes a
couple of predefined objects for parsing signed and unsigned integers and real numbers. These parsers
are fully parametric. Most of the important aspects of numeric parsing can be finely adjusted to suit.
This includes the radix base, the minimum and maximum number of allowable digits, the exponent,
the fraction etc. Policies control the real number parsers’ behavior. There are some predefined policies
covering the most common real number formats but the user can supply her own when needed.

uint_parser
This class is the simplest among the members of the numerics package. The uint_parser can parse
unsigned integers of arbitrary length and size. The uint_parser parser can be used to parse
ordinary primitive C/C++ integers or even user defined scalars such as bigints (unlimited precision
integers). Like most of the classes in Spirit, the uint_parser is a template class. Template
parameters fine tune its behavior. The uint_parser is so flexible that the other numeric parsers are
implemented using it as the backbone.

 template <
 typename T = unsigned,
 int Radix = 10,
 unsigned MinDigits = 1,
 int MaxDigits = -1>
 struct uint_parser { /*...*/ };

uint_parser template parameters

T The numeric base type of the numeric parser. Defaults to unsigned

Radix
The radix base. This can be either 2: binary, 8: octal, 10: decimal and
16: hexadecimal. Defaults to 10; decimal

MinDigits The minimum number of digits allowable

MaxDigits
The maximum number of digits allowable. If this is -1, then the
maximum limit becomes unbounded

Predefined uint_parsers

bin_p uint_parser<unsigned, 2, 1, -1> const

oct_p uint_parser<unsigned, 8, 1, -1> const

uint_p uint_parser<unsigned, 10, 1, -1> const

hex_p uint_parser<unsigned, 16, 1, -1> const

http://spirit.sf.net/

The following example shows how the uint_parser can be used to parse thousand separated numbers.
The example can correctly parse numbers such as 1,234,567,890.

 uint_parser<unsigned, 10, 1, 3> uint3_p; // 1..3 digits
 uint_parser<unsigned, 10, 3, 3> uint3_3_p; // exactly 3 digits
 ts_num_p = (uint3_p >> *(’,’ >> uint3_3_p)); // our thousand separated number parser

bin_p , oct_p , uint_p and hex_p are parser generator objects designed to be used within
expressions. Here’s an example of a rule that parses comma delimited list of numbers (We’ve seen this
before):

 list_of_numbers = real_p >> *(’,’ >> real_p);

Later, we shall see how we can extract the actual numbers parsed by the numeric parsers. We shall
deal with this when we get to the section on specialized actions.

int_parser
The int_parser can parse signed integers of arbitrary length and size. This is almost the same as
the uint_parser . The only difference is the additional task of parsing the ’+’ or ’-’ sign
preceding the number. The class interface is the same as that of the uint_parser.

A predefined int_parser

int_p int_parser<int, 10, 1, -1> const

real_parser
The real_parser can parse real numbers of arbitrary length and size limited by its parametric type
T. The real_parser is a template class with 2 template parameters. Here’s the real_parser
template interface:

 template<
 typename T = double,
 typename RealPoliciesT = ureal_parser_policies<T> > struct real_parser;

The first template parameter is its numeric base type T. This defaults to double .

 Parsing special numeric types
Notice that the numeric base type T can be specified by the user. This means
that we can use the numeric parsers to parse user defined numeric types such
as fixed_point (fixed point reals) and bigint (unlimited precision
integers).

The second template parameter is a class that groups all the policies and defaults to
ureal_parser_policies<T> . Policies control the real number parsers’ behavior. The default
policies provided are designed to parse C/C++ style real numbers of the form nnn.fff.Eeee where nnn
is the whole number part, fff is the fractional part, E is ’e’ or ’E’ and eee is the exponent optionally
preceded by ’-’ or ’+’ . This corresponds to the following grammar, with the exception that plain
integers without the decimal point are also accepted by default.

 floatingliteral
 = fractionalconstant >> !exponentpart
 | +digit_p >> exponentpart
 ;

 fractionalconstant
 = *digit_p >> ’.’ >> +digit_p
 | +digit_p >> ’.’
 ;

 exponentpart
 = (’e’ | ’E’) >> !(’+’ | ’-’) >> +digit_p
 ;

The default policies are provided to take care of the most common case (there are many ways to
represent, and hence parse, real numbers). In most cases, the default setting of the real_parser is
sufficient and can be used straight out of the box. Actually, there are four real_parser s
pre-defined for immediate use:

Predefined real_parsers

ureal_p
real_parser<double,
ureal_parser_policies<double> > const

real_p
real_parser<double,
real_parser_policies<double> > const

strict_ureal_p
real_parser<double,
strict_ureal_parser_policies<double> > const

strict_real_p
real_parser<double,
strict_real_parser_policies<double> > const

We’ve seen real_p before. ureal_p is its unsigned variant.

Strict Reals

Integer numbers are considered a subset of real numbers, so real_p and ureal_p recognize integer
numbers (without a dot) as real numbers. strict_real_p and strict_ureal_p are the
equivalent parsers that require a dot to be present for a number to be considered a successful match.

Advanced: real_parser policies
The parser policies break down real number parsing into 6 steps:

1 parse_sign Parse the prefix sign

2 parse_n Parse the integer at the left of the decimal point

3 parse_dot Parse the decimal point

4 parse_frac_n Parse the fraction after the decimal point

5 parse_exp Parse the exponent prefix (e.g. ’e’)

6 parse_exp_n Parse the actual exponent

And the interaction of these sub-parsing tasks is further controlled by these 3 policies:

1 allow_leading_dot Allow a leading dot to be present (".1" becomes equivalent to
"0.1")

2 allow_trailing_dot Allow a trailing dot to be present ("1." becomes equivalent to
"1.0")

3 expect_dot
Require a dot to be present (disallows "1" to be equivalent to
"1.0")

[From here on, required reading: The Scanner, In-depth The Parser and In-depth The Scanner]

sign_parser and sign_p
Before we move on, a small utility parser is included here to ease the parsing of the ’-’ or ’+’ sign.
While it is easy to write one:

 sign_p = (ch_p(’+’) | ’-’);

it is not possible to extract the actual sign (positive or negative) without resorting to semantic actions.
The sign_p parser has a bool attribute returned to the caller through the match object which, after
parsing, is set to true if the parsed sign is negative. This attribute detects if the negative sign has been
parsed. Examples:

 bool is_negative;
 r = sign_p[assign_a(is_negative)];

or simply...

 // directly extract the result from the match result’s value
 bool is_negative = sign_p.parse(scan).value();

The sign_p parser expects attached semantic actions to have a signature (see Specialized Actions for
further detail) compatible with:

Signature for functions:

 void func(bool is_negative);

Signature for functors:

 struct ftor
 {
 void operator()(bool is_negative) const;
 };

ureal_parser_policies
 template <typename T>
 struct ureal_parser_policies
 {
 typedef uint_parser<T, 10, 1, -1> uint_parser_t;
 typedef int_parser<T, 10, 1, -1> int_parser_t;

 static const bool allow_leading_dot = true; static const bool allow_trailing_dot = true;
 static const bool expect_dot = false; template <typename ScannerT>
 static typename match_result<ScannerT, nil_t>::type
 parse_sign(ScannerT& scan)
 { return scan.no_match(); }

 template <typename ScannerT>
 static typename parser_result<uint_parser_t, ScannerT>::type
 parse_n(ScannerT& scan)
 { return uint_parser_t().parse(scan); }

 template <typename ScannerT>
 static typename parser_result<chlit<>, ScannerT>::type
 parse_dot(ScannerT& scan)
 { return ch_p(’.’).parse(scan); }

 template <typename ScannerT>
 static typename parser_result<uint_parser_t, ScannerT>::type
 parse_frac_n(ScannerT& scan)
 { return uint_parser_t().parse(scan); }

 template <typename ScannerT>
 static typename parser_result<chlit<>, ScannerT>::type
 parse_exp(ScannerT& scan)
 { return as_lower_d[’e’].parse(scan); }

 template <typename ScannerT>
 static typename parser_result<int_parser_t, ScannerT>::type
 parse_exp_n(ScannerT& scan)
 { return int_parser_t().parse(scan); }
 };

The default ureal_parser_policies uses the lower level integer numeric parsers to do its job.

real_parser_policies
 template <typename T>
 struct real_parser_policies : public ureal_parser_policies<T>
 {
 template <typename ScannerT>
 static typename parser_result<sign_parser, ScannerT>::type
 parse_sign(ScannerT& scan)
 { return sign_p.parse(scan); }
 };

Notice how the real_parser_policies replaced parse_sign of the ureal_parser_policies from which
it is subclassed. The default real_parser_policies simply uses a sign_p instead of
scan.no_match() in the parse_sign step.

strict_ureal_parser_policies and strict_real_parser_policies
 template <typename T>
 struct strict_ureal_parser_policies : public ureal_parser_policies<T>
 {
 static const bool expect_dot = true;
 };

 template <typename T>
 struct strict_real_parser_policies : public real_parser_policies<T>
 {
 static const bool expect_dot = true;
 };

Again, these policies replaced just the policies they wanted different from their superclasses.

Specialized real parser policies can reuse some of the defaults while replacing a few. For example, the
following is a real number parser policy that parses thousands separated numbers with at most two
decimal places and no exponent.

 The full source code can be viewed here.
 template <typename T>
 struct ts_real_parser_policies : public ureal_parser_policies<T>
 {
 // These policies can be used to parse thousand separated
 // numbers with at most 2 decimal digits after the decimal
 // point. e.g. 123,456,789.01

 typedef uint_parser<int, 10, 1, 2> uint2_t;
 typedef uint_parser<T, 10, 1, -1> uint_parser_t;
 typedef int_parser<int, 10, 1, -1> int_parser_t;

 ////////////////////////////////// 2 decimal places Max
 template <typename ScannerT>
 static typename parser_result<uint2_t, ScannerT>::type
 parse_frac_n(ScannerT& scan)
 { return uint2_t().parse(scan); }
 ////////////////////////////////// No exponent template <typename ScannerT>
 static typename parser_result<chlit<>, ScannerT>::type
 parse_exp(ScannerT& scan)
 { return scan.no_match(); }
 ////////////////////////////////// No exponent template <typename ScannerT>
 static typename parser_result<int_parser_t, ScannerT>::type
 parse_exp_n(ScannerT& scan)
 { return scan.no_match(); }

 ////////////////////////////////// Thousands separated numbers
 template <typename ScannerT>
 static typename parser_result<uint_parser_t, ScannerT>::type
 parse_n(ScannerT& scan)
 {
 typedef typename parser_result<uint_parser_t, ScannerT>::type RT;
 static uint_parser<unsigned, 10, 1, 3> uint3_p;
 static uint_parser<unsigned, 10, 3, 3> uint3_3_p;

 if (RT hit = uint3_p.parse(scan))
 {
 T n;
 typedef typename ScannerT::iterator_t iterator_t; iterator_t save = scan.first;
 while (match<> next = (’,’ >> uint3_3_p[assign_a(n)]).parse(scan))
 {
 hit.value() *= 1000;
 hit.value() += n;
 scan.concat_match(hit, next);
 save = scan.first;
 }
 scan.first = save;
 return hit;
 // Note: On erroneous input such as "123,45", the result should // be a partial match "123". ’save’ is used to makes sure that // the scanner position is placed at the last *valid* parse // position. }
 return scan.no_match();
 }
 };

Copyright © 1998-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/thousand_separated.cpp

The
Rule

The rule is a polymorphic parser that acts as a named place-holder capturing the behavior of an EBNF
expression assigned to it. Naming an EBNF expression allows it to be referenced later. The rule is a
template class parameterized by the type of the scanner (ScannerT), the rule’s context and its tag.
Default template parameters are provided to make it easy to use the rule.

 template<
 typename ScannerT = scanner<>,
 typename ContextT = parser_context<>,
 typename TagT = parser_address_tag>
 class rule;

Default template parameters are supplied to handle the most common case. ScannerT defaults to
scanner<> , a plain vanilla scanner that acts on char const* iterators and does nothing special at
all other than iterate through all the chars in the null terminated input a character at a time. The rule
tag, TagT, typically used with ASTs, is used to identify a rule; it is explained here. In trivial cases,
declaring a rule as rule<> is enough. You need not be concerned at all with the ContextT template
parameter unless you wish to tweak the low level behavior of the rule. Detailed information on the
ContextT template parameter is provided elsewhere.

Order of parameters

As of v1.8.0, the ScannerT , ContextT and TagT can be specified in any order. If a template
parameter is missing, it will assume the defaults. Examples:

 rule<> rx1;

 rule<scanner<> > rx2; rule<parser_context <> > rx3;

 rule<parser_context <>, parser_address_tag> rx4; rule<parser_address_tag> rx5; rule<parser_address_tag, scanner<>, parser_context <> > rx6;

 rule<parser_context <>, scanner<>, parser_address_tag> rx7;

Multiple scanners

As of v1.8.0, rules can use one or more scanner types. There are cases, for instance, where we need a
rule that can work on the phrase and character levels. Rule/scanner mismatch has been a source of
confusion and is the no. 1 FAQ. To address this issue, we now have multiple scanner support.
Example:

 typedef scanner_list<scanner<>, phrase_scanner_t> scanners;

 rule<scanners> r = +anychar_p;
 assert(parse("abcdefghijk", r).full);
 assert(parse("a b c d e f g h i j k", r, space_p).full);

Notice how rule r is used in both the phrase and character levels.

http://spirit.sf.net/

By default support for multiple scanners is disabled. The macro
BOOST_SPIRIT_RULE_SCANNERTYPE_LIMIT must be defined to the maximum number of
scanners allowed in a scanner_list. The value must be greater than 1 to enable multiple scanners.
Given the example above, to define a limit of two scanners for the list, the following line must be
inserted into the source file before the inclusion of Spirit headers:

 #define BOOST_SPIRIT_RULE_SCANNERTYPE_LIMIT 2

 See the techniques section for an example of a grammar using a multiple
scanner enabled rule, lexeme_scanner and as_lower_scanner.

Rule Declarations

The rule class models EBNF’s production rule. Example:

 rule<> a_rule = *(a | b) & +(c | d | e);

The type and behavior of the right-hand (rhs) EBNF expression, which may be arbitrarily complex, is
encoded in the rule named a_rule. a_rule may now be referenced elsewhere in the grammar:

 rule<> another_rule = f >> g >> h >> a_rule;

 Referencing rules
When a rule is referenced anywhere in the right hand side of an EBNF
expression, the rule is held by the expression by reference. It is the
responsibility of the client to ensure that the referenced rule stays in scope and
does not get destructed while it is being referenced.

 a = int_p;
 b = a;
 c = int_p >> b;

Copying Rules

The rule is a weird C++ citizen, unlike any other C++ object. It does not have the proper copy and
assignment semantics and cannot be stored and passed around by value. If you need to copy a rule you
have to explicitly call its member function copy() :

 r.copy();

However, be warned that copying a rule will not deep copy other referenced rules of the source rule
being copied. This might lead to dangling references. Again, it is the responsibility of the client to
ensure that all referenced rules stay in scope and does not get destructed while it is being referenced.
Caveat emptor.

If you copy a rule, then you’ll want to place it in a storage somewhere. The problem is how? The
storage can’t be another rule:

 rule<> r2 = r.copy(); // BAD!

because rules are weird and does not have the expected C++ copy-constructor and assignment
semantics! As a general rule: Don’t put a copied rule into another rule! Instead, use the stored_rule
for that purpose.

Forward declarations

A rule may be declared before being defined to allow cyclic structures typically found in BNF
declarations. Example:

 rule<> a, b, c;

 a = b | a;
 b = c | a;

Recursion

The right-hand side of a rule may reference other rules, including itself. The limitation is that direct or
indirect left recursion is not allowed (this is an unchecked run-time error that results in an infinite
loop). This is typical of top-down parsers. Example:

 a = a | b; // infinite loop!

 What is left recursion?
Left recursion happens when you have a rule that calls itself before anything
else. A top-down parser will go into an infinite loop when this happens. See
the FAQ for details on how to eliminate left recursion.

Undefined rules

An undefined rule matches nothing and is semantically equivalent to nothing_p .

Redeclarations

Like any other C++ assignment, a second assignment to a rule is destructive and will redefine it. The
old definition is lost. Rules are dynamic. A rule can change its definition anytime:

 r = a_definition; r = another_definition;

Rule r loses the old definition when the second assignment is made. As mentioned, an undefined rule
matches nothing and is semantically equivalent to nothing_p .

Dynamic Parsers

Hosting declarative EBNF in imperative C++ yields an interesting blend. We have the best of both
worlds. We have the ability to conveniently modify the grammar at run time using imperative
constructs such as if , else statements. Example:

 if (feature_is_available)
 r = add_this_feature;

Rules are essentially dynamic parsers. A dynamic parser is characterized by its ability to modify its
behavior at run time. Initially, an undefined rule matches nothing. At any time, the rule may be
defined and redefined, thus, dynamically altering its behavior.

No start rule

Typically, parsers have what is called a start symbol, chosen to be the root of the grammar where
parsing starts. The Spirit parser framework has no notion of a start symbol. Any rule can be a start
symbol. This feature promotes step-wise creation of parsers. We can build parsers from the bottom up
while fully testing each level or module up untill we get to the top-most level.

Parser Tags

Rules may be tagged for identification purposes. This is necessary, especially when dealing with parse
trees and ASTs to see which rule created a specific AST/parse tree node. Each rule has an ID of type
parser_id . This ID can be obtained through the rule’s id() member function:

 my_rule.id(); // get my_rule’s id

The parser_id class is declared as:

 class parser_id { public: parser_id(); explicit parser_id(void const* p); parser_id(std::size_t l);

 bool operator==(parser_id const& x) const; bool operator!=(parser_id const& x) const;
 bool operator<(parser_id const& x) const;
 std::size_t to_long() const;
 };

parser_address_tag

The rule’s TagT template parameter supplies this ID. This defaults to parser_address_tag . The
parser_address_tag uses the address of the rule as its ID. This is often not the most convenient,
since it is not always possible to get the address of a rule to compare against.

parser_tag

It is possible to have specific constant integers to identify a rule. For this purpose, we can use the
parser_tag<N> , where N is a constant integer:

 rule<parser_tag<123> > my_rule; // set my_rule’s id to 123

dynamic_parser_tag

The parser_tag<N> can only specifiy a static ID, which is defined at compile time. If you need
the ID to be dynamic (changeable at runtime), you can use the dynamic_parser_tag class as the
TagT template parameter. This template parameter enables the set_id() function, which may be
used to set the required id at runtime:

 rule<dynamic_parser_tag> my_dynrule;
 my_dynrule.set_id(1234); // set my_dynrule’s id to 1234

If the set_id() function isn’t called, the parser id defaults to the address of the rule as its ID, just
like the parser_address_tag template parameter would do.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Epsilon

The Epsilon (epsilon_p and eps_p) is a multi-purpose parser that returns a zero length match.

Simple Form

In its simplest form, epsilon_p matches the null string and always returns a match of zero length:

 epsilon_p // always returns a zero-length match

This form is usually used to trigger a semantic action unconditionally. For example, it is useful in
triggering error messages when a set of alternatives fail:

 r = A | B | C | eps_p[error]; // error if A, B, or C fails to match

Semantic Predicate

Semantic predicates allow you to attach a function anywhere in the grammar. In this role, the epsilon
takes a 0-ary (nullary) function/functor. The run-time function/functor is typically a test that is called
upon to resolve ambiguity in the grammar. A parse failure will be reported when the function/functor
result evaluates to false. Otherwise an empty match will be reported. The general form is:

 eps_p(f) >> rest;

The nullary function f is called to do a semantic test (say, checking if a symbol is in the symbol table).
If test returns true , rest will be evaluated. Otherwise, the production will return early with a
no-match without ever touching rest .

Syntactic Predicate

Similar to Semantic predicates, Syntactic predicates assert a certain conditional syntax to be satisfied
before evaluating another production. This time, epsilon_p accepts a (conditional) parser. The general
form is:

 eps_p(p) >> rest;

If p is matched on the input stream then attempt to recognize rest . The parser p is called to do a
syntax check. Regardless of p’s success, eps_p(p) will always return a zero length match (i.e. the
input is not consumed). If test returns true , rest will be evaluated. Otherwise, the production will
return early with a no-match without ever touching rest .

Example:

 eps_p(’0’) >> oct_p // note that ’0’ is actually a ch_p(’0’)

Epsilon here is used as a syntactic predicate. oct_p (see numerics) is parsed only if we see a leading
’0’ . Wrapping the leading ’0’ inside an epsilon makes the parser not consume anything from the
input. If a ’0’ is seen, epsilon_p reports a successful match with zero length.

http://spirit.sf.net/

 Primitive arguments
Epsilon allows primitive type arguments such as char , int , wchar_t ,
char const* , wchar_t const* and so on. Examples:
eps_p("hello") // same as eps_p(str_p("hello"))
eps_p(’x’) // same as eps_p(ch_p(’x’))

 Inhibiting Semantic Actions

In a syntactic predicate eps_p(p) , any semantic action directly or indirectly attached to the
conditional parser p will not be called. However, semantic actions attached to epsilon itself will
always be called. The following code snippets illustrates the behavior:

 eps_p(c[f]) // f not called eps_p(c)[f] // f is called eps_p[f] // f is called

Actually, the conditional parser p is implicitly wrapped in a no_actions_d directive:

 no_actions_d[p]

The conditional parser is required to be free from side-effects (semantic actions). The conditional
parser’s purpose is to resolve ambiguity by looking ahead in the input stream for a certain pattern.
Ambiguity and semantic actions do not mix well. On an ambiguous grammar, backtracking happens.
And when it happens, we cannot undo the effects of triggered semantic actions.

Negation

Operator ~ is defined for parsers constructed by epsilon_p /eps_p . It performs negation by
complementing the results reported. ~~eps_p(x) is identical to eps_p(x) .

Copyright © 1998-2003 Joel de Guzman
Copyright © 2003 Martin Wille
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Directives

Parser directives have the form: directive[expression]

A directive modifies the behavior of its enclosed expression, essentially decorating it. The framework
pre-defines a few directives. Clients of the framework are free to define their own directives as
needed. Information on how this is done will be provided later. For now, we shall deal only with
predefined directives.

lexeme_d
Turns off white space skipping. At the phrase level, the parser ignores white spaces, possibly including
comments. Use lexeme_d in situations where we want to work at the character level instead of the
phrase level. Parsers can be made to work at the character level by enclosing the pertinent parts inside
the lexeme_d directive. For example, let us complete the example presented in the Introduction. There,
we skipped the definition of the integer rule. Here’s how it is actually defined:

 integer = lexeme_d[!(ch_p(’+’) | ’-’) >> +digit];

The lexeme_d directive instructs the parser to work on the character level. Without it, the integer
rule would have allowed erroneous embedded white spaces in inputs such as "1 2 345" which will be
parsed as "12345".

as_lower_d
There are times when we want to inhibit case sensitivity. The as_lower_d directive converts all
characters from the input to lower-case.

 as_lower_d behavior
It is important to note that only the input is converted to lower case. Parsers
enclosed inside the as_lower_d expecting upper case characters will fail to
parse. Example: as_lower_d[’X’] will never succeed because it expects
an upper case ’X’ that the as_lower_d directive will never supply.

For example, in Pascal, keywords and identifiers are case insensitive. Pascal ignores the case of letters
in identifiers and keywords. Identifiers Id, ID and id are indistinguishable in Pascal. Without the
as_lower_d directive, it would be awkward to define a rule that recognizes this. Here’s a possibility:

 r = str_p("id") | "Id" | "iD" | "ID";

Now, try doing that with the case insensitive Pascal keyword "BEGIN". The as_lower_d directive
makes this simple:

http://spirit.sf.net/

 r = as_lower_d["begin"];

 Primitive arguments
The astute reader will notice that we did not explicitly wrap "begin" inside an
str_p . Whenever appropriate, directives should be able to allow primitive
types such as char , int , wchar_t , char const* , wchar_t const*
and so on. Examples:
as_lower_d["hello"] // same as
as_lower_d[str_p("hello")]
as_lower_d[’x’] // same as as_lower_d[ch_p(’x’)]

no_actions_d

There are cases where you want semantic actions not to be triggered. By enclosing a parser in the
no_actions_d directive, all semantic actions directly or indirectly attached to the parser will not
fire.

 no_actions_d[expression]

Tweaking the Scanner Type

 How does lexeme_d, as_lower_d and no_actions_d work? These directives do their
magic by tweaking the scanner policies. Well, you don’t need to know what that means for now.
Scanner policies are discussed later. However, it is important to note that when the scanner policy is
tweaked, the result is a different scanner. Why is this important to note? The rule is tied to a particular
scanner (one or more scanners, to be precise). If you wrap a rule inside a lexeme_d,
as_lower_d or no_actions_d, the compiler will complain about scanner mismatch unless you
associate the required scanner with the rule.

lexeme_scanner , as_lower_scanner and no_actions_scanner are your friends if the
need to wrap a rule inside these directives arise. Learn bout these beasts in the next chapter on The
Scanner and Parsing.

longest_d
Alternatives in the Spirit parser compiler are short-circuited (see Operators). Sometimes, this is not
what is desired. The longest_d directive instructs the parser not to short-circuit alternatives
enclosed inside this directive, but instead makes the parser try all possible alternatives and choose the
one matching the longest portion of the input stream.

Consider the parsing of integers and real numbers:

 number = real | integer;

A number can be a real or an integer. This grammar is ambiguous. An input "1234" should potentially
match both real and integer. Recall though that alternatives are short-circuited . Thus, for inputs such
as above, the real alternative always wins. However, if we swap the alternatives:

 number = integer | real;

we still have a problem. Now, an input "123.456" will be partially matched by integer until the
decimal point. This is not what we want. The solution here is either to fix the ambiguity by factoring
out the common prefixes of real and integer or, if that is not possible nor desired, use the longest_d
directive:

 number = longest_d[integer | real];

shortest_d
Opposite of the longest_d directive.

 Multiple alternatives
The longest_d and shortest_d directives can accept two or more
alternatives. Examples:
longest[a | b | c];
shortest[a | b | c | d];

limit_d
Ensures that the result of a parser is constrained to a given min..max range (inclusive). If not, then the
parser fails and returns a no-match.

Usage:

 limit_d(min, max)[expression]

This directive is particularly useful in conjunction with parsers that parse specific scalar ranges (for
example, numeric parsers). Here’s a practical example. Although the numeric parsers can be
configured to accept only a limited number of digits (say, 0..2), there is no way to limit the result to a
range (say -1.0..1.0). This design is deliberate. Doing so would have undermined Spirit’s design rule
that "the client should not pay for features that she does not use". We would have stored the min, max
values in the numeric parser itself, used or unused. Well, we could get by by using static constants
configured by a non-type template parameter, but that is not acceptable because that way, we can only
accommodate integers. What about real numbers or user defined numbers such as big-ints?

Example, parse time of the form HH:MM:SS :

 uint_parser<int, 10, 2, 2> uint2_p;

 r = lexeme_d
 [
 limit_d(0u, 23u)[uint2_p] >> ’:’ // Hours 00..23
 >> limit_d(0u, 59u)[uint2_p] >> ’:’ // Minutes 00..59
 >> limit_d(0u, 59u)[uint2_p] // Seconds 00..59
];

min_limit_d
Sometimes, it is useful to unconstrain just the maximum limit. This will allow for an interval that’s
unbounded in one direction. The directive min_limit_d ensures that the result of a parser is not less
than minimun. If not, then the parser fails and returns a no-match.

Usage:

 min_limit_d(min)[expression]

Example, ensure that a date is not less than 1900

 min_limit_d(1900u)[uint_p]

max_limit_d
Opposite of min_limit_d . Take note that limit_d[p] is equivalent to:

 min_limit_d(min)[max_limit_d(max)[p]]

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

The
Scanner

and
Parsing

The scanner’s task is to feed the sequential input data stream to the parser. The scanner extracts data
from the input, parceling, potentially modifying or filtering, and then finally relegating the result to
individual parser elements on demand until the input is exhausted. The scanner is composed of two
STL conforming forward iterators, first and last, where first is held by reference and last, by value.
The first iterator is held by reference to allow it to be re-positioned. The following diagram illustrates
what’s happening:

The scanner manages various aspects of the parsing process through a set of policies. There are three
sets of policies that govern:

 Iteration and filtering
 Recognition and matching
 Handling semantic actions

These policies are mostly hidden from view and users generally need not know about them. Advanced
users might however provide their own policies that override the ones that are already in place to fine
tune the parsing process to fit their own needs. We shall see how this can be done. This will be
covered in further detail later.

The scanner is a template class expecting two parameters: IteratorT , the iterator type and
PoliciesT , its set of policies. IteratorT defaults to char const* while PoliciesT
defaults to scanner_policies<> , a predefined set of scanner policies that we can use straight out
of the box.

http://spirit.sf.net/

 template<
 typename IteratorT = char const*,
 typename PoliciesT = scanner_policies<> >
 class scanner;

Spirit uses the same iterator concepts and interface formally defined by the C++ Standard Template
Library (STL). We can use iterators supplied by STL’s containers (e.g. list , vector , string ,
etc.) as is, or perhaps write our own. Iterators can be as simple as a pointer (e.g. char const*). At
the other end of the spectrum, iterators can be quite complex; for instance, an iterator adapter that
wraps a lexer such as LEX.

The Free Parse Functions
The framework provides a couple of free functions to make parsing a snap. These parser functions
have two forms. The first form works on the character level. The second works on the phrase level
and asks for a skip parser.

The skip parser is just about any parser primitive or composite. Its purpose is to move the scanner’s
first iterator to valid tokens by skipping white spaces. In C for instance, the tab ’\t’ , the newline
’\n’ , return ’\r’ , space ’ ’ and characters inside comments /*...*/ are considered as white
spaces.

Character level parsing

 template <typename IteratorT, typename DerivedT>
 parse_info<IteratorT>
 parse
 (
 IteratorT const& first,
 IteratorT const& last,
 parser<DerivedT> const& p
);

 template <typename CharT, typename DerivedT>
 parse_info<CharT const*>
 parse
 (
 CharT const* str,
 parser<DerivedT> const& p
);

There are two variants. The first variant accepts a first , last iterator pair like you do STL
algorithms. The second variant accepts a null terminated string. The last argument is a parser p which
will be used to parse the input.

Phrase level parsing

 template <typename IteratorT, typename ParserT, typename SkipT>
 parse_info<IteratorT>
 parse
 (
 IteratorT const& first,
 IteratorT const& last,
 parser<ParserT> const& p,
 parser<SkipT> const& skip
);

 template <typename CharT, typename ParserT, typename SkipT>
 parse_info<CharT const*>
 parse
 (
 CharT const* str,
 parser<ParserT> const& p,
 parser<SkipT> const& skip
);

Like above, there are two variants. The first variant accepts a first , last iterator pair like you do
STL algorithms. The second variant accepts a null terminated string. The argument p is the parser
which will be used to parse the input. The last argument skip is the skip parser.

The parse_info structure

The functions above return a parse_info structure parameterized by the iterator type passed in.
The parse_info struct has these members:

parse_info

stop
Points to the final parse position (i.e The parser recognized and processed
the input up to this point)

hit
True if parsing is successful. This may be full: the parser consumed all the
input, or partial: the parser consumed only a portion of the input.

full True when we have a full match (i.e The parser consumed all the input).

length
The number of characters consumed by the parser. This is valid only if we
have a successful match (either partial or full).

 The phrase_scanner_t and wide_phrase_scanner_t
For convenience, Spirit declares these typedefs:

 typedef scanner<char const*, unspecified> phrase_scanner_t;
 typedef scanner<wchar_t const*, unspecified> wide_phrase_scanner_t;

These are the exact scanner types used by Spirit on calls to the parse function passing in a char
const* (C string) or a wchar_t const* (wide string) as the first parameter and a space_p as
skip-parser (the third parameter). For instance, we can use these typedefs to declare some rules.
Example:

 rule<phrase_scanner_t> my_rule;
 parse("abrakadabra", my_rule, space_p);

 Direct parsing with Iterators
The free parse functions make it easy for us. By using them, we need not bother with the scanner
intricacies. The free parse functions hide the dirty details. However, sometime in the future, we will
need to get under the hood. It’s nice that we know what we are dealing with when that need comes.
We will need to go low-level and call the parser’s parse member function directly.

If we wish to work on the character level, the procedure is quite simple:

 scanner<IteratorT> scan(first, last);

 if (p.parse(scan))
 {
 // Parsed successfully. If first == last, then we have
 // a full parse, the parser recognized the input in whole.
 }
 else
 {
 // Parsing failure. The parser failed to recognize the input
 }

 The scanner position on an unsucessful match
On a successful match, the input is advanced accordingly. But what happens
on an unsuccessful match? Be warned. It might be intuitive to think that the
scanner position is reset to its initial position prior to parsing. No, the position
is not reset. On an unsuccessful match, the position of the scanner is
undefined! Usually, it is positioned at the farthest point where the error was
found somewhere down the recursive descent. If this behavior is not desired,
you may need to position the scanner yourself. The example in the numerics
chapter illustrates how the scanner position can be saved and later restored.

Where p is the parser we want to use, and first /last are the iterator pairs referring to the input.
We just create a scanner given the iterators. The scanner type we will use here uses the default
scanner_policies<> .

The situation is a bit more complex when we wish to work on the phrase level:

 typedef skip_parser_iteration_policy<SkipT> iter_policy_t;
 typedef scanner_policies<iter_policy_t> scanner_policies_t;
 typedef scanner<IteratorT, scanner_policies_t> scanner_t;
 iter_policy_t iter_policy(skip);
 scanner_policies_t policies(iter_policy);
 scanner_t scan(first, last, policies);
 if (p.parse(scan))
 {
 // Parsed successfully. If first == last, then we have
 // a full parse, the parser recognized the input in whole.
 }
 else
 {
 // Parsing failure. The parser failed to recognize the input
 }

Where SkipT is the type of the skip-parser, skip . Again, p is the parser we want to use, and
first /last are the iterator pairs referring to the input. Given a skip-parser type SkipT ,
skip_parser_iteration_policy creates a scanner iteration policy that skips over portions
that are recognized by the skip-parser. This may then be used to create a scanner. The
scanner_policies class wraps all scanner related policies including the iteration policies.

lexeme_scanner
When switching from phrase level to character level parsing, the lexeme_d (see directives.html)
does its magic by disabling the skipping of white spaces. This is done by tweaking the scanner.
However, when we do this, all parsers inside the lexeme gets a transformed scanner type. This should
not be a problem in most cases. However, when rules are called inside the lexeme_d , the compiler
will choke if the rule does not have the proper scanner type. If a rule must be used inside a
lexeme_d , the rule’s type must be:

 rule<lexeme_scanner<ScannerT>::type> r;

where ScannerT is the actual type of the scanner used. Take note that lexeme_scanner will only
work for phrase level scanners.

as_lower_scanner
Similarly, the as_lower_d does its work by filtering and converting all characters received from the
scanner to lower case. This is also done by tweaking the scanner. Then again, all parsers inside the
as_lower_d gets a transformed scanner type. If a rule must be used inside a as_lower_d , the
rule’s type must be:

 rule<as_lower_scanner<ScannerT>::type> r;

where ScannerT is the actual type of the scanner used.

 See the techniques section for an example of a grammar using a multiple
scanner enabled rule, lexeme_scanner and as_lower_scanner.

no_actions_scanner

Again, no_actions_d directive tweaks the scanner to disable firing semantic actions. Like before,
all parsers inside the no_actions_d gets a transformed scanner type. If a rule must be used inside a
no_actions_d , the rule’s type must be:

 rule<no_actions_scanner<ScannerT>::type> r;

where ScannerT is the actual type of the scanner used.

 Be sure to add "typename " before lexeme_scanner,
as_lower_scanner and no_actions_scanner when these are used
inside a template class or function.

 See no_actions.cpp. This is part of the Spirit distribution.

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/no_actions.cpp

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

The
Grammar

The grammar encapsulates a set of rules. The grammar class is a protocol base class. It is essentially
an interface contract. The grammar is a template class that is parameterized by its derived class,
DerivedT , and its context, ContextT . The template parameter ContextT defaults to
parser_context , a predefined context.

You need not be concerned at all with the ContextT template parameter unless you wish to tweak the
low level behavior of the grammar. Detailed information on the ContextT template parameter is
provided elsewhere. The grammar relies on the template parameter DerivedT, a grammar subclass to
define the actual rules.

Presented below is the public API. There may actually be more template parameters after ContextT .
Everything after the ContextT parameter should not be of concern to the client and are strictly for
internal use only.

 template<
 typename DerivedT,
 typename ContextT = parser_context<> >
 struct grammar;

Grammar definition
A concrete sub-class inheriting from grammar is expected to have a nested template class (or struct)
named definition :

 It is a nested template class with a typename ScannerT parameter.
 Its constructor defines the grammar rules.
 Its constructor is passed in a reference to the actual grammar self .
 It has a member function named start that returns a reference to the start rule .

Grammar skeleton
 struct my_grammar : public grammar<my_grammar>
 {
 template <typename ScannerT>
 struct definition
 {
 rule<ScannerT> r;
 definition(my_grammar const& self) { r = /*..define here..*/; }
 rule<ScannerT> const& start() const { return r; }
 };
 };

Decoupling the scanner type from the rules that form a grammar allows the grammar to be used in
different contexts possibly using different scanners. We do not care what scanner we are dealing with.
The user-defined my_grammar can be used with any type of scanner. Unlike the rule, the grammar is
not tied to a specific scanner type. See "Scanner Business" to see why this is important and to gain

http://spirit.sf.net/

further understanding on this scanner-rule coupling problem.

Instantiating and using my_grammar
Our grammar above may be instantiated and put into action:

 my_grammar g;

 if (parse(first, last, g, space_p).full)
 cout << "parsing succeeded\n";
 else
 cout << "parsing failed\n";

my_grammar IS-A parser and can be used anywhere a parser is expected, even referenced by another
rule:

 rule<> r = g >> str_p("cool huh?");

 Referencing grammars
Like the rule, the grammar is also held by reference when it is placed in the
right hand side of an EBNF expression. It is the responsibility of the client to
ensure that the referenced grammar stays in scope and does not get destructed
while it is being referenced.

Full Grammar Example
Recalling our original calculator example, here it is now rewritten using a grammar:

 struct calculator : public grammar<calculator>
 {
 template <typename ScannerT>
 struct definition
 {
 definition(calculator const& self)
 {
 group = ’(’ >> expression >> ’)’;
 factor = integer | group;
 term = factor >> *((’*’ >> factor) | (’/’ >> factor));
 expression = term >> *((’+’ >> term) | (’-’ >> term));
 }

 rule<ScannerT> expression, term, factor, group;

 rule<ScannerT> const&
 start() const { return expression; }
 };
 };

 A fully working example with semantic actions can be viewed here. This is part of the Spirit
distribution.

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/calc_plain.cpp

 self
You might notice that the definition of the grammar has a constructor that
accepts a const reference to the outer grammar. In the example above, notice
that calculator::definition takes in a calculator const&
self . While this is unused in the example above, in many cases, this is very
useful. The self argument is the definition’s window to the outside world. For
example, the calculator class might have a reference to some state information
that the definition can update while parsing proceeds through semantic
actions.

Grammar Capsules
As a grammar becomes complicated, it is a good idea to group parts into logical modules. For
instance, when writing a language, it might be wise to put expressions and statements into separate
grammar capsules. The grammar takes advantage of the encapsulation properties of C++ classes. The
declarative nature of classes makes it a perfect fit for the definition of grammars. Since the grammar is
nothing more than a class declaration, we can conveniently publish it in header files. The idea is that
once written and fully tested, a grammar can be reused in many contexts. We now have the notion of
grammar libraries.

Reentrancy and multithreading
An instance of a grammar may be used in different places multiple times without any problem. The
implementation is tuned to allow this at the expense of some overhead. However, we can save
considerable cycles and bytes if we are certain that a grammar will only have a single instance. If this
is desired, simply define BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE before including any
spirit header files.

 #define BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE

On the other hand, if a grammar is intended to be used in multithreaded code, we should then define
BOOST_SPIRIT_THREADSAFE before including any spirit header files. In this case it will also be
required to link against Boost.Threads

 #define BOOST_SPIRIT_THREADSAFE

Using more than one grammar start rule
Sometimes it is desirable to have more than one visible entry point to a grammar (apart from the start
rule). To allow additional start points, Spirit provides a helper template grammar_def , which may
be used as a base class for the definition subclass of your grammar . Here’s an example:

 // this header has to be explicitly included
 #include <boost/spirit/utility/grammar_def.hpp>

 struct calculator2 : public grammar<calculator2>
 { enum
 {
 expression = 0,
 term = 1,
 factor = 2,

http://www.boost.org/libs/thread/doc/index.html

 };

 template <typename ScannerT>
 struct definition
 : public grammar_def<rule<ScannerT>, same, same>
 {
 definition(calculator2 const& self)
 {
 group = ’(’ >> expression >> ’)’;
 factor = integer | group;
 term = factor >> *((’*’ >> factor) | (’/’ >> factor));
 expression = term >> *((’+’ >> term) | (’-’ >> term));

 this->start_parsers(expression, term, factor);
 }

 rule<ScannerT> expression, term, factor, group; };

 };

The grammar_def template has to be instantiated with the types of all the rules you wish to make
visible from outside the grammar :

 grammar_def<rule<ScannerT>, same, same>

The shorthand notation same is used to indicate that the same type be used as specified by the
previous template parameter (e.g. rule<ScannerT>). Obviously, same may not be used as the first
template parameter.

 grammar_def start types
It may not be obvious, but it is interesting to note that aside from rule<>s, any
parser type may be specified (e.g. chlit<>, strlit<>, int_parser<>, etc.).

Using the grammar_def class, there is no need to provide a start() member function anymore.
Instead, you’ll have to insert a call to the this->start_parsers() (which is a member function

of the grammar_def template) to define the start symbols for your grammar . Note that the
number and the sequence of the rules used as the parameters to the start_parsers() function
should match the types specified in the grammar_def template:

 this->start_parsers(expression, term, factor);

The grammar entry point may be specified using the following syntax:

 g.use_parser<N>() // Where g is your grammar and N is the Nth entry.

This sample shows how to use the term rule from the calculator2 grammar above:

 calculator2 g;

 if (parse(first, last,
 g.use_parser<calculator2::term>(), space_p).full)
 {
 cout << "parsing succeeded\n";
 }
 else {
 cout << "parsing failed\n";
 }

The template parameter for the use_parser<> template type should be the zero based index into
the list of rules specified in the start_parsers() function call.

 use_parser<0>
Note, that using 0 (zero) as the template parameter to use_parser is
equivalent to using the start rule, exported by conventional means through the
start() function, as shown in the first calculator sample above. So
this notation may be used even for grammars exporting one rule through its
start() function only. On the other hand, calling a grammar without the
use_parser notation will execute the rule specified as the first parameter to
the start_parsers() function.

The maximum number of usable start rules is limited by the preprocessor constant:

 BOOST_SPIRIT_GRAMMAR_STARTRULE_TYPE_LIMIT // defaults to 3

Copyright © 1998-2003 Joel de Guzman
Copyright © 2003-2004 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Subrules

Spirit is implemented using expression templates. This is a very powerful technique. Along with its
power comes some complications. We almost take for granted that when we write i | j >> k
where i , j and k are all integers the result is still an integer. Yet, with expression templates, the same
expression i | j >> k where i , j and k are of type T, the result is a complex composite type [see
Basic Concepts]. Spirit expressions, which are combinations of primitives and composites yield an
infinite set of new types. One problem is that C++ offers no easy facility to deduce the type of an
arbitrarily complex expression that yields a complex type. Thus, while it is easy to write:

 int r = i | j >> k; // where i, j, and k are ints

Expression templates yield an endless supply of types. Without the rule, there is no easy way to do this
in C++ if i , j and k are Spirit parsers:

 <what_type???> r = i | j >> k; // where i, j, and k are Spirit parsers

If i , j and k are all chlit<> objects, the type that we want is:

 typedef
 alternative<
 chlit<> // i
 , sequence<
 chlit<> // j
 , chlit<> // k
 >
 >
 rule_t;

 rule_t r = i | j >> k; // where i, j, and k are chlit<> objects

We deliberately formatted the type declaration nicely to make it understandable. Try that with a more
complex expression. While it can be done, explicitly spelling out the type of a Spirit expression
template is tedious and error prone. The right hand side (rhs) has to mirror the type of the left hand

side (lhs). (Yet, if you still wish to do it, see this link for a technique).

http://spirit.sf.net/

 typeof and auto
Some compilers already support the typeof keyword. This can be used to
free us from having to explicitly type the type (pun intentional). Using the
typeof , we can rewrite the Spirit expression above as:
typeof(i | j >> k) r = i | j >> k;
While this is better than having to explicitly declare a complex type, it is
redundant, error prone and still an eye sore. The expression is typed twice.
The only way to simplify this is to introduce a macro (See this link for more
information).
David Abrahams proposed in comp.std.c++ to reuse the auto keyword for
type deduced variables. This has been extensibly discussed in boost.org.
Example:
auto r = i | j >> k;
Once such a C++ extension is accepted into the standard, this would be a neat
solution and a nice fit for our purpose. It’s not a complete solution though
since there are still situations where we do not know the rhs beforehand; for
instance when pre-declaring cyclic dependent rules.

Fortunately, rules come to the rescue. Rules can capture the type of the expression assigned to it. Thus:

 rule<> r = i | j >> k; // where i, j, and k are chlit<> objects

It might not be apparent but behind the scenes, plain rules are actually implemented using a pointer to
a runtime polymorphic abstract class that holds the dynamic type of the parser assigned to it. When a
Spirit expression is assigned to a rule, its type is encapsulated in a concrete subclass of the abstract
class. A virtual parse function delegates the parsing to the encapsulated object.

Rules have drawbacks though:

 It is coupled to a specific scanner type. The rule is tied to a specific scanner [see The Scanner
Business].

 The rule’s parse member function has a virtual function call overhead that cannot be inlined.

Static rules: subrules
The subrule is a fully static version of the rule. The subrule does not have the drawbacks listed above.

 The subrule is not tied to a specific scanner so just about any scanner type may be used
 The subrule also allows aggressive inlining since there are no virtual function calls

 template<int ID, typename ContextT = parser_context<> >
 class subrule;

The first template parameter gives the subrule an identification tag. Like the rule, there is a ContextT
template parameter that defaults to parser_context . You need not be concerned at all with the
ContextT template parameter unless you wish to tweak the low level behavior of the subrule.
Detailed information on the ContextT template parameter is provided elsewhere.

Presented above is the public API. There may actually be more template parameters after ContextT .
Everything after the ContextT parameter should not be of concern to the client and are strictly for
internal use only.

http://www.boost-consulting.com/
http://www.boost.org/

Apart from a few minor differences, the subrule follows the usage and syntax of the rule closely.
Here’s the calculator grammar using subrules:

 struct calculator : public grammar<calculator>
 {
 template <typename ScannerT>
 struct definition
 {
 definition(calculator const& self)
 {
 first =
 (
 expression = term >> *((’+’ >> term) | (’-’ >> term)),
 term = factor >> *((’*’ >> factor) | (’/’ >> factor)),
 factor = integer | group,
 group = ’(’ >> expression >> ’)’
);
 }

 subrule<0> expression;
 subrule<1> term;
 subrule<2> factor;
 subrule<3> group;

 rule<ScannerT> first;
 rule<ScannerT> const&
 start() const { return first; }
 };
 };

 A fully working example with semantic actions can be viewed here. This is part of the Spirit
distribution.

The subrule as an efficient version of the rule. Compiler optimizations such as aggressive inlining help
reduce the code size and increase performance significantly.

The subrule is not a panacea however. Subrules push the C++ compiler hard to its knees. For example,
current compilers have a limit on recursion depth that may not be exceeded. Don’t even think about
writing a full pascal grammar using subrules alone. A grammar using subrules is a single C++
expression. Current C++ compilers cannot handle very complex expressions very well. Finally, a plain
rule is still needed to act as place holder for subrules.

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/subrule_calc.cpp

The code above is a good example of the recommended way to use subrules. Notice the hierarchy. We
have a grammar that encapsulates the whole calculator. The start rule is a plain rule that holds the set
of subrules. The subrules in turn defines the actual details of the grammar.

 Template instantiation depth
Spirit pushes the C++ compiler hard. Current C++ compilers cannot handle
very complex heavily nested expressions very well. One restricting factor is
the typical compiler’s limit on template recursion depth. Some, but not all,
compilers allow this limit to be configured.
g++’s maximum can be set using a compiler flag: -ftemplate-depth. Set this
appropriately if you have a relatively complex grammar.
Microsoft Visual C++ can take greater than 1000 for both template class and
function instantiation depths. However, the linker chokes with deep template
function instantiation unless inline recursion depth is set using these pragmas:
#pragma inline_depth(255)
#pragma inline_recursion(on)
Perhaps this limitations no longer applies to more current versions of these
compilers. Be sure to check your compiler documentation.

This setup gives a good balance. The subrules do all the work. Each grammar will have only one rule:
first . The rule is used just to hold the subrules and make them visible to the grammar.

The subrule definition

Like the rule, the expression after assignment operator = defines the subrule:

 identifier = expression

Unlike rules, subrules may be defined only once. Redefining a subrule is illegal and will result to a
compile time assertion.

Separators [,]

While rules are terminated by the semicollon ’;’ . Subrules are not terminated but are separated by
the comma: ’,’ . Like Pascal statements, the last subrule in a group may not have a trailing comma.

 a = ch_p(’a’),
 b = ch_p(’b’),
 c = ch_p(’c’), // BAD, trailing comma

 a = ch_p(’a’),
 b = ch_p(’b’),
 c = ch_p(’c’) // OK

The start subrule

Unlike rules, parsing proceeds from the start subrule. The first (topmost) subrule in a group of
subrules is called the start subrule. In our example above, expression is the start subrule. When a
group of subrules is called forth, the start subrule expression is called first.

IDs

Each subrule has a corresponding ID; an integral constant that uniquely specifies the subrule. Our
example above has four subrules. They are declared as:

 subrule<0> expression;
 subrule<1> term;
 subrule<2> factor;
 subrule<3> group;

Aliases

It is possible to have subrules with similar IDs. A subrule with a similar ID to will be an alias of the
other. Both subrules may be used interchangeably.

 subrule<0> a;
 subrule<0> alias; // alias of a

Groups: scope and nesting

The scope of a subrule and its definition is the enclosing group, typically (and by convention) enclosed
inside the parentheses. IDs outside a scope are not directly visible. Inner subrule groups can be nested
by enclosing each sub-group inside another set of parentheses. Each group is unique and acts
independently. Consequently, while it may not be advisable to do so, a subrule in a group may share
the same ID as a subrule in another group since both groups are independent of each other.

 subrule<0> a;
 subrule<1> b;
 subrule<0> c;
 subrule<1> d;

 (// outer subrule group, scope of a and b
 a = ch_p(’a’),
 b =
 (// inner subrule group, scope of b and c
 c = ch_p(’c’),
 d = ch_p(’d’)
)
)

Subrule IDs need to be unique only within a group. A grammar is an implicit group. Furthermore,
even subrules in a grammar may have the same IDs without clashing if they are inside a group.
Subrules may be explicitly grouped using the parentheses. Parenthesized groups have unique scopes.
In the code above, the outer subrule group defines the subrules a and b while the inner subrule group
defines the subrules c and d. Notice that the definition of b is the inner subrule.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Semantic

Actions

Semantic actions have the form: expression[action]

Ultimately, after having defined our grammar and having generated a corresponding parser, we will
need to produce some output and do some work besides syntax analysis; unless, of course, what we
want is merely to check for the conformance of an input with our grammar, which is very seldom the
case. Semantic actions may be attached to any expression at any level within the parser hierarchy. An
action is a C/C++ function or function object that will be called if a match is found in the particular
context where it is attached. The action function serves as a hook into the parser and may be used to,
for example:

 Generate output from the parser (ASTs, for example)
 Report warnings or errors
 Manage symbol tables

Generic Semantic Actions (Transduction Interface)
A generic semantic action can be any free function or function object that is compatible with the
interface:

 void f(IteratorT first, IteratorT last);

where IteratorT is the type of iterator used, first points to the current input and last points to
one after the end of the input (identical to STL iterator ranges). A function object (functor) should
have a member operator() with the same signature as above:

 struct my_functor
 {
 void operator()(IteratorT first, IteratorT last) const;
 };

Iterators pointing to the matching portion of the input are passed into the function/functor.

In general, semantic actions accept the first-last iterator pair. This is the transduction interface. The
action functions or functors receive the unprocessed data representing the matching production
directly from the input. In many cases, this is sufficient. Examples are source to source translation,
pre-processing, etc.

Example:
 void
 my_action(char const* first, char const* last)
 {
 std::string str(first, last);

http://spirit.sf.net/

 std::cout << str << std::endl;
 }

 rule<> myrule = (a | b | *(c >> d))[&my_action];

The function my_action will be called whenever the expression (a | b | *(c >> d) matches
a portion of the input stream while parsing. Two iterators, first and last , are passed into the
function. These iterators point to the start and end, respectively, of the portion of input stream where
the match is found.

Const-ness:

With functors, take note that the operator() should be const . This implies that functors are
immutable. One may wish to have some member variables that are modified when the action gets
called. This is not a good idea. First of all, functors are preferably lightweight. Functors are passed
around a lot and it would incur a lot of overhead if the functors are heavily laden. Second, functors are
passed by value. Thus, the actual functor object that finally attaches to the parser, will surely not be
the original instance supplied by the client. What this means is that changes to a functor’s state will not
affect the original functor that the client passed in since they are distinct copies. If a functor needs to
update some state variables, which is often the case, it is better to use references to external data. The
following example shows how this can be done:

 struct my_functor
 {
 my_functor(std::string& str_)
 : str(str_) {}

 void
 operator()(IteratorT first, IteratorT last) const
 {
 str.assign_a(first, last);
 }

 std::string& str;
 };

Full Example:

Here now is our calculator enhanced with semantic actions:

 namespace
 {
 void do_int(char const* str, char const* end)
 {
 string s(str, end);
 cout << "PUSH(" << s << ’)’ << endl;
 }

 void do_add(char const*, char const*) { cout << "ADD\n"; }
 void do_subt(char const*, char const*) { cout << "SUBTRACT\n"; }
 void do_mult(char const*, char const*) { cout << "MULTIPLY\n"; }
 void do_div(char const*, char const*) { cout << "DIVIDE\n"; }
 void do_neg(char const*, char const*) { cout << "NEGATE\n"; }
 }

We augment our grammar with semantic actions:

 struct calculator : public grammar<calculator>
 {
 template <typename ScannerT>
 struct definition
 {
 definition(calculator const& self)
 {
 expression
 = term
 >> *((’+’ >> term)[&do_add]
 | (’-’ >> term)[&do_subt]
)
 ;

 term =
 factor
 >> *((’*’ >> factor)[&do_mult]
 | (’/’ >> factor)[&do_div]
)
 ;

 factor
 = lexeme_d[(+digit_p)[&do_int]]
 | ’(’ >> expression >> ’)’
 | (’-’ >> factor)[&do_neg]
 | (’+’ >> factor)
 ;
 }

 rule<ScannerT> expression, term, factor;

 rule<ScannerT> const&
 start() const { return expression; }
 };
 };

Feeding in the expression (-1 + 2) * (3 + -4) , for example, to the rule expression will
produce the expected output:

-12ADD3-4ADDMULT

which, by the way, is the Reverse Polish Notation (RPN) of the given expression, reminiscent of some
primitive calculators and the language Forth.

 View the complete source code here. This is part of the Spirit distribution.

Specialized Actions
In general, semantic actions accept the first-last iterator pair. There are situations though where we
might want to pass data in its processed form. A concrete example is the numeric parser. It is unwise
to pass unprocessed data to a semantic action attached to a numeric parser and just throw away what
has been parsed by the parser. We want to pass the actual parsed number.

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/calc_plain.cpp

The function and functor signature of a semantic action varies depending on the parser where it is
attached to. The following table lists the parsers that accept unique signatures.

 Unless explicitly stated in the documentation of a specific parser type,
parsers not included in the list by default expect the generic signature as
explained above.

Numeric Actions

Applies to:

 uint_p
 int_p
 ureal_p
 real_p

Signature for functions:

 void func(NumT val);

Signature for functors:

 struct ftor
 {
 void operator()(NumT val) const;
 };

Where NumT is any primitive numeric type such as int , long , float , double , etc., or a user
defined numeric type such as big_int. NumT is the same type used as template parameter to uint_p ,
int_p , ureal_p or real_p . The parsed number is passed into the function/functor.

Character Actions

Applies to:

 chlit, ch_p
 range, range_p
 anychar
 alnum, alpha
 cntrl, digit
 graph, lower
 print, punct
 space, upper
 xdigit

Signature for functions:

 void func(CharT ch);

Signature for functors:

 struct ftor
 {
 void operator()(CharT ch) const;
 };

Where CharT is the value_type of the iterator used in parsing. A char const* iterator for
example has a value_type of char . The matching character is passed into the function/functor.

Cascading Actions
Actions can be cascaded. Cascaded actions also inherit the function/functor interface of the original.
For example:

 uint_p[fa][fb][fc]

Here, the functors fa , fb and fc all expect the signature void operator()(unsigned n)
const .

Directives and Actions
Directives inherit the the function/functor interface of the subject it is enclosing. Example:

 as_lower_d[ch_p(’x’)][f]

Here, the functor f expects the signature void operator()(char ch) const , assuming that
the iterator used is a char const* .

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

In-depth:

The
Parser

What makes Spirit tick? Now on to some details... The parser class is the most fundamental entity in
the framework. A parser accepts a scanner comprised of a first-last iterator pair and returns a match
object as its result. The iterators delimit the data currently being parsed. The match object evaluates to
true if the parse succeeds, in which case the input is advanced accordingly. Each parser can represent a
specific pattern or algorithm, or it can be a more complex parser formed as a composition of other
parsers.

All parsers inherit from the base template class, parser:

template <typename DerivedT>struct parser{
 /*...*/

 DerivedT& derived();
 DerivedT const& derived() const;};

This class is a protocol base class for all parsers. The parser class does not really know how to parse
anything but instead relies on the template parameter DerivedT to do the actual parsing. This
technique is known as the "Curiously Recurring Template Pattern" in template meta-programming
circles. This inheritance strategy gives us the power of polymorphism without the virtual function
overhead. In essence this is a way to implement compile time polymorphism.

parser_category_t
Each derived parser has a typedef parser_category_t that defines its category. By default, if one
is not specified, it will inherit from the base parser class which typedefs its parser_category_t as
plain_parser_category . Some template classes are provided to distinguish different types of
parsers. The following categories are the most generic. More specific types may inherit from these.

Parser categories

plain_parser_category Your plain vanilla parser

binary_parser_category A parser that has subject a and b (e.g. alternative)

unary_parser_category A parser that has single subject (e.g. kleene star)

action_parser_category A parser with an attached semantic action

 struct plain_parser_category {};
 struct binary_parser_category : plain_parser_category {};
 struct unary_parser_category : plain_parser_category {};
 struct action_parser_category : unary_parser_category {};

http://spirit.sf.net/

embed_t
Each parser has a typedef embed_t . This typedef specifies how a parser is embedded in a composite.
By default, if one is not specified, the parser will be embedded by value. That is, a copy of the parser
is placed as a member variable of the composite. Most parsers are embedded by value. In certain
situations however, this is not desirable or possible. One particular example is the rule. The rule,
unlike other parsers is embedded by reference.

The match
The match holds the result of a parser. A match object evaluates to true when a succesful match is
found, otherwise false. The length of the match is the number of characters (or tokens) that is
successfully matched. This can be queried through its length() member function. A negative value
means that the match is unsucessful.

Each parser may have an associated attribute. This attribute is also returned back to the client on a
successful parse through the match object. We can get this attribute via the match’s value()
member function. Be warned though that the match’s attribute may be invalid, in which case, getting
the attribute will result in an exception. The member function has_valid_attribute() can be
queried to know if it is safe to get the match’s attribute. The attribute may be set anytime through the
member function value(v) where v is the new attribute value.
A match attribute is valid:

on a successful match
when its value is set through the value(val) member function
if it is assigned or copied from a compatible match object (e.g. match<double> from
match<int>) with a valid attribute. A match object A is compatible with another match object
B if the attribute type of A can be assigned from the attribute type of B (i.e. a = b; must
compile).

The match attribute is undefined:

on an unsuccessful match
when an attempt to copy or assign from another match object with an incompatible attribute type
(e.g. match<std::string> from match<int>).

The match class:
 template <typename T> class match { public:

 /*...*/
 typedef T attr_t; operator safe_bool() const; // convertible to a bool
 int length() const;
 bool has_valid_attribute() const;
 void value(T const&) const;
 T const& value(); };

match_result
It has been mentioned repeatedly that the parser returns a match object as its result. This is a
simplification. Actually, for the sake of genericity, parsers are really not hard-coded to return a match
object. More accurately, a parser returns an object that adheres to a conceptual interface, of which the

match is an example. Nevertheless, we shall call the result type of a parser a match object regardless if
it is actually a match class, a derivative or a totally unrelated type.

 Meta-functions
What are meta-functions? We all know how functions look like. In simplest
terms, a function accepts some arguments and returns a result. Here is the
function we all love so much:
int identity_func(int arg)
{ return arg; } // return the argument arg
Meta-functions are essentially the same. These beasts also accept arguments
and return a result. However, while functions work at runtime on values,
meta-functions work at compile time on types (or constants, but we shall deal
only with types). The meta-function is a template class (or struct). The
template parameters are the arguments to the meta-function and a typedef
within the class is the meta-function’s return type. Here is the corresponding
meta-function:
template <typename ArgT>
struct identity_meta_func
{ typedef ArgT type; } // return the argument ArgT
The meta-function above is invoked as:
typename identity_meta_func<ArgT>::type
By convention, meta-functions return the result through the typedef type .
Take note that typename is only required within templates.

The actual match type used by the parser depends on two types: the parser’s attribute type and the
scanner type. match_result is the meta-function that returns the desired match type given an
attribute type and a scanner type.

Usage:

 typename match_result<ScannerT, T>::type

The meta-function basically answers the question "given a scanner type ScannerT and an attribute

type T, what is the desired match type?" [typename is only required within templates].

The parse member function
Concrete sub-classes inheriting from parser must have a corresponding member function
parse(...) compatible with the conceptual Interface:

 template <typename ScannerT>
 RT
 parse(ScannerT const& scan) const;

where RT is the desired return type of the parser.

The parser result
Concrete sub-classes inheriting from parser in most cases need to have a nested meta-function
result that returns the result type of the parser’s parse member function, given a scanner type. The
meta-function has the form:

 template <typename ScannerT>
 struct result
 {
 typedef RT type;
 };

where RT is the desired return type of the parser. This is usually, but not always, dependent on the
template parameter ScannerT . For example, given an attribute type int , we can use the
match_result metafunction:

 template <typename ScannerT>
 struct result
 {
 typedef typename match_result<ScannerT, int>::type type;
 };

If a parser does not supply a result metafunction, a default is provided by the base parser class. The
default is declared as:

 template <typename ScannerT>
 struct result
 {
 typedef typename match_result<ScannerT, nil_t>::type type;
 };

Without a result metafunction, notice that the parser’s default attribute is nil_t (i.e. the parser has no
attribute).

parser_result
Given a a scanner type ScannerT and a parser type ParserT , what will be the actual result of the
parser? The answer to this question is provided to by the parser_result meta-function.

Usage:

 typename parser_result<ParserT, ScannerT>::type

In general, the meta-function just forwards the invocation to the parser’s result meta-function:

 template <typename ParserT, typename ScannerT>
 struct parser_result
 {
 typedef typename ParserT::template result<ScannerT>::type type;
 };

This is similar to a global function calling a member function. Most of the time, the usage above is
equivalent to:

 typename ParserT::template result<ScannerT>::type

Yet, this should not be relied upon to be true all the time because the parser_result metafunction might
be specialized for specific parser and/or scanner types.

The parser_result metafunction makes the signature of the required parse member function almost
canonical:

 template <typename ScannerT>
 typename parser_result<self_t, ScannerT>::type parse(ScannerT const& scan) const;

where self_t is a typedef to the parser.

parser class declaration
 template <typename DerivedT>
 struct parser
 {
 typedef DerivedT embed_t;
 typedef DerivedT derived_t;
 typedef plain_parser_category parser_category_t;

 template <typename ScannerT>
 struct result
 {
 typedef typename match_result<ScannerT, nil_t>::type type;
 };

 DerivedT& derived();
 DerivedT const& derived() const;

 template <typename ActionT>
 action<DerivedT, ActionT>
 operator[](ActionT const& actor) const;
 };

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

In-depth:

The
Scanner

Basic Scanner API
class scanner

value_t

typedef:
The
value
type of
the
scanner’s
iterator

ref_t

typedef:
The
reference
type of
the
scanner’s
iterator

bool
at_end()
const

Returns
true if the
input is
exhausted

value_t
operator*()
const

Dereference/get
a value_t
from the input

scanner
const&
operator++()

move
the
scanner
forward

IteratorT&
first

The
iterator
pointing
to the
current
input
position.
Held by
reference

IteratorT
const last

The
iterator
pointing
to the
end of
the input.
Held by
value

The basic behavior of the scanner is handled by policies. The actual execution of the scanner’s public
member functions listed in the table above is implemented by the scanner policies.

Three sets of policies govern the behavior of the scanner. These policies make it possible to extend
Spirit non-intrusively. The scanner policies allow the core-functionality to be extended without
requiring any potentially destabilizing changes to the code. A library writer might provide her own
policies that override the ones that are already in place to fine tune the parsing process to fit her own
needs. Layers above the core might also want to take advantage of this policy based machanism.
Abstract syntax tree generation, debuggers and lexers come to mind.

There are three sets of policies that govern:

Iteration and filtering
Recognition and matching
Handling semantic actions

http://spirit.sf.net/

iteration_policy
Here are the default policies that govern iteration and filtering:

 struct iteration_policy
 {
 template <typename ScannerT>
 void
 advance(ScannerT const& scan) const
 { ++scan.first; }

 template <typename ScannerT>
 bool at_end(ScannerT const& scan) const
 { return scan.first == scan.last; }

 template <typename T>
 T filter(T ch) const
 { return ch; }

 template <typename ScannerT>
 typename ScannerT::ref_t
 get(ScannerT const& scan) const
 { return *scan.first; }
 };

Iteration and filtering policies

advance

Move
the
iterator
forward

at_end

Return true
if the input
is
exhausted

filter

Filter a
character
read from
the input

get

Read a
character
from the
input

The following code snippet demonstrates a simple policy that converts all characters to lower case:

 struct inhibit_case_iteration_policy : public iteration_policy
 {
 template <typename CharT>
 CharT filter(CharT ch) const
 {
 return std::tolower(ch);
 }
 };

match_policy
Here are the default policies that govern recognition and matching:

 struct match_policy
 {
 template <typename T>
 struct result {
 typedef match<T> type; };

 const match<nil_t>
 no_match() const
 { return match<nil_t>(); }

 const match<nil_t>
 empty_match() const
 { return match<nil_t>(0, nil_t());
 }

 template <typename AttrT, typename IteratorT>
 match<AttrT>
 create_match(
 std::size_t length,
 AttrT const& val,
 IteratorT const& /*first*/,
 IteratorT const& /*last*/) const
 { return match<AttrT>(length, val); }

 template <typename MatchT, typename IteratorT>
 void
 group_match(
 MatchT& /*m*/,
 parser_id const& /*id*/,
 IteratorT const& /*first*/,
 IteratorT const& /*last*/) const {}

 template <typename Match1T, typename Match2T>
 void
 concat_match(Match1T& l, Match2T const& r) const
 { l.concat(r);
 }
 };

Recognition and matching

result

A
metafunction
that returns a
match type
given an
attribute
type (see
In-depth:
The Parser)

no_match

Create
a
failed
match

empty_match

Create an
empty
match.
An empty
match is a
successful
epsilon
match
(matching
length ==
0)

create_match

Create a
match
given the
matching
length,
an
attribute
and the
iterator
pair
pointing
to the
matching
portion
of the
input

group_match

For non
terminals
such as
rules, this
is called
after a
successful
match has
been
made to
allow post
processing

concat_match
Concatenate
two match
objects

action_policy
The action policy has only one function for handling semantic actions:

 struct action_policy
 {
 template <typename ActorT, typename AttrT, typename IteratorT>
 void
 do_action(
 ActorT const& actor,
 AttrT const& val,
 IteratorT const& first,
 IteratorT const& last) const;
 };

The default action policy forwards to:

 actor(first, last);

If the attribute val is of type nil_t. Otherwise:

 actor(val);

scanner_policies mixer

The class scanner_policies combines the three scanner policy classes above into one:

 template <
 typename IterationPolicyT = iteration_policy,
 typename MatchPolicyT = match_policy,
 typename ActionPolicyT = action_policy>
 struct scanner_policies;

This mixer class inherits from all the three policies. This scanner_policies class is then used to
parameterize the scanner:

 template <
 typename IteratorT = char const*,
 typename PoliciesT = scanner_policies<> >
 class scanner;

The scanner in turn inherits from the PoliciesT.

Rebinding Policies

The scanner can be made to rebind to a different set of policies anytime. It has a member function
change_policies(new_policies) . Given a new set of policies, this member function creates
a new scanner with the new set of policies. The result type of the rebound scanner can be can be
obtained by calling the metafunction:

 rebind_scanner_policies<ScannerT, PoliciesT>::type

Rebinding Iterators

The scanner can also be made to rebind to a different iterator type anytime. It has a member function
change_iterator(first, last) . Given a new pair of iterator of type different from the ones
held by the scanner, this member function creates a new scanner with the new pair of iterators. The
result type of the rebound scanner can be can be obtained by calling the metafunction:

 rebind_scanner_iterator<ScannerT, IteratorT>::type

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

In-depth:

The
Parser
Context

Overview
The parser’s context is yet another concept. An instance (object) of the context class is created
before a non-terminal starts parsing and is destructed after parsing has concluded. A non-terminal is
either a rule , a subrule , or a grammar . Non-terminals have a ContextT template parameter.
The following pseudo code depicts what’s happening when a non-terminal is invoked:

 return_type
 a_non_terminal::parse(ScannerT const& scan)
 {
 context_t ctx(/**/);
 ctx.pre_parse(/**/);

 // main parse code of the non-terminal here...

 return ctx.post_parse(/**/);
 }

The context is provided for extensibility. Its main purpose is to expose the start and end of the
non-terminal’s parse member function to accommodate external hooks. We can extend the
non-terminal in a multitude of ways by writing specialized context classes, without modifying the
class itself. For example, we can make the non-terminal emit debug diagnostics information by writing
a context class that prints out the current state of the scanner at each point in the parse traversal where
the non-terminal is invoked.

Example of a parser context that prints out debug information:

 pre_parse : non-terminal XXX is entered. The current state of the input
 is "hello world, this is a test"

 post_parse : non-terminal XXX has concluded, the non-terminal matched "hello world".
 The current state of the input is ", this is a test"

Most of the time, the context will be invisible from the user’s view. In general, clients of the
framework need not deal directly nor even know about contexts. Power users, however, might find
some use of contexts. Thus, this is part of the public API. Other parts of the framework in other layers
above the core take advantage of the context to extend non-terminals.

http://spirit.sf.net/

Class declaration
The parser_context class is the default context class that the non-terminal uses.

 template <typename AttrT = nil_t> struct parser_context {
 typedef AttrT attr_t;
 typedef implementation_defined base_t;
 typedef parser_context_linker<parser_context<AttrT> > context_linker_t;

 template <typename ParserT>
 parser_context(ParserT const& p) {}

 template <typename ParserT, typename ScannerT>
 void
 pre_parse(ParserT const& p, ScannerT const& scan) {}

 template <typename ResultT, typename ParserT, typename ScannerT>
 ResultT&
 post_parse(ResultT& hit, ParserT const& p, ScannerT const& scan)
 { return hit; }
 };

The non-terminal’s ContextT template parameter is a concept. The parser_context class above
is the simplest model of this concept. The default parser_context ’s pre_parse and
post_parse member functions are simply no-ops. You can think of the non-terminal’s ContextT
template parameter as the policy that governs how the non-terminal will behave before and after
parsing. The client can supply her own context policy by passing a user defined context template
parameter to a particular non-terminal.

Parser Context Policies

attr_t
typedef: the attribute type of the
non-terminal. See the match.

base_t

typedef: the
base class of
the
non-terminal.
The
non-terminal
inherits from
this class.

context_linker_t

typedef: this class type opens up
the possibility for Spirit to plug in
additional functionality into the
non-terminal parse function or even
bypass the given context. This
should simply be typedefed to
parser_context_linker<T>
where T is the type of the user
defined context class.

constructor

Construct the
context. The
non-terminal
is passed as
an argument
to the
constructor.

pre_parse
Do something prior to parsing. The
non-terminal and the current
scanner are passed as arguments.

post_parse

Do something after parsing. This is
called regardless of the parse result.
A reference to the parser’s result is
passed in. The context has the
power to modify this. The
non-terminal and the current
scanner are also passed as
arguments.

The base_t deserves further explanation. Here goes... The context is strictly a stack based class. It is
created before parsing and destructed after the non-terminal’s parse member function exits.
Sometimes, we need auxiliary data that exists throughout the full lifetime of the non-terminal host.
Since the non-terminal inherits from the context’s base_t , the context itself, when created, gets
access to this upon construction when the non-terminal is passed as an argument to the constructor.
Ditto on pre_parse and post_parse .

The non-terminal inherits from the context’s base_t typedef. The sole requirement is that it is a class
that is default constructible. The copy-construction and assignment requirements depends on the host.
If the host requires it, so does the context’s base_t . In general, it wouldn’t hurt to provide these
basic requirements.

Non-default Attribute Type
Right out of the box, the parser_context class may be paramaterized with a type other than the
default nil_t . The following code demonstrates the usage of the parser_context template with
an explicit argument to declare rules with match results different from nil_t :

 rule<parser_context<int> > int_rule = int_p;

 parse(
 "123",
 // Using a returned value in the semantic action
 int_rule[cout << arg1 << endl]
);

In this example, int_rule is declared with int attribute type. Hence, the int_rule variable can
hold any parser which returns an int value (for example int_p or bin_p). The important thing to
note is that we can use the returned value in the semantic action bound to the int_rule .

 See parser_context.cpp in the examples. This is part of the Spirit distribution.

An Example
As an example let’s have a look at the Spirit parser context, which inserts some debug output to the
parsing process:

 template<typename ContextT>
 struct parser_context_linker : public ContextT
 {
 typedef ContextT base_t;

 template <typename ParserT>
 parser_context_linker(ParserT const& p)
 : ContextT(p) {}

 // This is called just before parsing of this non-terminal
 template <typename ParserT, typename ScannerT>
 void pre_parse(ParserT const& p, ScannerT &scan)
 {
 // call the pre_parse function of the base class
 this->base_t::pre_parse(p, scan);
#if BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES
 if (trace_parser(p.derived())) {
 // print out pre parse info
 impl::print_node_info(
 false, scan.get_level(), false,
 parser_name(p.derived()),
 scan.first, scan.last);
 }
 scan.get_level()++; // increase nesting level
#endif
 }
 // This is called just after parsing of the current non-terminal
 template <typename ResultT, typename ParserT, typename ScannerT>
 ResultT& post_parse(
 ResultT& hit, ParserT const& p, ScannerT& scan)
 {
#if BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES
 --scan.get_level(); // decrease nesting level
 if (trace_parser(p.derived())) {
 impl::print_node_info(
 hit, scan.get_level(), true,
 parser_name(p.derived()),
 scan.first, scan.last);
 }
#endif

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/parser_context.cpp

 // call the post_parse function of the base class
 return this->base_t::post_parse(hit, p, scan);
 }
 };

During debugging (BOOST_SPIRIT_DEBUG is defined) this parser context is injected into the
derivation hierarchy of the current parser_context , which was originally specified to be used for
a concrete parser, so the template parameter ContextT represents the original parser_context .
For this reason the pre_parse and post_parse functions call it’s counterparts from the base
class. Additionally these functions call a special print_node_info function, which does the actual
output of the parser state info of the current non-terminal. For more info about the printed information,
you may want to have a look at the topic Debugging.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Predefined

Actors

Actors
The framework has a number of predefined semantic action functors. Experience shows that these
functors are so often used that they were included as part of the core framework to spare the user from
having to reinvent the same functionality over and over again.

Quick example: assign_a actor
 int i, j;
 std::string s;
 r = int_p[assign_a(i)] >> (+alpha_p)[assign_a(s)] >> int_p[assign_a(j,i)];

Given an input 123456 Hello 789 ,

1. assign_a(i) will extract the number 123456 and assign it to i ,
2. assign_a(s) will extract the string "Hello" and assign it to s ,
3. assign_a(j,i) will assign i to j, j=i, without using the parse result.

Technically, the expression assign_a(v) is a template function that generates a semantic action. In
fact, actor instances are not created directly since they usually involve a number of template
parameters. Instead generator functions ("helper functions") are provided to generate actors from their
arguments. All helper functions have the "_a" suffix. For example, append_actor is created using
the append_a function.

The semantic action generated is polymorphic and should work with any type as long as it is
compatible with the arguments received from the parser. It might not be obvious, but a string can
accept the iterator first and last arguments that are passed into a generic semantic action (see above).
In fact, any STL container that has an assign(first, last) member function can be used.

Actors summary
Below are tables summarizing the "built-in" actors with the conventions given below.

ref is a reference to an object stored in a policy holder actor
value_ref and key_ref are const references stored in a policy holder actor
value is the parse result. This could be the result for the single argument () operator or the two
argument () operator
vt stands for the value_type type: type& ref; // vt is type::value_type .

Note that examples are provided after the tables.

Unary operator actors ++ref increment_a(ref) --ref decrement_a(ref)

http://spirit.sf.net/

Assign actors

ref =
value

assign_a(ref)
ref =
value_ref

assign_a(ref,
value_ref)

Container actors

ref.push_back(value) push_back_a(ref) ref.push_back(value_ref)
push_back_a(ref,
value_ref)

ref.push_front(value) push_front_a(ref) ref.push_front(value_ref)
push_front_a(ref,
value_ref)

ref.clear() clear_a(ref)

Associative container actors
ref.insert(vt(value,
value_ref))

insert_key_a(ref,
value_ref)

ref.insert(vt(key_ref,value_ref))
insert_at_a(ref,
key_ref_,
value_ref)

ref.insert(vt(key_ref,value))
insert_at_a(ref,
key_ref)

ref[value]
=
value_ref

assign_key_a(ref,
value_ref)

ref.erase(ref,value) erase_a(ref) ref.erase(ref,key_ref)
erase_a(ref,
key_ref)

Miscellanous actors

swaps aref and bref swap_a(aref, bref)

Include Files

The header files for the predefined actors are located in boost/spirit/actor . The file
actors.hpp contains all the includes for all the actors. You may include just the specific header
files that you need. The list below enumerates the header files.

 #include <boost/spirit/actor/assign_actor.hpp> #include <boost/spirit/actor/assign_key.hpp>
 #include <boost/spirit/actor/clear_actor.hpp>
 #include <boost/spirit/actor/decrement_actor.hpp>
 #include <boost/spirit/actor/erase_actor.hpp> #include <boost/spirit/actor/increment_actor.hpp> #include <boost/spirit/actor/insert_key_actor.hpp>
 #include <boost/spirit/actor/insert_at_actor.hpp>
 #include <boost/spirit/actor/push_back_actor.hpp>
 #include <boost/spirit/actor/push_front_actor.hpp>
 #include <boost/spirit/actor/swap_actor.hpp>

Examples

Increment a value

Suppose that your input string is

 1,2,-3,4,...

and we want to count the number of ints. The actor increment_a applies ++ to its reference:

 int count = 0;
 rule<> r = list_p.direct(int_p[increment_a(count)], ch_p(’,’));

Append values to a vector (or other container)

Here, you want to fill a vector<int> with the numbers. The actor push_back_a can be used to
insert the integers at the back of the vector:

 vector<int> v;
 rule<> r = list_p.direct(int_p[push_back_a(v)], ch_p(’,’));

insert key-value pairs into a map

Suppose that your input string is

 (1,2) (3,4) ...

and you want to parse the pair into a map<int,int> . assign_a can be used to store key and
values in a temporary key variable, while insert_a is used to insert it into the map:

 map<int, int>::value_type k;
 map<int, int> m;

 rule<> pair = confix_p(
 ’(’ , int_p[assign_a(k.first)] >> ’,’ >> int_p[assign_a(k.second)]
 , ’)’
) [insert_at_a(m, k)]
 ;

Policy holder actors and policy actions
The action takes place through a call to the () operator: single argument () operator call for
character parsers and two argument (first, last) call for phrase parsers. Actors should implement at
least one of the two () operator.

A lot of actors need to store reference to one or more objects. For example, actions on container need
to store a reference to the container.

Therefore, this kind of actor have been broken down into a) an action policy that does the action (act
member function), b) policy holder actor that stores the references and feeds the act member function.

Policy holder actors

The available policy holders are enumerated below.

Policy holders

Name
Stored
variables

Act
signature

ref_actor
1
reference

act(ref) ref_value_actor
1
ref

act(ref,
value) or
act(ref,
first,
last)

ref_const_ref_actor

1 ref
and
1
const
ref

act(ref,
const_ref)

ref_const_ref_value_actor
1
ref

act(ref,
value) or
act(ref,
first,
last)

ref_const_ref_const_ref_actor

1
ref,
2
const
ref

act(ref,
const_ref1,
const_ref2)

Include Files

The predefined policy header files are located in boost/spirit/actor :

 #include <boost/spirit/actor/ref_actor.hpp> #include <boost/spirit/actor/ref_value_actor.hpp>
 #include <boost/spirit/actor/ref_const_ref.hpp>
 #include <boost/spirit/actor/ref_const_ref_value.hpp>
 #include <boost/spirit/actor/ref_const_ref_value.hpp>
 #include <boost/spirit/actor/ref_const_ref_const_ref.hpp>

Holder naming convention

Policy holder have the following naming convention:

 <member>_ >> *<member> >> !value >> actor

where member is the action policy member which can be of type:

ref, a reference
const_ref, a const reference
value, by value
empty, no stored members

and value states if the policy uses the parse result or not.

Holder example: ref_actor class
 // this is the building block for action that
 // take a reference and the parse result

 template<
 typename T, // reference type typename ActionT // action policy
 >
 class ref_value_actor : public ActionT
 { public:

 explicit ref_value_actor(T& ref_)
 : ref(ref_){}

 template<typename T2>
 void operator()(T2 const& val) const
 {
 act(ref, val); // defined in ActionT }

 template<typename IteratorT>
 void operator()(
 IteratorT const& first,
 IteratorT const& last) const
 {
 act(ref,first,last); // defined in ActionT }

 private:
 T& ref;
 };

Actor example: assign_actor
 // assign_action assigns the parse result to the reference

 struct assign_action
 {
 template<
 typename T,
 typename ValueT
 >
 void act(T& ref, ValueT const& value) const
 {
 ref = value;
 }

 template<
 typename T,
 typename IteratorT
 >
 void act(

 T& ref,
 IteratorT const& first,
 IteratorT const& last) const
 {
 typedef typename T::value_type value_type;
 value_type vt(first, last);
 ref = vt;
 }
 };

Helper function example: assign_a function
 // assign_a is a polymorphic helper function that generators an
 // assign_actor based on ref_value_actor, assign_action and the
 // type of its argument.

 template<typename T>
 inline ref_value_actor<T, assign_action> assign_a(T& ref)
 {
 return ref_value_actor<T, assign_action>(ref);
 }

Copyright © 2003 Jonathan de Halleux

Copyright © 2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Parametric

Parsers

We already have a hint of the dynamic nature of the Spirit framework. This capability is fundamental
to Spirit. Dynamic parsing is a very powerful concept. We shall take this concept further through
run-time parametric parsers. We are able to handle parsing tasks that are impossible to do with any
EBNF syntax alone.

A Little Secret
A little critter called boost::ref lurking in the boost distribution is quite powerful beast when used
with Spirit’s primitive parsers. We are used to seeing the Spirit primitive parsers created with string or
character literals such as:

 ch_p(’A’)
 range_p(’A’, ’Z’)
 str_p("Hello World")

str_p has a second form that accepts two iterators over the string:

 char const* first = "My oh my";
 char const* last = first + std::strlen(first);

 str_p(first, last)

What is not obvious is that we can use boost::ref as well:

 char ch = ’A’;
 char from = ’A’;
 char to = ’Z’;

 ch_p(boost::ref(ch))
 range_p(boost::ref(from), boost::ref(to))

When boost::ref is used, the actual parameters to ch_p and range_p are held by reference.
This means that we can change the values of ch , from and to anytime and the corresponding ch_p
and range_p parser will follow their dynamic values. Of course, since they are held by reference,
you must make sure that the referenced object is not destructed while parsing.

What about str_p ?

While the first form of str_p (the single argument form) is reserved for null terminated string
constants, the second form (the two argument first/last iterator form) may be used:

 char const* first = "My oh my";
 char const* last = first + std::strlen(first);

 str_p(boost::ref(first), boost::ref(last))

http://spirit.sf.net/

 Hey, don’t forget chseq_p . All these apply to this seldom used primitive
as well.

Functional Parametric Primitives
 #include <boost/spirit/attribute/parametric.hpp>

Taking this further, Spirit includes functional versions of the primitives. Rather than taking in
characters, strings or references to characters and strings (using boost::ref), the functional versions
take in functions or functors.

f_chlit and f_ch_p

The functional version of chlit . This parser takes in a function or functor (function object). The
function is expected to have an interface compatible with:

 CharT func()

where CharT is the character type (e.g. char , int , wchar_t).

The functor is expected to have an interface compatible with:

 struct functor
 {
 CharT operator()() const;
 };

where CharT is the character type (e.g. char , int , wchar_t).

Here’s a contrived example:

 struct X
 {
 char operator()() const
 {
 return ’X’; }
 };

Now we can use X to create our f_chlit parser:

 f_ch_p(X())

f_range and f_range_p

The functional version of range . This parser takes in a function or functor compatible with the
interfaces above. The difference is that f_range (and f_range_p) expects two functors. One for
the start and one for the end of the range.

f_chseq and f_chseq_p

The functional version of chseq . This parser takes in two functions or functors. One for the begin
iterator and one for the end iterator. The function is expected to have an interface compatible with:

 IteratorT func()

where IteratorT is the iterator type (e.g. char const* , wchar_t const*).

The functor is expected to have an interface compatible with:

 struct functor
 {
 IteratorT operator()() const;
 };

where IteratorT is the iterator type (e.g. char const* , wchar_t const*).

f_strlit and f_str_p

The functional version of strlit . This parser takes in two functions or functors compatible with the
interfaces that f_chseq expects.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Functional

If you look more closely, you’ll notice that Spirit is all about composition of parser functions. A
parser is just a function that accepts a scanner and returns a match. Parser functions are composed to
form increasingly complex higher order forms. Notice too that the parser, albeit an object, is
immutable and constant. All primitive and composite parser objects are const . The parse member
function is even declared as const :

 template <typename ScannerT>
 typename parser_result<self_t, ScannerT>::type
 parse(ScannerT const& scan) const;

In all accounts, this looks and feels a lot like Functional Programming. And indeed it is. Spirit is by
all means an application of Functional programming in the imperative C++ domain. In Haskell, for
example, there is what are called parser combinators which are strikingly similar to the approach taken
by Spirit- parser functions which are composed using various operators to create higher order parser
functions that model a top-down recursive descent parser. Those smart Haskell folks have been doing
this way before Spirit.

Functional style programming (or FP) libraries are gaining momentum in the C++ community.
Certainly, we’ll see more of FP in Spirit now and in the future. Actually, if one looks more closely,
even the C++ standard library has an FP flavor. Stealthily beneath the core of the standard C++
library, a closer look into STL gives us a glimpse of a truly FP paradigm already in place. It is obvious
that the authors of STL know and practice FP.

Semantic Actions in the FP Perspective

STL style FP

A more obvious application of STL-style FP in Spirit is the semantic action. What is STL-style FP? It
is primarily the use of functors that can be composed to form higher order functors.

 Functors
A Function Object, or Functor is simply any object that can be called as if it is
a function. An ordinary function is a function object, and so is a function
pointer; more generally, so is an object of a class that defines operator().

This STL-style FP can be seen everywhere these days. The following example is taken from SGI’s
Standard Template Library Programmer’s Guide:

 // Computes sin(x)/(x + DBL_MIN) for each element of a range.

 transform(first, last, first,
 compose2(divides<double>(),
 ptr_fun(sin),
 bind2nd(plus<double>(), DBL_MIN)));

http://spirit.sf.net/
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/

Really, this is just currying in FP terminology.

 Currying
What is "currying", and where does it come from?
Currying has its origins in the mathematical study of functions. It was
observed by Frege in 1893 that it suffices to restrict attention to functions of a
single argument. For example, for any two parameter function f(x,y) , there
is a one parameter function f’ such that f’(x) is a function that can be
applied to y to give (f’(x))(y) = f (x,y) . This corresponds to the
well known fact that the sets (AxB -> C) and (A -> (B -> C)) are
isomorphic, where "x" is cartesian product and "->" is function space. In
functional programming, function application is denoted by juxtaposition, and
assumed to associate to the left, so that the equation above becomes f’ x y
= f(x,y) .

In the context of Spirit, the same FP style functor composition may be applied to semantic actions.
full_calc.cpp is a good example. Here’s a snippet from that sample:

 expression =
 term
 >> *((’+’ >> term)[make_op(plus<long>(), self.eval)]
 | (’-’ >> term)[make_op(minus<long>(), self.eval)]
)
 ;

 The full source code can be viewed here. This is part of the Spirit distribution.

Boost style FP

Boost takes the FP paradigm further. There are libraries in boost that focus specifically on Function
objects and higher-order programming.

Boost FP libraries

bind
and
mem_fn

Generalized binders for
function/object/pointers
and member functions,
from Peter Dimov

compose

Functional
composition
adapters for
the STL,
from
Nicolai
Josuttis

function

Function
object
wrappers
for
deferred
calls or
callbacks,
from
Doug
Gregor

functional

Enhanced
function
object
adaptors,
from
Mark
Rodgers

lambda

Define
small
unnamed
function
objects
at the
actual
call site,
and
more,
from
Jaakko
Järvi and
Gary
Powell

ref

A utility
library for
passing
references
to generic
functions,
from
Jaako
Järvi,
Peter
Dimov,
Doug
Gregor,
and Dave
Abrahams

The following is an example that uses boost Bind to use a member function as a Spirit semantic
action. You can see this example in full in the file bind.cpp.

 class list_parser
 {
 public:

 typedef list_parser self_t;

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/full_calc.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/full_calc.cpp
http://www.boost.org/libs/bind/bind.html
http://www.boost.org/libs/bind/mem_fn.html
http://www.boost.org/libs/compose/index.htm
http://www.boost.org/libs/function/index.html
http://www.boost.org/libs/functional/index.html
http://www.boost.org/libs/lambda/index.html
http://www.boost.org/libs/bind/ref.html
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/bind.cpp

 bool
 parse(char const* str)
 {
 return spirit::parse(str,

 // Begin grammar
 (
 real_p
 [
 bind(&self_t::add, this, _1)
]

 >> *(’,’
 >> real_p
 [
 bind(&self_t::add, this, _1)
]
)
)
 ,
 // End grammar

 space_p).full;
 }

 void
 add(double n)
 {
 v.push_back(n);
 }

 vector<double> v;
 };

 The full source code can be viewed here. This is part of the Spirit distribution.

This parser parses a comma separated list of real numbers and stores them in a vector<double>.
Boost.bind creates a Spirit conforming semantic action from the list_parser ’s member function
add .

Lambda and Phoenix

There’s a library, authored by yours truly, named Phoenix. While this is not officially part of the Spirit
distribution, this library has been used extensively to experiment on advanced FP techniques in C++.
This library is highly influenced by FC++ and boost Lambda (BLL).

 BLL
In as much as Phoenix is influenced by boost Lambda (BLL), Phoenix
innovations such as local variables, local functions and adaptable closures, in
turn influenced BLL. Currently, BLL is very similar to Phoenix. Most
importantly, BLL incorporated Phoenix’s adaptable closures. In the future,
Spirit will fully support BLL.

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/bind.cpp
http://www.cc.gatech.edu/%7Eyannis/fc%2B%2B/
http://www.boost.org/libs/lambda/index.html
http://www.boost.org/libs/lambda/index.html

Phoenix allows one to write semantic actions inline in C++ through lambda (an unnamed function)
expressions. Here’s a snippet from the phoenix_calc.cpp example:

 expression
 = term[expression.val = arg1]
 >> *((’+’ >> term[expression.val += arg1])
 | (’-’ >> term[expression.val -= arg1])
)
 ;

 term
 = factor[term.val = arg1]
 >> *((’*’ >> factor[term.val *= arg1])
 | (’/’ >> factor[term.val /= arg1])
)
 ;

 factor
 = ureal_p[factor.val = arg1]
 | ’(’ >> expression[factor.val = arg1] >> ’)’
 | (’-’ >> factor[factor.val = -arg1])
 | (’+’ >> factor[factor.val = arg1])
 ;

 The full source code can be viewed here. This is part of the Spirit distribution.

You do not have to worry about the details for now. There is a lot going on here that needs to be
explained. The succeeding chapters will be enlightening.

Notice the use of lambda expressions such as:

 expression.val += arg1

 Lambda Expressions?
Lambda expressions are actually unnamed partially applied functions where
placeholders (e.g. arg1, arg2) are provided in place of some of the arguments.
The reason this is called a lambda expression is that traditionally, such

placeholders are written using the Greek letter lambda .

where expression.val is a closure variable of the expression rule (see Closures). arg1 is a
placeholder for the first argument that the semantic action will receive (see Phoenix Place-holders). In
Boost.Lambda (BLL), this corresponds to _1 .

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/phoenix_calc.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/phoenix_calc.cpp

Phoenix

v1.2.1

Table of contents

Preface

Introduction

Quick start

Basic Concepts

Architecture

Lazy functions

Place holders

Polymorphic functions

Organization

Actors

Primitives

Arguments

Values

Variables

Composites

Functions

Operators

Statements

Binders

Adaptable closures

Lazy Construction and Conversions

Efficiency

Inside Phoenix

Tuples

Actors revisited

Composites revisited

Operators revisited

http://spirit.sf.net/

Interfacing

Wrap up

References

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Preface

Functional programming is so called because a program consists entirely of functions. The main
program itself is written as a function which receives the program’s input as its argument and
delivers the program’s output as its result. Typically the main function is defined in terms of other
functions, which in turn are defined in terms of still more functions until at the bottom level the
functions are language primitives.

John Hughes-- Why Functional Programming Matters

Influences and Related Work
The design and implementation of Phoenix is highly influenced by FC++ by Yannis Smaragdakis and
Brian McNamara and the (Boost Lambda Library) BLL by Jaakko Järvi and Gary Powell. Phoenix is a
blend of FC++ and BLL using the implementation techniques used in the Spirit inline parser.

Is Phoenix better than FC++ or BLL? Well, there are concepts found in Phoenix that are not found in
either library. FC++ has rank-2 polymorphic functions (FC++ jargon) which Phoenix also has, BLL
has syntactic sugared operators which FC++ lack, that Phoenix also has.

Phoenix inherits FC++’s rank-2 polymorphic functions. Rank-2 polymorphic functions are higher
order functions that can accept polymorphic arguments. FC++ is the first library to enable higher order
polymorphic functions. Before FC++, polymorphic functions couldn’t be used as arguments to other
functions.

What really motivated the author to write Phoenix is the lack of access to a true stack-frame with local
variables (closures) in all C++ FP libraries in existence so far. When emulating functions in the form
of functors, the most basic ingredient is missing: local variables and a stack. Current FP libraries
emulate closures using state variables in functors. In more evolved FP applications, this "poor man’s
closure" is simply inadequate.

Perhaps BLL does not need this at all since unnamed lambda functions cannot call itself anyway; at
least not directly. FC++ arguably does not need this since it is purely functional without side-effects,
thus there is no need to destructively write to a variable. The highly recursive nature of the Spirit
framework from which Phoenix is a derivative work necessitated true reentrant closures. Later on,
Phoenix will inherit the Spirit framework’s true closures which implement access to true hardware
stack based local variables.

Phoenix is also extremely modular by design. One can extract and use only a small subset of the full
framework, literally tearing the framework into small pieces, without fear that the pieces won’t work
anymore. For instance, one can use only the FC++ style programming layer with rank-2 polymorphic
functions without the sugared operators.

Emphasis is given to make Phoenix much more portable to current generation C++ compilers such as
Borland and MSVC. Borland for example chokes on both BLL and FC++ code. Forget MSVC support
in FC++ and BLL. On the other hand, although Phoenix is not yet ported to MSVC, Phoenix uses the

http://spirit.sf.net/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/
http://www.boost.org/libs/lambda/doc/index.html
http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/libs/lambda/doc/index.html
http://spirit.sourceforge.net/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/libs/lambda/doc/index.html
http://www.cc.gatech.edu/~yannis/fc++/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/libs/lambda/doc/index.html
http://www.cc.gatech.edu/~yannis/fc++/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/libs/lambda/doc/index.html
http://www.cc.gatech.edu/~yannis/fc++/
http://spirit.sourceforge.net/
http://spirit.sourceforge.net/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/libs/lambda/doc/index.html
http://www.cc.gatech.edu/~yannis/fc++/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/libs/lambda/doc/index.html

same tried and true implementation techniques used by the Spirit framework. Since Spirit has been
ported to MSVC by Bruce Florman (v1.1) and by Raghav Satish (v1.3), it is very likely that Phoenix
will also be ported to MSVC.

Finally, and most importantly though, Phoenix is intended, hopefully, to be much more easier to use.
The focus of Phoenix (and Spirit for that matter), is the typical practicing programmer in the field
rather than the gurus and high priests. Think of Phoenix as the C++ FP library for the rest of us

How to use this manual
The Phoenix framework is organized in logical modules. This documentation provides a user’s guide
and reference for each module in the framework. A simple and clear code example is worth a hundred
lines of documentation; therefore, the user’s guide is presented with abundant examples annotated and
explained in step-wise manner. The user’s guide is based on examples. Lots of them.

As much as possible, forward information (i.e. citing a specific piece of information that has not yet
been discussed) is avoided in the user’s manual portion of each module. In many cases, though, it is
unavoidable that advanced but related topics not be interspersed with the normal flow of discussion.
To alleviate this problem, topics categorized as "advanced" may be skipped at first reading.

Some icons are used to mark certain topics indicative of their relevance. These icons precede some
text to indicate:

Icons

Note

Information
provided is
moderately
important
and should
be noted by
the reader.

Alert

Information
provided is
of utmost
importance.

Detail

Information
provided is
auxiliary
but will
give the
reader a
deeper
insight into
a specific
topic. May
be skipped.

Tip

A
potentially
useful and
helpful
piece of
information.

This documentation is automatically generated by Spirit QuickDoc documentation tool. QuickDoc is
part of the Spirit distribution .

Support
Please direct all questions to Spirit’s mailing list. You can subscribe to the Spirit Mailing List. The
mailing list has a searchable archive. A search link to this archive is provided in Spirit’s home page.
You may also read and post messages to the mailing list through an NNTP news portal (thanks to
www.gmane.org). The news group mirrors the mailing list. Here are two links to the archives: via
gmane, via geocrawler.

To my dear daughter Phoenix
Joel de Guzman
September 2002

http://spirit.sourceforge.net/
http://spirit.sourceforge.net/
http://spirit.sourceforge.net/
http://spirit.sourceforge.net/
http://spirit.sourceforge.net/
http://spirit.sourceforge.net/
https://lists.sourceforge.net/lists/listinfo/spirit-general
http://spirit.sourceforge.net/
news://news.gmane.org/gmane.comp.spirit.general
http://dir.gmane.org/gmane.comp.parsers.spirit.general
http://sourceforge.net/mailarchive/forum.php?forum_id=1595

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Introduction

The Phoenix Framework v1.2
Preliminary Draft

February 2001, Joel de Guzman

Functional programming (or FP) is gaining momentum as more programmers discover its power. In its
purest form, the paradigms set forth seem to be too detached from what most programmers are already
accustomed to. In the point of view of the C or Pascal imperative programmer, for instance, FP
techniques and concepts are quite esoteric at first glance. Learning a pure FP language such as Haskell
for example requires a significant quantum leap.

FP can be taken as a methodology that is not at all tied to a specific language. FP as a programming
discipline can be applied to many programming languages. In the realm of C++ for instance, we are
seeing more FP techniques being applied. C++ is sufficiently rich to support at least some of the most
important facets of FP such as higher order functions. C++ deservedly regards itself as a
multiparadigm programming language. It is not only procedural; it is not only object oriented;
stealthily beneath the core of the standard C++ library, a closer look into STL gives us a glimpse of a
truly FP paradigm already in place. It is obvious that the authors of STL know and practice FP. In the
near future, we shall see more FP trickle down into the mainstream. Surely.

The truth is, although FP is rich in concepts new and alien to the typical C++ programmer, we need
not shift the paradigm in its entirety wholesale; but rather in small pieces at a time. In fact, most of the
FP techniques can coexist quite well with the standard object oriented and imperative programming
paradigms. When we are using STL algorithms and functors for example, we are already doing FP.

Phoenix extends the concepts of FP to C++ much further. In a nutshell, the framework opens up FP
techniques such as Lambda (unnamed functions) and Currying (partial function evaluation).

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/
http://www.haskell.org/

Quick

start

To get a first glimpse on what the Phoenix framework offers, let us start with an example. We want to
find the first odd number in an STL container.

1) Normally we use a functor or a function pointer and pass that in to STL’s find_if generic function
(sample1.cpp):

Write a function:

 bool
 is_odd(int arg1)
 {
 return arg1 % 2 == 1;
 }

Pass a pointer to the function to STL’s find_if generic function:

 find_if(c.begin(), c.end(), &is_odd)

2) Using Phoenix, the same can be achieved directly with a one- liner (sample2.cpp):

 find_if(c.begin(), c.end(), arg1 % 2 == 1)

The expression "arg1 % 2 == 1" automagically creates a functor with the expected behavior. In FP,
this unnamed function is called a lambda function. Unlike 1, the function pointer version, which is
monomorphic (expects and works only with a fixed type int argument), the Phoenix version is
completely polymorphic and works with any container (of ints, of doubles, of complex, etc.) as long as
its elements can handle the "arg1 % 2 == 1" expression.

3) Write a polymorphic functor using Phoenix (sample3.cpp)

 struct is_odd_ {

 template <typename ArgT>
 struct result { typedef bool type; };

 template <typename ArgT>
 bool operator()(ArgT arg1) const
 { return arg1 % 2 == 1; }
 };

 function<is_odd_> is_odd;

Call the lazy is_odd function:

 find_if(c.begin(), c.end(), is_odd(arg1))

http://spirit.sf.net/

is_odd_ is the actual functor. It has been proxied in function<is_odd_> by is_odd (note no trailing
underscore) which makes it a lazy function. is_odd_::operator() is the main function body.
is_odd_::result is a type computer that answers the question "What should be our return type given an
argument of type ArgT?".

Like 2, and unlike 1, function pointers or plain C++ functors, is_odd is a true lazy, polymorphic
functor (rank-2 polymorphic functoid, in FC++ jargon). The Phoenix functor version is fully
polymorphic and works with any container (of ints, of doubles, of complex, etc.) as long as its
elements can handle the "arg1 % 2 == 1" expression. However, unlike 2, this is more efficient and has
less overhead especially when dealing with much more complex functions.

This is just the tip of the iceberg. There are more nifty things you can do with the framework. There
are quite interesting concepts such as rank-2 polymorphic lazy functions, lazy statements, binders etc;
enough to whet the appetite of anyone wishing to squeeze more power from C++.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://www.cc.gatech.edu/~yannis/fc++/

Basic
Concepts

Everything is a function (class actor) in the Phoenix framework that can be evaluated as f(a..n), where
n is the function’s arity, or number of arguments that the function expects. Operators are also
functions. For example, a + b is just a function with arity == 2 (or binary). a + b is the same as plus(a,
b), a + b + c is the same as plus(plus(a, b), c). plus(plus(a, b), c) is a ternary function (arity == 3).

Amusingly, even functions return functions. We shall see what this means in a short while.

Currying, named after the famous Logician Haskell Curry, is one of the important mechanisms in the
programming discipline known as functional programming (or FP). There’s much theory surrounding
the concepts behind it, however, in the most simplest term, it is safe to assume that "currying" a
function is more or less like partially evaluating a function. Take a simple pseudo C++ function:

 plus(x, y) { return x + y; }

for example. Fully evaluating the function ’plus’ above is done by supplying the arguments for x and
y. For example:

 plus(3, 2)

will give us 5. On the other hand, partial evaluation can be thought of as calling the function without
supplying all the arguments. Here’s an imaginary (non-C++) example:

 plus(?, 6)

What does this mean and what is the function’s result? First, the question mark proclaims that we
don’t have this argument yet, let this be supplied later. We have the second argument though, which is
6. Now, while the fully evaluated function plus(3, 2) results to the actual computed value 5, the
partially evaluated function plus(?, 6) results to another (unnamed) function (A higher order function.
In FP, the unnamed function is called a lambda function), this time, the lambda function expects one
less argument:

 plus(3, 2) --> 5
 plus(?, 6) --> unnamed_f_x_plus_6(x)

now, we can use unnamed_f_x_plus_6, which is the result of the expression plus(?, 6) just like a
function with one argument. Thus:

 plus(?, 6)(3) --> 9

This can be understood as:

 | plus(?, 6) | (3) |
 |_____f1_____| |
 |_____f2___________|

http://spirit.sf.net/
http://www.haskell.org/

f1 is the result of partially evaluating plus(?, 6)
f2 is the result of the fully evaluated function passing 3 where f1 has the ? placeholder, thus
plus(3, 6)

The same can be done with operators. For instance, the above example is equivalent to:

 3 + 2 --> 5
 ? + 6 --> unnamed_f_x_plus_6(x)

Obviously, partially evaluating the plus function as we see above cannot be done directly in C++
where we are expected to supply all the arguments that a function expects. Simply, currying the
function plus is not possible in straight C++. That’s where the Phoenix framework comes in. The
framework provides the facilities to do partial function evaluation.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Architecture

Care and attention to detail was given, painstakingly, to the design and implementation of Phoenix.
The overall design of the framework is well structured and clean. In this chapter, we shall see the main
concepts behind the framework and gain introductory insights regarding its design.

 Macros
Implementation wise, not a single macro was used. Macros cause more trouble
than its worth, regardless if they are used only in the implementation. A very
early version of the framework did use macros to generate redundant code.
The experience was to say the least, painful. 1) The code is so much more
difficult to read 2) Compile errors take you in the middle of nowhere in a
meaningless macro invocation without the slightest clue whatsoever what
went wrong. The bottom line is: Macros are plain ugly. Exclamation point! No
to macros. Period.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/

Lazy
functions

When currying or partial function evaluation takes place, supplying N actual arguments to a function
that expects M arguments where N < M will result in a higher order function with M-N arguments.
Technically, when N == M, the function has all the arguments needed to do a full evaluation:

 plus(3, 2) full evaluation
 plus(?, 6) partial evaluation

 Lazy functions are subsets of partial function evaluation or currying

Now, we shall revisit the concept of lazy functions introduced before in passing. That is, the first
function invocation will not really "fully evaluate" the function regardless if all or some of the
arguments are supplied. A second function invocation will always be needed to perform the actual
evaluation. At the point in the second call, the caller is expected to supply all arguments that are still
missing. Still vague? To clarify, a partially evaluated function:

 f(1, ?, ?)

results to an unnamed function unnamed_f(a, b) that expects the two (2) more arguments that are still
missing when the first function, f, is invoked. Since unnamed_f(a, b) is already a second level
evaluation, all arguments must be supplied when it is called and the result is finally evaluated.
Example:

 f(1, ?, ?) ---> unnamed_f(a, b)

then

 unnamed_f(2, 3) ---> evaluate_and_return_value_for f(1, 2, 3)

This function call sequence can be concatenated:

 f(1, ?, ?)(2, 3)

The second level function unnamed_f is not curryable. All of its still missing arguments must be
supplied when it is called.

As mentioned, even though we have all the arguments in the first call, the function is not yet evaluated
(thus lazy). For example, a function call:

 f(1, 2, 3)

remember that the first function invocation will not really evaluate the function even if all the
arguments are fully supplied. Thus:

http://spirit.sf.net/

 f(1, 2, 3) ---> unnamed_f()

 Generators
In FP, unnamed_f() is a generator; a function that has no arguments but
returns a result. Not to be confused with Phoenix generators to be discussed
later.

Then:

 unnamed_f() ---> evaluate_and_return_value_for f(1, 2, 3)

This function call sequence can be concatenated as:

 f(1, 2, 3)()

Lambda (unnamed) functions and currying (partial function evaluation) can also be applied to
operators. However, unlike lazy functions, operators are fully evaluated once all the arguments are
known and supplied, unless some sort of intervention is applied to coerce the operator expression to be
lazily evaluated. We shall see more details on this and how this is done later.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Polymorphic

functions

We’ve seen the examples and we are already aware that lazy functions are polymorphic. This is
important and is reiterated over and over again. Monomorphic functions are passe and simply lacks
the horse power in this day and age of generic programming.

The framework provides facilities for defining truly polymorphic functions (in FC++ jargon, these are
called rank-2 polymorphic functoids). For instance, the plus example above can apply to integers,
floating points, user defined complex numbers or even strings. Example:

 add(arg1, arg2)(std::string("Hello"), " World")

evaluates to std::string("Hello World"). The observant reader might notice that this function call in
fact takes in heterogeneous arguments of types arg1 = std::string and arg2 = char const*. add still
works in this context precisely because the C++ standard library allows the expression a + b where a is
a std::string and b is a char const*.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/
http://www.cc.gatech.edu/~yannis/fc++/

Organization

The framework is organized in five (5) layers.

 +-----------+
 | binders |
 +-----------+-----------+------------+
 | functions | operators | statements |
 +------------+-----------+-----------+------------+
 | primitives | composite |
 +------------+------------------------------------+
 | actor |
 +---+
 | tuples |
 +---+

The lowest level is the tuples library. Knowledge of tuples is not at all required in order to use the
framework. In a nutshell, this small sub-library provides a mechanism for bundling heterogeneous
types together. This is an implementation detail. Yet, in itself, it is quite useful in other applications as
well. A more detailed explanation will be given later.

Actors are the main concept behind the framework. Lazy functions are abstracted as actors which are
actually polymorphic functors. There are only 2 kinds of actors:

1. primitives
2. composites.

Composites are composed of zero or more actors. Each actor in a composite can again be another
composite. Primitives are atomic units and are not decomposable.

(lazy) functions, (lazy) operators and (lazy) statements are built on top of composites. To put it more
accurately, a lazy function (lazy operators and statements are just specialized forms of lazy functions)
has two stages:

1. (lazy) partial evaluation
2. final evaluation

The first stage is handled by a set of generator functions, generator functors and generator operator
overloads. These are your front ends (in the client’s perspective). These generators create the actors
that can be passed on just like any other function pointer or functor object. The second stage, the
actual function call, can be invoked or executed anytime just like any other function. These are the
back-ends (often, the final invocation is never actually seen by the client).

Binders, built on top of functions, create lazy functions from simple monomorphic (STL like)
functors, function pointers, member function pointers or member variable pointers for deferred
evaluation (variables are accessed through a function call that returns a reference to the data. These
binders are built on top of (lazy) functions.

http://spirit.sf.net/

The framework’s architecture is completely orthogonal. The relationship between the layers is totally
acyclic. Lower layers do not depend nor know the existence of higher layers. Modules in a layer do
not depend on other modules in the same layer. This means for example that the client can completely
discard binders if she does not need it; or perhaps take out lazy-operators and lazy-statements and just
use lazy-functions, which is desireable in a pure FP application.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Actors

Actors are functors. Actors are the main driving force behind the framework. An actor can accept 0 to
N arguments (where N is a predefined maximum). In an abstract point of view, an actor is the
metaphor of a function declaration. The actor has no function body at all, which means that it does not
know how to perform any function at all.

 an actor is the metaphor of a function declaration

The actor is a template class though, and its sole template parameter fills in the missing function body
and does the actual function evaluation. The actor class derives from its template argument. Here’s the
simplified actor class declaration:

 template <typename BaseT>
 struct actor : public BaseT { /*...*/ };

To avoid being overwhelmed in details, the following is a brief overview of what an actor is. First,
imagine an actor as a non- lazy function that accepts 0..N arguments:

 actor(a0, a1, ... aN)

Not knowing what to do with the arguments passed in, the actor forwards the arguments received from
the client (caller) onto its base class BaseT. It is the base class that does the actual operation, finally
returning a result. In essence, the actor’s base class is the metaphor of the function body. The sequence
of events that transpire is outlined informally as follows:

1) actor is called, passing in N arguments:

client --> actor(a0, a1, ... aN)

2) actor forwards the arguments to its base:

--> actor’s base(a0, a1, ... aN)

3) actor’s base does some computation and returns a result back to the actor, and finally, the actor
returns this back to the client:

actor’s base operation --> return result --> actor --> client

 In essence, the actor’s base class is the metaphor of the function body

For further details, we shall see more in-depth information later as we move on to the more technical
side of the framework.

http://spirit.sf.net/

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Primitives

Actors are composed to create more complex actors in a tree-like hierarchy. The primitives are atomic
entities that are like the leaves in the tree. Phoenix is extensible. New primitives can be put into action
anytime. Right out of the box, there are only a few primitives. This chapter shall deal with these preset
primitives.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/

Arguments

The most basic primitive is the argument placeholder. For the sake of explanation, we used the ’?’ in
our introductory examples to represent unknown arguments or argument place holders. Later on, we
introduced the notion of positional argument place holders.

We use an object of a special class argument<N> to represent the Nth function argument. The
argument placeholder acts as an imaginary data-bin where a function argument will be placed.

There are a couple of predefined instances of argument<N> named arg1..argN (where N is a
predefined maximum). When appropriate, we can of course define our own argument<N> names. For
example:

 actor<argument<0> > first_param; // note zero based index

Take note that it should be wrapped inside an actor to be useful. first_param can now be used as a
parameter to a lazy function:

 plus(first_param, 6)

which is equivalent to:

 plus(arg1, 6)

Here are some sample preset definitions of arg1..N

 actor<argument<0> > const arg1 = argument<0>();
 actor<argument<1> > const arg2 = argument<1>();
 actor<argument<2> > const arg3 = argument<2>();
 ...
 actor<argument<N> > const argN = argument<N>();

An argument is in itself an actor base class. As such, arguments can be evaluated through the actor’s
operator(). An argument as an actor base class selects the Nth argument from the arguments passed in
by the client (see actor).

For example:

 char c = ’A’;
 int i = 123;
 const char* s = "Hello World";

 cout << arg1(c) << ’ ’; // Get the 1st argument of unnamed_f(c)
 cout << arg1(i, s) << ’ ’; // Get the 1st argument of unnamed_f(i, s)
 cout << arg2(i, s) << ’ ’; // Get the 2nd argument of unnamed_f(i, s)

will print out "A 123 Hello World"

http://spirit.sf.net/

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Values

Whenever we see a constant in a curryable-function such as the plus above, an actor<value<T> >
(where T is the type of the constant) is, by default, automatically created for us. For instance, the
example plus above is actually equivalent to:

 plus(arg1, actor<value<int> >(value<int>(6)))

A nifty shortcut is the val(v) utility function. The expression above is also equivalent to:

 plus(arg1, val(6))

actor<value<int> >(value<int>(6)) is implicitly created behind the scenes, so there’s really no need to
explicitly type everything but:

 plus(arg1, 6)

There are situations though, as we’ll see later on, where we might want to explicily write val(x).

Like arguments, values are also actors. As such, values can be evaluated through the actor’s
operator(). Such invocation gives the value’s identity. Example:

 cout << val(3)() << val("Hello World")();

 prints out "3 Hello World".

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/

Variables

Values are immutable constants which cannot be modified at all. Attempting to do so will result in a
compile time error. When we want the function to modify the parameter, we use a variable instead.
For instance, imagine a curryable (lazy) function plus_assign:

 plus_assign(x, y) { x += y; }

Here, we want the first function argument x to be mutable. Obviously, we cannot write:

 plus_assign(1, 2) // error first argument is immutable

In C++, we can pass in a reference to a variable as the first argument in our example above. Yet, by
default, the Phoenix framework forces arguments passed to curryable functions to be constant
immutable values. To achieve our intent, we use the variable<T> class. This is similar to the value<T>
class above but instead holds a reference to a variable instead. For example:

 int i_;
 actor<variable<int> > i = i_;

now, we can use our actor<variable<int> > ’i’ as argument to the plus_assign lazy function:

 plus_assign(i, 2)

A shortcut is the var(v) utility function. The expression above is also equivalent to:

 plus_assign(var(i_), 2)

Lazy variables are actors. As such, variables can be evaluated through the actor’s operator(). Such
invocation gives the variables’s identity. Example:

 int i = 3;
 char const* s = "Hello World";
 cout << var(i)() << var(s)();

prints out "3 Hello World"

Finally, another free function const(cv) may also be used. const(cv) creates an actor<variable<T
const&> > object where the data is referenced using a constant reference. This is similar to value<T>
but when the data to be passed as argument to a function is heavy and expensive to copy by value, the
const(cv) offers a low overhead alternative.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/

Composites

Actors may be combined in a multitude of ways to form composites. Composites are actors that are
composed of zero or more actors. Composition is hierarchical. An element of the composite can be a
primitive or again another composite. The flexibility to arbitrarily compose hierarchical structures
allows us to form intricate constructions that model complex functions, statements and expressions.

A composite is more or less a tuple of 0..N actors plus an operation object (some specialized
composites have implied operations, i.e. the composite itself implies the operation). The composite
class is declared informally as:

 template <
 typename OperationT,
 typename A0 = nil_t,
 typename A1 = nil_t,
 typename A2 = nil_t,
 ...
 typename AN = nil_t
 >
 struct composite {

 OperationT op; // operation
 A0 a0; A1 a1; ... AN an; // actors
 };

This can be recursive. As mentioned, each of the actors A0..AN can in turn be another composite since
a composite is itself an actor superclass and conforms to its expected conceptual interface. Composite
specializations are provided to handle different numbers of actors from zero (0) to a predefined
maximum.

Except for specialized composites, like the actor and unlike the primitives, the composite is a protocol
class. A composite does not really know how to perform anything. The actual operation is handled by
its actors and finally its operation ’op’. After it has received the arguments passed in by the actor (see
actor), all of the arguments are broadcasted to all of the composite’s actors for preprocessing. Each of
the composite’s actors in turn returns a result. These results are then transfered to the composite’s
operation ’op’.

If this may seem confusing at first, don’t fret. Further details will be provided later for those who are
inclined to learn more about the framework inside out. However, such information is not at all
required to use the framework. After all, composites are not created directly. Instead, some facilities
are provided for the generation of composites. These generators are the front-ends. We have seen the
var(x), the val(x) and the const(x). These are really generators that create primitives. Likewise, we also
have generators that create composites.

Just think of composites as your backbone. You don’t really have to scrutinize it to use it; it simply
works. The composite is indeed the backbone of the Phoenix framework.

http://spirit.sf.net/

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Functions

Lazy functions
This class provides a mechanism for lazily evaluating functions. Syntactically, a lazy function looks
like an ordinary C/C++ function. The function call looks familiar and feels the same as ordinary C++
functions. However, unlike ordinary functions, the actual function execution is deferred. For example
here are sample factorial function calls:

 factorial(4)
 factorial(arg1)
 factorial(arg1 * 6 / factorial(var(i)))

These functions are automatically lazily bound unlike ordinary function pointers or functor objects
that need to be explicitly bound through the bind function (see binders).

A lazy function works in conjunction with a user defined functor (as usual with a member operator()).
Only special forms of functor objects are allowed. This is required to enable true polymorphism (STL
style monomorphic functors and function pointers can still be used through the bind facility (see
binders)).

This special functor is expected to have a nested template class result<T0...TN> (where N is the
number of arguments of its member operator()). The nested template class result should have a typedef
’type’ that reflects the return type of its member operator(). This is essentially a type computer that
answers the metaprogramming question "Given arguments of type T0...TN, what will be the functor
operator()’s return type?".

There is a special case for functors that accept no arguments. Such nullary functors are only required
to define a typedef result_type that reflects the return type of its operator().

Here’s an example of a simple functor that computes the factorial of a number:

 struct factorial_impl {

 template <typename Arg>
 struct result { typedef Arg type; };

 template <typename Arg>
 Arg operator()(Arg n) const
 { return (n <= 0) ? 1 : n * this->operator()(n-1); }
 };

As can be seen, the functor is polymorphic. Its arguments and return type are not fixed to a particular
type. The example above for example, can handle any type as long as it can carry out the required
operations (i.e. <=, * and -).

http://spirit.sf.net/

We can now declare and instantiate a lazy ’factorial’ function:

 function<factorial_impl> factorial;

Invoking a lazy function ’factorial’ does not immediately execute the functor factorial_impl. Instead, a
composite object is created and returned to the caller. Example:

 factorial(arg1)

does nothing more than return a composite. A second function call will invoke the actual factorial
function. Example:

 int i = 4;
 cout << factorial(arg1)(i);

will print out "24".

Take note that in certain cases (e.g. for functors with state), an instance of the functor may be passed
on to the constructor. Example:

 function<factorial_impl> factorial(ftor);

where ftor is an instance of factorial_impl (this is not necessary in this case since factorial is a simple
stateless functor). Take care though when using functors with state because the functors are taken in
by value. It is best to keep the data manipulated by a functor outside the functor itself and keep a
reference to this data inside the functor. Also, it is best to keep functors as small as possible.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Operators

Lazy operators
This facility provides a mechanism for lazily evaluating operators. Syntactically, a lazy operator looks
and feels like an ordinary C/C++ infix, prefix or postfix operator. The operator application looks the
same. However, unlike ordinary operators, the actual operator execution is deferred. Samples:

 arg1 + arg2
 1 + arg1 * arg2
 1 / -arg1
 arg1 < 150

We have seen the lazy operators in action (see sample2.cpp) above. Let’s go back and examine it a
little bit further:

 find_if(c.begin(), c.end(), arg1 % 2 == 1)

Through operator overloading, the expression "arg1 % 2 == 1" actually generates a composite. This
composite object is passed on to STL’s find_if function. In the viewpoint of STL, the composite is
simply a functor expecting a single argument, the container’s element. For each element in the
container ’c’, the element is passed on as an argument (arg1) to the composite (functor). The
composite (functor) checks if this is an odd value based on the expression "arg1 % 2 == 1" where arg1
is iteratively replaced by the container’s element.

A set of classes implement all the C++ free operators. Like lazy functions (see functions), lazy
operators are not immediately executed when invoked. Instead, a composite (see composite) object is
created and returned to the caller. Example:

 (arg1 + arg2) * arg3

does nothing more than return a composite. A second function call will evaluate the actual operators.
Example:

 int i = 4, j = 5, k = 6;
 cout << ((arg1 + arg2) * arg3)(i, j, k);

will print out "54".

Arbitrarily complex expressions can be lazily evaluated following three simple rules:

1. Lazy evaluated binary operators apply when *at least* one of the operands is an actor object (see
actor, primitives and composite). Consequently, if one of the operands is not an actor object, it is
implicitly converted, by default, to an object of type actor<value<T> > (where T is the original
type of the operand).

2. Lazy evaluated unary operators apply only to operands which are actor objects.
3. The result of a lazy operator is a composite actor object that can in turn apply to rule 1.

http://spirit.sf.net/

Example:

 -(arg1 + 3 + 6)

1. Following rule 1, lazy evaluation is triggered since arg1 is an instance of an actor<argument<N>
> class (see primitives).

2. The immediate right operand <3> is implicitly converted to an actor<value<int> >. Still
following rule 1.

3. The result of this "arg1 + 3" expression is a composite object, following rule 3.
4. Now since "arg1 + 3" is a composite, following rule 1 again, its right operand <6> is implicitly

converted to an actor<value<int> >.
5. Continuing, the result of "arg1 + 3" ... "+ 6" is again another composite. Rule 3.
6. The expression "arg1 + 3 + 6" being a composite, is the operand of the unary operator -.

Following rule 2, the result is an actor object.
7. Folowing rule 3, the whole thing "-(arg1 + 3 + 6)" is a composite.

Lazy-operator application is highly contagious. In most cases, a single argN actor infects all its
immediate neighbors within a group (first level or parenthesized expression).

Take note that although at least one of the operands must be a valid actor class in order for lazy
evaluation to take effect, if this is not the case and we still want to lazily evaluate an expression, we
can use var(x), val(x) or const(x) to transform the operand into a valid action object (see primitives).
Example:

 val(1) << 3;

Supported operators:

Unary operators:

 prefix: ~, !, -, +, ++, --, & (reference), * (dereference)
 postfix: ++, --

Binary operators:

 =, [], +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=
 +, -, *, /, %, &, |, ^, <<, >>
 ==, !=, <, >, <=, >=
 &&, ||

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Statements

Lazy statements
The primitives and composite building blocks presented before are sufficiently powerful to construct
quite elaborate structures and facilities. We have presented lazy-functions and lazy-operators. How
about lazy-statements? First, an appetizer:

Print all odd-numbered contents of an STL container using std::for_each (sample4.cpp):

 for_each(c.begin(), c.end(),
 if_(arg1 % 2 == 1)
 [
 cout << arg1 << ’ ’
]
);

Huh? Is that valid C++? Read on...

Yes, it is valid C++. The sample code above is as close as you can get to the syntax of C++. This
stylized C++ syntax differs from actual C++ code. First, the if has a trailing underscore. Second, the
block uses square brackets instead of the familiar curly braces {}.

Here are more examples with annotations. The code almost speaks for itself.

1) block statement:

 statement,
 statement,

 statement

Basically, these are comma separated statements. Take note that unlike the C/C++ semicolon, the
comma is a separator put *in-between* statements. This is like Pascal’s semicolon separator, rather
than C/C++’s semicolon terminator. For example:

 statement,
 statement,
 statement, // ERROR!

Is an error. The last statement should not have a comma. Block statements can be grouped using the
parentheses. Again, the last statement in a group should not have a trailing comma.

 statement,
 statement,
 (
 statement,
 statement
),
 statement

http://spirit.sf.net/

Outside the square brackets, block statements should be grouped. For example:

 for_each(c.begin(), c.end(),
 (
 do_this(arg1),
 do_that(arg1)
)
);

2) if_ statement:

We have seen the if_ statement. The syntax is:

 if_(conditional_expression)
 [
 sequenced_statements
]

3) if_ else_ statement:

The syntax is

 if_(conditional_expression)
 [
 sequenced_statements
]
 .else_
 [
 sequenced_statements
]

Take note that else has a prefix dot and a trailing underscore: .else_

Example: This code prints out all the elements and appends " > 5", " == 5" or " < 5" depending on the
element’s actual value:

 for_each(c.begin(), c.end(),
 if_(arg1 > 5)
 [
 cout << arg1 << " > 5\n"
]
 .else_
 [
 if_(arg1 == 5)
 [
 cout << arg1 << " == 5\n"
]
 .else_
 [
 cout << arg1 << " < 5\n"
]
]
);

Notice how the if_ else_ statement is nested.

4) while_ statement:

The syntax is:

 while_(conditional_expression)
 [
 sequenced_statements
]

Example: This code decrements each element until it reaches zero and prints out the number at each
step. A newline terminates the printout of each value.

 for_each(c.begin(), c.end(),
 (
 while_(arg1--)
 [
 cout << arg1 << ", "
],
 cout << val("\n")
)
);

5) do_ while_ statement:

The syntax is:

 do_
 [
 sequenced_statements
]
 .while_(conditional_expression)

Again, take note that while has a prefix dot and a trailing underscore: .while_

Example: This code is almost the same as the previous example above with a slight twist in logic.

 for_each(c.begin(), c.end(),
 (
 do_
 [
 cout << arg1 << ", "
]
 .while_(arg1--),
 cout << val("\n")
)
);

6) for_ statement:

The syntax is:

 for_(init_statement, conditional_expression, step_statement)
 [
 sequenced_statements
]

It is again almost similar to C++ for statement. Take note that the init_statement,
conditional_expression and step_statement are separated by the comma instead of the semi- colon and
each must be present (i.e. for_(,,) is invalid).

Example: This code prints each element N times where N is the element’s value. A newline terminates
the printout of each value.

 int iii;
 for_each(c.begin(), c.end(),
 (
 for_(var(iii) = 0, var(iii) < arg1, ++var(iii))
 [
 cout << arg1 << ", "
],
 cout << val("\n")
)
);

As before, all these are lazily evaluated. The result of such statements are in fact composites that are
passed on to STL’s for_each function. In the viewpoint of for_each, what was passed is just a functor,
no more, no less.

 Unlike lazy functions and lazy operators, lazy statements always return
void.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Binders

There are times when it is desireable to bind a simple functor, function, member function or member
variable for deferred evaluation. This can be done through the binding facilities provided below. There
are template classes:

1. function_ptr (function pointer binder)
2. functor (functor pointer binder)
3. member_function_ptr (member function pointer binder)
4. member_var_ptr (member variable pointer binder)

These template classes are specialized lazy function classes for functors, function pointers, member
function pointers and member variable pointers, respectively. These are subclasses of the lazy-
function class (see functions). Each of these has a corresponding overloaded bind(x) function. Each
bind(x) function generates a suitable binder object.

Example, given a function foo:

 void foo_(int n) { std::cout << n << std::endl; }

Here’s how the function foo is bound:

 bind(&foo_)

This bind expression results to a lazy-function (see functions) that is lazily evaluated. This bind
expression is also equivalent to:

 function_ptr<void, int> foo = &foo_;

The template parameter of the function_ptr is the return and argument types of actual signature of the
function to be bound read from left to right. Examples:

 void foo_(int); ---> function_ptr<void, int>
 int bar_(double, int); ---> function_ptr<int, double, int>

Either bind(&foo_) and its equivalent foo can now be used in the same way a lazy function (see
functions) is used:

 bind(&foo_)(arg1)

or

 foo(arg1)

The latter, of course, follows C/C++ function call syntax and is much easier to understand. This is now
a full-fledged lazy function that can finally be evaluated by another function call invocation. A second
function call will invoke the actual foo function:

http://spirit.sf.net/

 int i = 4;
 foo(arg1)(i);

will print out "4".

Binding functors and member functions can be done similarly. Here’s how to bind a functor (e.g.
std::plus<int>):

 bind(std::plus<int>())

or

 functor<std::plus<int> > plus;

Again, these are full-fledged lazy functions. In this case, unlike the first example, expect 2 arguments
(std::plus<int> needs two arguments lhs and rhs). Either or both of which can be lazily bound:

 plus(arg1, arg2) // arg1 + arg2
 plus(100, arg1) // 100 + arg1
 plus(100, 200) // 300

A bound member function takes in a pointer or reference to an object as the first argument. For
instance, given:

 struct xyz { void foo(int) const; };

xyz’s foo member function can be bound as:

 bind(&xyz::foo)

or

member_function_ptr<void, xyz, int> xyz_foo = &xyz::foo;

The template parameter of the member_function_ptr is the return, class and argument types of actual
signature of the function to be bound, read from left to right:

 void xyz::foo_(int); ---> member_function_ptr<void, xyz, int>
 int abc::bar_(double, char); ---> member_function_ptr<int, abc, double, char>

Take note that a member_function_ptr lazy-function expects the first argument to be a pointer or
reference to an object. Both the object (reference or pointer) and the arguments can be lazily bound.
Examples:

 xyz obj;
 xyz_foo(arg1, arg2) // arg1.foo(arg2)
 xyz_foo(obj, arg1) // obj.foo(arg1)
 xyz_foo(obj, 100) // obj.foo(100)

Be reminded that var(obj) must be used to call non-const member functions. For example, if xyz was
declared as:

 struct xyz { void foo(int); }; // note non-const member function

the pointer or reference to the object must also be non-const since lazily bound arguments are stored as
const value by default (see variable class in primitives).

 xyz_foo(var(obj), 100) // obj.foo(100)

arg1..argN are already implicitly mutable. There is no need to wrap arg1..argN in a var. It is an error
to do so:

 var(arg1) // ERROR! arg1 is already mutable
 var(arg2) // ERROR! arg2 is already mutable

Finally, member variables can be bound much like member functions. For instance, given:

 struct xyz { int v; };

xyz::v can be bound as:

 bind(&xyz::v)

or

 member_var_ptr<int, xyz> xyz_v = &xyz::v;

The template parameter of the member_var_ptr is the type of the variable followed by the class:

 int xyz::v; ---> member_var_ptr<int, xyz>

Just like the member_function_ptr, member_var_ptr also expects the first argument to be a pointer or
reference to an object. Both the object (reference or pointer) and the arguments can be lazily bound.
Like member function binders, var(obj) must be used to access non-const member variables.
Examples:

 xyz obj;
 xyz_v(arg1) // arg1.v (const& access)
 xyz_v(obj) // obj.v (const& access)

 xyz_v(var(obj))() = 3 // obj.v = 3 (non-const& access)
 xyz_v(arg1)(obj) = 4 // obj.v = 4 (non-const& access)

Be reminded once more that binders are monomorphic. This layer is provided only for compatibility
with existing code such as prewritten STL functors and legacy APIs. Rather than binding functions or
functors, the preferred method is to write true generic and polymorphic lazy-functions (see functions).
However, since most of the time we are dealing with adaptation of exisiting code, binders are indeed
indespensible.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Adaptable

closures

The framework will not be complete without some form of closures support. Closures encapsulate a
stack frame where local variables are created upon entering a function and destructed upon exiting.
Closures provide an environment for local variables to reside. Closures can hold heterogeneous types.

Phoenix closures are true hardware stack based. Closures enable true reentrancy in lambda functions.
A closure provides access to a function stack frame where local variables reside. Modeled after Pascal
nested stack frames, closures can be nested just like nested functions where code in inner closures may
access local variables from in-scope outer closures (accessing inner scopes from outer scopes is an
error and will cause a run-time assertion failure).

 Spirit Closures
Spirit uses Phoenix closures to allow parameter passing (inherited and
synthetic attributes, in parsing parlance) upstream and downstream in a parse
traversal (see Spirit documentation).

There are three (3) interacting classes:

1) closure:

At the point of declaration, a closure does not yet create a stack frame nor instantiate any variables. A
closure declaration declares the types and names of the local variables. The closure class is meant to
be subclassed. It is the responsibility of a closure subclass to supply the names for each of the local
variable in the closure. Example:

 struct my_closure : closure<int, string, double> {

 member1 num; // names the 1st (int) local variable
 member2 message; // names the 2nd (string) local variable
 member3 real; // names the 3rd (double) local variable
 };

 my_closure clos;

Now that we have a closure ’clos’, its local variables can be accessed lazily using the dot notation.
Each qualified local variable can be used just like any primitive actor (see primitives). Examples:

 clos.num = 30
 clos.message = arg1
 clos.real = clos.num * 1e6

The examples above are lazily evaluated. As usual, these expressions return composite actors that will
be evaluated through a second function call invocation (see operators). Each of the members
(clos.xxx) is an actor. As such, applying the operator() will reveal its identity:

http://spirit.sf.net/
http://spirit.sourceforge.net/

 clos.num() // will return the current value of clos.num

 Acknowledgement:
Juan Carlos Arevalo-Baeza (JCAB) introduced and initilally implemented
the closure member names that uses the dot notation and Martin Wille who
improved multi thread safety using Boost Threads.

2) closure_member

The named local variables of closure ’clos’ above are actually closure members. The closure_member
class is an actor and conforms to its conceptual interface. member1..memberN are predefined typedefs
that correspond to each of the listed types in the closure template parameters.

3) closure_frame

When a closure member is finally evaluated, it should refer to an actual instance of the variable in the
hardware stack. Without doing so, the process is not complete and the evaluated member will result to
an assertion failure. Remember that the closure is just a declaration. The local variables that a closure
refers to must still be instantiated.

The closure_frame class does the actual instantiation of the local variables and links these variables
with the closure and all its members. There can be multiple instances of closure_frames typically
situated in the stack inside a function. Each closure_frame instance initiates a stack frame with a new
set of closure local variables. Example:

 void foo()
 {
 closure_frame<my_closure> frame(clos);
 /* do something */
 }

where ’clos’ is an instance of our closure ’my_closure’ above. Take note that the usage above
precludes locally declared classes. If my_closure is a locally declared type, we can still use its
self_type as a paramater to closure_frame:

 closure_frame<my_closure::self_type> frame(clos);

Upon instantiation, the closure_frame links the local variables to the closure. The previous link to
another closure_frame instance created before is saved. Upon destruction, the closure_frame unlinks
itself from the closure and relinks the preceding closure_frame prior to this instance.

The local variables in the closure ’clos’ above is default constructed in the stack inside function ’foo’.
Once ’foo’ is exited, all of these local variables are destructed. In some cases, default construction is
not desirable and we need to initialize the local closure variables with some values. This can be done
by passing in the initializers in a compatible tuple. A compatible tuple is one with the same number of
elements as the destination and where each element from the destination can be constructed from each
corresponding element in the source. Example:

 tuple<int, char const*, int> init(123, "Hello", 1000);
 closure_frame<my_closure> frame(clos, init);

http://www.boost.org/

Here now, our closure_frame’s variables are initialized with int: 123, char const*: "Hello" and int:
1000.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Lazy
Construction

and
Conversions

Lazy C++ Casts
The set of lazy C++ cast template classes and functions provide a way of lazily casting certain type to
another during parsing. The lazy C++ templates are (syntactically) used very much like the well
known C++ casts:

 A *a = static_cast_<A *>(_a_lambda_expression_);

These casts parallel the ones in the C++ language. Take note however that the lazy versions have a
trailing underscore.

static_cast_<T>(lambda_expression)
dynamic_cast_<T>(lambda_expression)
const_cast_<T>(lambda_expression)
reinterpret_cast_<T>(lambda_expression)

 Acknowledgement:
Hartmut Kaiser implemented the lazy casts and constructors based on his
original work on Spirit SE "semantic expressions" (the precursor of Phoenix).

Lazy object construction
A set of lazy constructor template classes and functions provide a way of lazily constructing an object
of a type from an arbitrary set of lazy arguments in the form of lambda expressions. The construct_
templates are (syntactically) used very much like the well known C++ casts:

 A a = construct_<A>(lambda_arg1, lambda_arg2, ..., lambda_argN);

where the given parameters are become the parameters to the contructor of the object of type A. (This
implies, that type A is expected to have a constructor with a corresponsing set of parameter types.)

 The ultimate maximum number of actual parameters is limited by the
preprocessor constant PHOENIX_CONSTRUCT_LIMIT. Note though, that
this limit should not be greater than PHOENIX_LIMIT.

http://spirit.sf.net/
http://spirit.sourceforge.net/

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Efficiency

Now this is important. Operators that form expressions and statements, while truly expressive, should
be used judiciously and sparingly. While aggressive compiler optimizations and inline code helps a lot
to produce tighter and faster code, lazy operators and statements will always have more overhead
compared to lazy- functions and bound simple functors especially when the logic gets to be quite
complex. It is not only run-time code that hits a penalty, complex expressions involving lazy-operators
and lazy- functions are also much more difficult to parse and compile by the host C++ compiler and
results in much longer compile times.

 Lambda vs. Offline Functions
The best way to use the framework is to write generic off-line lazy functions
(see functions) then call these functions lazily using straight-forward inline
lazy-operators and lazy-statements.

While it is indeed satisfying to impress others with quite esoteric uses of operator overloading and
generative programming as can be done by lazy-operators and lazy-statements, these tools are meant
to be used for the right job. That said, caveat-emptor.

 need benchmarks, benchmarks, and more benchmarks

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/

Inside
Phoenix

This chapter explains in more detail how the framework operates. The information henceforth should
not be necessary to those who are interested in just using the framework. However, a microscopic
view might prove to be beneficial to more advanced programmers. But then again, it is really hard to
classify what it means to be an "advanced programmer". Is knowledge of the C++ language as a
language lawyer a prerequisite? Perhaps, but also perhaps not. As always, the information presented
will always assume a friendly tone. Perhaps the prerequisite here is that the reader should have an
"advanced imagination" and a decent knowledge of C++ language rules.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/

Tuples

Tuples are the most basic infrastructure that the framework builds with. This sub-library provides a
mechanism to bundle objects of arbitrary types in a single structure. Tuples hold heterogeneous types
up to a predefined maximum.

Only the most basic functionality needed are provided. This is a straight-forward and extremely lean
and mean library. Unlike other recursive list-like tuple implementations, this tuple library
implementation uses simple structs similar to std::pair with specialization for 0 to N tuple elements,
where N is a predefined constant. There are only 4 tuple operations to learn:

1) Construction

Here are examples on how to construct tuples:

 typedef tuple<int, char> t1_t;
 typedef tuple<int, std::string, double> t2_t;

 // this tuple has an int and char members
 t1_t t1(3, ’c’);

 // this tuple has an int, std::string and double members
 t2_t t2(3, "hello", 3.14);

2) Member access

A member in a tuple can be accessed using the tuple’s operator by specifying the Nth tuple_index.
Here are some examples:

 tuple_index<0> ix0; // 0th index == 1st item
 tuple_index<1> ix1; // 1st index == 2nd item
 tuple_index<2> ix2; // 2nd index == 3rd item

 // Note zero based indexing. 0 = 1st item, 1 = 2nd item

 t1[ix0] = 33; // sets the int member of the tuple t1
 t2[ix2] = 6e6; // sets the double member of the tuple t2
 t1[ix1] = ’a’; // sets the char member of the tuple t1

Access to out of bound indexes returns a nil_t value.

3) Member type inquiry

The type of an individual member can be queried. Example:

 tuple_element<1, t2_t>::type

Refers to the type of the second member (again note zero based indexing, hence 0 = 1st item, 1 = 2nd
item) of the tuple.

http://spirit.sf.net/

Access to out of bound indexes returns a nil_t type.

4) Tuple length

The number of elements in a tuple can be queried. Example:

 int n = t1.length;

gets the number of elements in tuple t1.

length is a static constant. Thus, TupleT::length also works. Example:

 int n = t1_t::length;

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Actors
revisited

This class is a protocol class for all actors. This class is essentially an interface contract. The actor
class does not really know how how to act on anything but instead relies on the template parameter
BaseT (from which the actor will derive from) to do the actual action. The template class actor is
declared as:

 template <typename BaseT>
 struct actor : public BaseT {

 actor();
 actor(BaseT const& base);

 /*...member functions...*/
 };

 Curiously Recurring Template Pattern Inverse
Notice that actor derives from its template argument BaseT. This is the
inverse of the curiously recurring template pattern (CRTP). With the CRTP,
the actor is an abstract class with a DerivedT template parameter that is
assumed to be its parametric subclass. This pattern however, "parametric base
class pattern" (PBCP) for lack of a name, inverses the inheritance and makes
actor a concrete class. Anyway, be it CRTP or PBCP, actor is a protocol class
and either BaseT or DerivedT will have to conform to its protocol. Both
CRTP and PBCP techniques has its pros and cons, of which is outside the
scope of this document. CRTP should really be renamed "parametric subclass
pattern (PSCP), but again, that’s another story.

An actor is a functor that is capable of accepting arguments up to a predefined maximum. It is up to
the base class to do the actual processing or possibly to limit the arity (no. of arguments) passed in.
Upon invocation of the functor through a supplied operator(), the actor funnels the arguments passed
in by the client into a tuple and calls the base class’ eval member function.

Schematically:

 arg0 ---------|
 arg1 ---------|
 arg2 ---------|---> tupled_args ---> base.eval
 ... |
 argN ---------|

 actor::operator()(arg0, arg1... argN)
 ---> BaseT::eval(tupled_args);

Actor base classes from which this class inherits from are expected to have a corresponding member
function eval compatible with the conceptual Interface:

http://spirit.sf.net/

 template <typename TupleT>
 actor_return_type
 eval(TupleT const& args) const;

where args are the actual arguments passed in by the client funneled into a tuple (see tuple for details).

The actor_return_type can be anything. Base classes are free to return any type, even argument
dependent types (types that are deduced from the types of the arguments). After evaluating the
parameters and doing some computations or actions, the eval member function concludes by returning
something back to the client. To do this, the forwarding function (the actor’s operator()) needs to know
the return type of the eval member function that it is calling. For this purpose, actor base classes are
required to provide a nested template class:

 template <typename TupleT>
 struct result;

This auxiliary class provides the result type information returned by the eval member function of a
base actor class. The nested template class result should have a typedef ’type’ that reflects the return
type of its member function eval. It is basically a type computer that answers the question "given
arguments packed into a TupleT type, what will be the result type of the eval member function of
ActorT?".

There is a global template class actor_result declared in namespace phoenix scope that queries the
actor’s result type given a tuple. Here is the class actor_result’s declaration:

 template <typename ActorT, typename TupleT>
 struct actor_result {

 typedef typename ActorT::template result<TupleT>::type type;
 typedef typename remove_reference<type>::type plain_type;
 };

type is the actual return type
plain_type is the return type stripped from references.

Given an actor type ActorT and a TupleT, we can get the actor’s return type this way:

 typedef typename actor_result<ActorT, TupleT>::type
 actor_return_type;

where actor_return_type is the actual type returned by ActorT’s eval member function given some
arguments packed in a TupleT.

For reference, here’s a typical actor::operator() that accepts two (2) arguments:

 template <typename BaseT>
 template <typename T0, typename T1>
 inline typename actor_result<BaseT, tuple<T0&, T1&> >::type
 actor<BaseT>::operator()(T0& _0, T1& _1) const
 {
 return BaseT::eval(tuple<T0&, T1&>(_0, _1));
 }

 Forwarding Function Problem
_0 and _1 are references. Hence the arguments cannot accept non-const
temporaries and literal constants. This is a current C++ language issue known
as the "forwarding function problem" that is currently being discussed. The
problem is that given an arbitrary function f, using current C++ language
rules, one cannot create a forwarding function f’ that transparently assumes
the arguments of f.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Composites

revisited

A composite is an actor base class composed of zero or more actors (see actor) and an operation. A
composite is itself an actor superclass and conforms to its expected conceptual interface. Its eval
member function un-funnels the tupled actual arguments by invoking each of the actors’ eval member
function. The results of each are then passed on as arguments to the operation. Specializations are
provided for composites that handle different numbers of actors from zero to N, where N is a
predefined maximum.

Schematically:

 actor0.eval(tupled_args) --> arg0 --> |
 actor1.eval(tupled_args) --> arg1 --> |
 actor2.eval(tupled_args) --> arg3 --> | --> operation(arg0...argN)
 ... |
 actorN.eval(tupled_args) --> argN --> |

Here’s a typical example of the composite’s eval member function for a 2-actor composite:

 template <typename TupleT>
 typename actor_result<self_t, TupleT>::type
 eval(TupleT const& args) const
 {
 typename actor_result<A0, TupleT>::type r0 = a0.eval(args);
 typename actor_result<A1, TupleT>::type r1 = a1.eval(args);
 return op(r0, r1);
 }

where self_t is the composite’s ’self’ type, TupleT ’args’ is the tuple-packed arguments passed to the
actor (see actor) and op is the operation associated with the composite. r0 and r1 are the actual
arguments un-funneled from ’args’ and pre-processed by the composite’s actors which are then passed
on to the operation ’op’.

The operation can be any suitable functor that can accept the arguments passed in by the composite.
The operation is expected to have a member operator() that carries out the actual operation. There
should be a one to one correspondence between actors of the composite and the arguments of the
operation’s member operator().

The operation is also expected to have a nested template class result<T0...TN>. The nested template
class result should have a typedef ’type’ that reflects the return type of its member operator(). This is
essentially a type computer that answers the metaprogramming question "Given arguments of type
T0...TN, what will be your operator()’s return type?". There is a special case for operations that accept
no arguments. Such nullary operations are only required to define a typedef result_type that reflects
the return type of its operator().

Here’s a view on what happens when the eval function is called:

http://spirit.sf.net/

 tupled arguments: args
 |
 +-------+-------+-------+-------+
 | | | | |
 | | | | |
 actors: actor0 actor1 actor2 actor3..actorN
 | | | | |
 | | | | |
 operation: op(arg0, arg1, arg2, arg3,...argN)
 |
 |
 returns: +---> operation::result<T0...TN>::type

Here’s an example of a simple operation that squares a number:

 struct square {

 template <typename ArgT>
 struct result { typedef ArgT type; };

 template <typename ArgT>
 ArgT operator()(ArgT n) const { return n * n; }
 };

This is a perfect example of a polymorphic functor discussed before in the section on functions. As we
can see, operations are polymorphic. Its arguments and return type are not fixed to a particular type.
The example above for example, can handle any ArgT type as long as it has a multiplication operator.

Composites are not created directly. Instead, there are meta- programs provided that indirectly create
composites. See operators, binders and functions for examples.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Operators
revisited

Each C++ operator has a special tag type associated with it. For example the binary + operator has a
plus_op tag type associated with it. This operator tag is used to specialize either:

1. unary_operator<TagT, T0>
2. binary_operator<TagT, T0, T1>

template classes (see unary_operator and binary_operator below). Specializations of these
unary_operator and binary_operator are the actual workhorses that implement the operations. The
behavior of each lazy operator depends on these unary_operator and binary_operator specializations.

Preset specializations conform to the canonical operator rules modeled by the behavior of integers and
pointers:

Prefix -, + and ~ accept constant arguments and return an object by value.
The ! accept constant arguments and returns a boolean result.
The & (address-of), * (dereference) both return a reference to an object.
Prefix ++ returns a reference to its mutable argument after it is incremented.
Postfix ++ returns the mutable argument by value before it is incremented.
The += and its family accept mutable right hand side (rhs) operand and return a reference to the
rhs operand.
Infix + and its family accept constant arguments and return an object by value.
The == and its family accept constant arguments and return a boolean result.
Operators && and || accept constant arguments and return a boolean result and are short circuit
evaluated as expected.

Special operators and extensibility
It is of course possible to override the standard operator behavior when appropriate. For example, the
behavior of std::cout does not conform to the canonocal shift left operator << (i.e. the rhs std::cout is a
mutable reference). Odd balls such as this are placed in special_ops.hpp. There you will find
specializations for various classes found in the standard lib.

The library is meant to be extensible. Users may implement their own specializations to allow other
libraries to be adapted to be partial-function-evaluation savvy. Later on, in the section "Interfacing (to
applications, libraries and frameworks)", discussion will be focused on interfacing and extending the
framework.

Operator tags
Each C++ operator has a corresponding tag type. This is used as a means for specializing the
unary_operator and binary_operator (see below). The tag also serves as the lazy operator type
compatible with a composite as an operation (see composite). Here are two examples of operator tags:

http://spirit.sf.net/

Unary example:

 struct negative_op {

 template <typename T0>
 struct result {

 typedef typename unary_operator<negative_op, T0>
 ::result_type type;
 };

 template <typename T0>
 typename unary_operator<negative_op, T0>::result_type
 operator()(T0& _0) const
 { return unary_operator<negative_op, T0>::eval(_0); }
 };

Binary example:

 struct plus_op {

 template <typename T0, typename T1>
 struct result {

 typedef typename binary_operator<plus_op, T0, T1>
 ::result_type type;
 };

 template <typename T0, typename T1>
 typename binary_operator<plus_op, T0, T1>::result_type
 operator()(T0& _0, T1& _1) const
 { return binary_operator<plus_op, T0, T1>::eval(_0, _1); }
 };

Notice that these are again perfect examples of a composite operation. This style of specialized
function is ubiquitous in the framework. We shall see how the unary_operator<negative_op, T0> and
the binary_operator<plus_op, T0, T1> template classes, work in a short while.

Here are the complete list of operator tags:

 // Unary operator tags

 struct negative_op; struct positive_op;
 struct logical_not_op; struct invert_op;
 struct reference_op; struct dereference_op;
 struct pre_incr_op; struct pre_decr_op;
 struct post_incr_op; struct post_decr_op;

 // Binary operator tags

 struct assign_op; struct index_op;
 struct plus_assign_op; struct minus_assign_op;
 struct times_assign_op; struct divide_assign_op; struct mod_assign_op;
 struct and_assign_op; struct or_assign_op; struct xor_assign_op;
 struct shift_l_assign_op; struct shift_r_assign_op;

 struct plus_op; struct minus_op;
 struct times_op; struct divide_op; struct mod_op;
 struct and_op; struct or_op; struct xor_op;
 struct shift_l_op; struct shift_r_op;

 struct eq_op; struct not_eq_op;
 struct lt_op; struct lt_eq_op;
 struct gt_op; struct gt_eq_op;
 struct logical_and_op; struct logical_or_op;

unary_operator

The unary_operator class implements most of the C++ unary operators. Each specialization is
basically a simple static eval function plus a result_type typedef that determines the return type of the
eval function.

TagT is one of the unary operator tags above and T is the data type (argument) involved in the
operation. Here is an example:

 template <typename T>
 struct unary_operator<negative_op, T> {

 typedef T const result_type;
 static result_type eval(T const& v)
 { return -v; }
 };

This example is exactly what was being referred to by the first example we saw in the section on
operator tags.

Only the behavior of C/C++ built-in types are taken into account in the specializations provided in
operator.hpp. For user-defined types, these specializations may still be used provided that the operator
overloads of such types adhere to the standard behavior of built-in types.

A separate special_ops.hpp file implements more STL savvy specializations. Other more specialized
unary_operator implementations may be defined by the client for specific unary operator tags/data
types.

binary_operator

The binary_operator class implements most of the C++ binary operators. Each specialization is
basically a simple static eval function plus a result_type typedef that determines the return type of the
eval function.

TagT is one of the binary operator tags above T0 and T1 are the (arguments’) data types involved in
the operation. Here is an example:

 template <typename T0, typename T1>
 struct binary_operator<plus_op, T0, T1> {

 typedef typename higher_rank<T0, T1>::type const result_type;
 static result_type eval(T0 const& lhs, T1 const& rhs)
 { return lhs + rhs; }
 };

This example is exactly what was being referred to by the second example we saw in the section on
operator tags. higher_rank<T0, T1> is a type computer. We shall see how this works in a short while,
pardon the forward information.

Only the behavior of C/C++ built-in types are taken into account in the specializations provided in
operator.hpp. For user-defined types, these specializations may still be used provided that the operator
overloads of such types adhere to the standard behavior of built-in types.

A separate special_ops.hpp file implements more STL savvy specializations. Other more specialized
unary_operator implementations may be defined by the client for specific unary operator tags/data
types.

All binary_operator except the logical_and_op and logical_or_op have an eval static function that
carries out the actual operation. The logical_and_op and logical_or_op d are special because these two
operators are short-circuit evaluated.

 Short Circuiting || and &&
The logical_and_op and logical_or_op are special due to the C/C++ short
circuiting rule, i.e. a || b and a && b are short circuit evaluated. A forwarding
operation cannot be used because all function arguments are evaluated before
a function is called. logical_and_op and logical_or_op are specialized
composites with implied operations.

rank
rank<T> class has a static int constant ’value’ that defines the absolute rank of a type. rank<T> is used
to choose the result type of binary operators such as +. The type with the higher rank wins and is used
as the operator’s return type. A generic user defined type has a very high rank and always wins when
compared against a user defined type. If this is not desireable, one can write a rank specialization for
the type. Here are some predefined examples:

 template <> struct rank<char> { static int const value = 20; };
 template <> struct rank<signed char> { static int const value = 20; };
 template <> struct rank<unsigned char> { static int const value = 30; };
 template <> struct rank<wchar_t> { static int const value = 40; };

Take note that ranks 0..9999 are reserved by the framework.

A template type computer higher_rank<T0, T1> chooses the type (T0 or T1) with the higher rank. We
saw in the binary_operator for plus_op how it was used. Specifically:

 higher_rank<T0, T1>::type

returns either T0 or T1 depending on which has a higher rank. In some operator applications such as a
+ b, the result is actually the one with the higher rank. For example if a is of type int and b is of type
double, the result will be of type double. This facility can also be quite useful for evaluating some
functions. For instance if we have a sum(a, b, c, d, e) function, we can call this type computer to get
the type with the highest rank:

 higher_rank<TA,
 higher_rank<TB,
 higher_rank<TC,
 higher_rank<TD, TE>::type
 >::type
 >::type
 >::type

 When used within templates, be sure to use ’typename’ appropriately. See
binary_operator<plus_op, T0, T1> above.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Interfacing

The modular design of Phoenix makes it extremely extensible. We have seen that layer upon layer, the
whole framework is built on a solid foundation. There are only a few simple well designed concepts
that are laid out like bricks. Overall the framework is designed to be extended. Everything above the
composite and primitives can in fact be considered just as extensions to the framework. This modular
design was inherited from the Spirit inline parser framework.

Extension is non-intrusive. And, whenever a component or module is extended, the new extension
automatically becomes a first class citizen and is automatically recognized by all modules and
components in the framework. There are a multitude of ways in which a module is extended.

1) Write and deploy a new primitive:

So far we have presented only a few primitives 1) arguments 2) values and 3) variables. For the sake
of illustration, let us write a simple primitive extension. Let us call it static_int. It shall be
parameterized by an integer value. It is like a static version of the the value<int> class, but since it is
static, holds no data at all. The integer is encoded in its type. Here is the complete class (sample5.cpp):

 template <int N>
 struct static_int {

 template <typename TupleT>
 struct result { typedef int type; };

 template <typename TupleT>
 int eval(TupleT const&) const { return N; }
 };

That’s it. Done! Now we can use this as it is already a full- fledged Phoenix citizen due to interface
conformance. Let us write a suitable generator to make it easier to use our static_int. Remember that it
should be wrapped as an actor before it can be used. Let us call our generator int_const:

 template <int N>
 phoenix::actor<static_int<N> >
 int_const()
 {
 return static_int<N>();
 }

Now we are done. Let’s use it:

 cout << (int_const<5>() + int_const<6>())() << endl;

Prints out "11". There are lots of things you can do with this form of extension. For instance, data type
casts come to mind. Example:

 lazy_cast<T>(some_lazy_expression)

http://spirit.sf.net/
http://spirit.sourceforge.net/

2) Write and deploy a new composite:

This is more complicated than our first example (writing a primitive). Nevertheless, once you get the
basics, writing a composite is almost mechanical and boring (read: easy). Check out
statements.hpp. All the lazy statements are written in terms of the composite interface.

Ok, let’s get on with it. Recall that the if_ else_ lazy statement (and all statements for that matter)
return void. What’s missing, and will surely be useful, is something like C/C++’s "cond ? a : b"
expression. It is really unfortunate that C++ fell short of allowing this to be overloaded. Sigh. Anyway
here’s the code (sample6.cpp):

 template <typename CondT, typename TrueT, typename FalseT>
 struct if_else_composite {

 typedef if_else_composite<CondT, TrueT, FalseT> self_t;

 template <typename TupleT>
 struct result {

 typedef typename higher_rank<
 typename actor_result<TrueT, TupleT>::plain_type,
 typename actor_result<FalseT, TupleT>::plain_type
 >::type type;
 };

 if_else_composite(
 CondT const& cond_, TrueT const& true__, FalseT const& false__)
 : cond(cond_), true_(true__), false_(false__) {}

 template <typename TupleT>
 typename actor_result<self_t, TupleT>::type
 eval(TupleT const& args) const
 {
 return cond.eval(args) ? true_.eval(args) : false_.eval(args);
 }

 CondT cond; TrueT true_; FalseT false_; // actors
 };

Ok, this is quite a mouthfull. Let’s digest this piecemeal.

 template <typename CondT, typename TrueT, typename FalseT>
 struct if_else_composite {

This is basically a specialized composite that has 3 actors. It has no operation since it is implied. The 3
actors are cond (condition of type CondT) true_ (the true branch of type TrueT), false_ the (false
branch or type FalseT).

 typedef if_else_composite<CondT, TrueT, FalseT> self_t;

self_t is a typedef that declares its own type: "What am I?"

 template <typename TupleT>
 struct result {

 typedef typename higher_rank<
 typename actor_result<TrueT, TupleT>::plain_type,
 typename actor_result<FalseT, TupleT>::plain_type
 >::type type;
 };

We have seen result before. For actor base-classes such as composites and primitives, the parameter is
a TupleT, i.e. the tupled arguments passed in from the actor.

So given some arguments, what will be our return type? TrueT and FalseT are also actors remember?
So first, we should ask them "What are your *plain* (stripped from references) return types?"

Knowing that, our task is then to know which type has a higher rank (recall rank<T> and
higher_rank<T0, T1>). Why do we have to do this? We are emulating the behavior of the "cond ? a :
b" expression. In C/C++, the type of this expression is the one (a or b) with the higher rank. For
example, if a is an int and b is a double, the result should be a double.

Following this, finally, we have a return type typedef’d by result<TupleT>::type.

 if_else_composite(
 CondT const& cond_, TrueT const& true__, FalseT const& false__)
 : cond(cond_), true_(true__), false_(false__) {}

This is our constructor. We just stuff the constructor arguments into our member variables.

 template <typename TupleT>
 typename actor_result<self_t, TupleT>::type
 eval(TupleT const& args) const

Now, here is our main eval member function. Given a self_t, our type, and the TupleT, the return type
deduction is almost canonical. Just ask actor_result, it’ll surely know.

 {
 return cond.eval(args) ? true_.eval(args) : false_.eval(args);
 }

We pass the tupled args to all of our actors: cond, args and args appropriately. Notice how this
expression reflects the C/C++ version almost to the letter.

Well that’s it. Now let’s write a generator for this composite:

 template <typename CondT, typename TrueT, typename FalseT>
 actor<if_else_composite<
 typename as_actor<CondT>::type,
 typename as_actor<TrueT>::type,
 typename as_actor<FalseT>::type> >
 if_else_(CondT const& cond, TrueT const& true_, FalseT const& false_)
 {
 typedef if_else_composite<
 typename as_actor<CondT>::type,
 typename as_actor<TrueT>::type,
 typename as_actor<FalseT>::type>
 result;

 return result(

 as_actor<CondT>::convert(cond),
 as_actor<TrueT>::convert(true_),
 as_actor<FalseT>::convert(false_));
 }

Now this should be trivial to explain. I hope. Again, let’s digest this piecemeal.

 template <typename CondT, typename TrueT, typename FalseT>

Again, there are three elements involved: The CondT condition ’cond’, the TrueT true branch ’true_,
and the FalseT false branch ’false_’.

 actor<if_else_composite<
 typename as_actor<CondT>::type,
 typename as_actor<TrueT>::type,
 typename as_actor<FalseT>::type> >

This is our target. We want to generate this actor. Now, given our arguments (cond, true_ and false_),
we are not really sure if they are really actors. What if the user passes the boolean true as the cond?
Surely, that has to be converted to an actor<value<bool> >, otherwise Phoenix will go berzerk and
will not be able to accommodate this alien.

 as_actor<T>::type

is just what we need. This type computer converts from an arbitrary type T to a full-fledged actor
citizen.

 if_else_(CondT const& cond, TrueT const& true_, FalseT const& false_)

These are the arguments to our generator ’if_else_’.

 typedef if_else_composite<
 typename as_actor<CondT>::type,
 typename as_actor<TrueT>::type,
 typename as_actor<FalseT>::type>
 result;

Same as before, this is our target return type, this time stripped off the actor. That’s OK because the
actor<T> has a constructor that takes in a BaseT object: ’result’ in this case.

 return result(
 as_actor<CondT>::convert(cond),
 as_actor<TrueT>::convert(true_),
 as_actor<FalseT>::convert(false_));

Finally, we construct and return our result. Notice how we called the as_actor<T>::convert static
function to do the conversion from T to a full-fledged actor for each of the arguments.

At last. Now we can use our brand new composite and its generator:

 // Print all contents of an STL container c and
 // prefix " is odd" or " is even" appropriately.

 for_each(c.begin(), c.end(),
 cout
 << arg1
 << if_else_(arg1 % 2 == 1, " is odd", " is even")
 << val(’\n’)
);

3) Write an as_actor<T> converter for a specific type:

By default, an unknown type T is converted to an actor<value<T> >. Say we just wrote a special
primitive my_lazy_class following example 1. Whenever we have an object of type my_class, we
want to convert this to a my_lazy_class automatically.

as_actor<T> is Phoenix’s type converter. All facilities that need to convert from an unknown type to
an actor passes through this class. Specializing as_actor<T> for my_class is just what we need. For
example:

 template <>
 struct as_actor<my_class> {

 typedef actor<my_lazy_class> type;
 static type convert(my_class const& x)
 { return my_lazy_class(x); }
 };

For reference, here is the main is_actor<T> interface:

 template <typename T>
 struct as_actor {

 typedef ??? type;
 static type convert(T const& x);
 };

where ??? is the actor type returned by the static convert function. By default, this is:

 typedef value<T> type;

4) Write a specialized overloaded operator for a specific type:

Consider the handling of operator << std::ostream such as cout. When we see an expression such as:

 cout << "Hello World\n"

the operator overload actually takes in cout by reference, modifies it and returns the same cout again
by reference. This does not conform to the standard behavior of the shift left operator for built-in ints.

In such cases, we can provide a specialized overload for this to work as a lazy-operator in expressions
such as "cout << arg1 << arg2;" where the operatior behavior deviates from the standard operator:

1. std::ostream is taken as the LHS by reference
2. std::ostream is converted to an actor<variable<std::ostream> > instead of the default

actor<value<std::ostream> >.

We supply a special overload then (see special_ops.hpp):

 template <typename BaseT>
 actor<composite<
 shift_l_op, // an operator tag
 variable<std::ostream>, // an actor LHS
 actor<BaseT>, // an actor RHS
 > >
 operator<<(
 std::ostream& _0, // LHS argument
 actor<BaseT> const& _1) // RHS argument
 {
 return actor<composite<
 shift_l_op, // an operator tag
 variable<std::ostream>, // an actor LHS
 actor<BaseT>, // an actor RHS
 > >(var(_0), _1); // construct #em
 }

Take note that the std::ostream reference is converted to a actor<variable<std::ostream> > instead of
the default actor<value<std::ostream> > which is not appropriate in this case.

This is not yet complete. Take note also that a specialization for binary_operator also needs to be
written (see no. 6).

5) Specialize a rank<T> for a specific type or group of types:

Scenario: We have a set of more specialized numeric classes with higher precision than the built-in
types. We have integer, floating and rational classes. All of the classes allow type promotions from the
built-ins. These classes have all the pertinent operators implemented along with a couple of mixed
type operators whenever appropriate. The operators conform to the canonical behavior of the built-in
types. We want to enable Phoenix support for our numeric classes.

Solution: Write rank specializations for our numeric types. This is trivial and straightforward:

 template <> struct rank<integer> { static int const value = 10000; };
 template <> struct rank<floating> { static int const value = 10020; };
 template <> struct rank<rational> { static int const value = 10030; };

Now, whenever there are mixed-type operations such as a + b where a is a primitive built-in int and b
is our rational class, the correct promotion will be applied, and the result will be a rational. The type
with the higher rank will win.

6) Specialize a unary_operator<TagT, T> or binary_operator<TagT, T0, T1> for a specific type:

Scenario: We have a non-STL conforming iterator named my_iterator. Fortunately, its ++ operator
works as expected. Unfortunately, when applying the dereference operator *p, it returns an object of
type my_class but does not follow STL’s convention that iterator classes have a typedef named
reference.

Solution, write a unary_operator specialization for our non- standard class:

 template <>
 struct unary_operator<dereference_op, my_iterator> {

 typedef my_class result_type;
 static result_type eval(my_iterator const& iter)
 { return *iter; }
 };

Scenario: We have a legacy bigint implementation that we use for cryptography. The class design is
totally brain-dead and disobeys all the rules. For example, its + operator is destructive and actually
applies the += semantics for efficiency (yes, there are such brain-dead beasts!).

Solution: write a binary_operator specialization for our non- standard class:

 template <>
 struct binary_operator<plus_op, bigint, bigint> {

 typedef bigint& result_type;
 static result_type eval(bigint& lhs, bigint const& rhs)
 { return lhs + rhs; }
 };

Going back to our example in no. 4, we also need to write a binary_operator<TagT, T0, T1>
specialization for ostreams because the << operator for ostreams deviate from the normal behavior.

 template <typename T1>
 struct binary_operator<shift_l_op, std::ostream, T1> {

 typedef std::ostream& result_type;
 static result_type eval(std::ostream& out, T1 const& rhs)
 { return out << rhs; }
 };

7) Simply write a lazy-function.

Consider this:

 struct if_else_func {

 template <typename CondT, typename TrueT, typename FalseT>
 struct result {

 typedef typename higher_rank<TrueT, FalseT>::type type;
 };

 template <typename CondT, typename TrueT, typename FalseT>
 typename higher_rank<TrueT, FalseT>::type
 operator()(CondT cond, TrueT const& t, FalseT const& f) const
 { return cond ? t : f; }
 };

 function<if_else_func> if_else_;

And this corresponding usage:

 // Print all contents of an STL container c and
 // prefix " is odd" or " is even" appropriately.

 for_each(c.begin(), c.end(),
 cout
 << arg1
 << if_else_(arg1 % 2 == 1, " is odd", " is even")
 << val(’\n’)
);

What the $%^!? If we can do this, why on earth did we go to all the trouble twisting our brains inside
out with the if_else_ composite in no. 2? Hey, not so fast, there’s a slight difference that justifies the
if_else_ composite: It is not apparent in the example, but the composite version of the if_else_
evaluates either the true or the false branch, **but not both**. The lazy-function version above always
eagerly evaluates all its arguments before the function is called. Thus, if we are to adhere strongly to
C/C++ semantics, we need the composite version.

Besides, I need to show an example... Hmmm, so what’s the point of no. 7 then? Well, in most cases, a
lazy-function will suffice. These beasts are quite powerful, you know.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Wrap

up

Sooner or later more FP techniques become standard practice as people find the true value of this
programming discipline outside the academe and into the mainstream. In as much as the structured
programming of the 70s and object oriented programming in the 80s and generic programming in the
90s shaped our thoughts towards a more robust sense of software engineering, FP will certainly be a
paradigm that will catapult us towards more powerful software design and engineering onward into
the new millenium.

Let me quote Doug Gregor of Boost.org. About functional style programming libraries:

They’re gaining acceptance, but are somewhat stunted by the ubiquitousness of broken
compilers. The C++ community is moving deeper into the so-called "STL-style" programming
paradigm, which brings many aspects of functional programming into the fold. Look at, for
instance, the Spirit parser to see how such function objects can be used to build Yacc-like
grammars with semantic actions that can build abstract syntax trees on the fly. This type of
functional composition is gaining momentum.

Indeed. Phoenix is another attempt to introduce more FP techniques into the mainstream. Not only is it
a tool that will make life easier for the programmer. In its own right, the actual design of the
framework itself is a model of true C++ FP in action. The framework is designed and structured in a
strict but clear and well mannered FP sense. By all means, use the framework as a tool. But for those
who want to learn more about FP in C++, don’t stop there, I invite you to take a closer look at the
design of the framework itself.

The whole framework is rather small and comprises of only a couple of header files. There are no
object files to link against. Unlike most FP libraries in C++, Phoenix is portable to more C++
compilers in existence. Currently it works on Borland 5.5.1, Comeau 4.24, G++ 2.95.2, G++ 3.03,
G++ 3.1, Intel 5.0, Intel 6.0, Code Warrior 7.2 and perhaps soon, to MSVC.

So there you have it. Have fun! See you in the FP world.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/
http://www.boost.org/
http://spirit.sourceforge.net/

References

Why Functional Programming Matters, John Hughes, 1989.
Available online at http://www.math.chalmers.se/~rjmh/Papers/whyfp.html.

Boost.Lambda library, Jaakko Jarvi, 1999-2002 Jaakko Järvi, Gary Powell.
Available online at http://www.boost.org/libs/lambda/.

Functional Programming in C++ using the FC++ Library: a short article introducing FC++, Brian
McNamara and Yannis Smaragdakis, April 2001. Available online at
http://www.cc.gatech.edu/~yannis/fc++/.

Side-effects and partial function application in C++, Jaakko Jarvi and Gary Powell, 2001.
Available online at http://osl.iu.edu/~jajarvi/publications/papers/mpool01.pdf.

Spirit Version 1.2, Joel de Guzman, Nov 2001.
Available online at http://spirit.sourceforge.net/index.php?doc=docs/v1_2/index.html.

Generic Programming Redesign of Patterns, Proceedings of the 5th European Conference on Pattern
Languages of Programs, (EuroPLoP’2000) Irsee, Germany, July 2000.
Available online at http://www.coldewey.com/europlop2000/papers/geraud%2Bduret.zip.

A Gentle Introduction to Haskell, Paul Hudak, John Peterson and Joseph Fasel, 1999.
Available online at http://www.haskell.org/tutorial/

Large scale software design, John Lackos, ISBN 0201633620, Addison-Wesley, July 1996.

Design Patterns, Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph
Jhonson, and John Vlissides, Addison-Wesley, 1995.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/
http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://www.boost.org/
http://www.boost.org/libs/lambda/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.cc.gatech.edu/~yannis/fc++/
http://osl.iu.edu/~jajarvi/publications/papers/mpool01.pdf
http://spirit.sourceforge.net/
http://spirit.sourceforge.net/index.php?doc=docs/v1_2/index.html
http://www.coldewey.com/europlop2000/papers/geraud%2Bduret.zip
http://www.haskell.org/
http://www.haskell.org/tutorial/

Place
holders

So far, apart from the quick start appetizer, we presented some examples of lazy functions using the ?
symbol to act as a placeholder for yet unsupplied arguments. While this is understandable and simple,
it is not adequate when we are dealing with complex composition of functions in addition to binary
infix, unary prefix and postfix operators.

When an arbitrarily complex function composition has M-N = U unsupplied arguments, the ? symbol
maps this onto the actual non- lazy function taking U arguments. For example:

 f1(f2(?, 2), f3(?, f4(?))) --> unnamed_f(a, b, c)

Since there is only 1 supplied argument (N) and we are expecting 4 arguments (M), hence U = 3.

It might not be immediately apparent how mapping takes place. It can naively be read from left to
right; the first ? in our example maps to a, the second to b, and the last ? maps to c. Yet for even more
complex compositions possibly with operators added in the mix, this becomes rather confusing. Also,
this is not so flexible: in many occassions, we want to map two or more unknown arguments to a
single place-holder.

To avoid confusion, rather than using the ? as a symbol for unsupplied arguments, we use a more
meaningful and precise representation. This is realized by supplying a numeric representation of the
actual argument position (1 to N) in the resulting (right hand) function. Here’s our revised example
using this scheme:

 f1(f2(arg1, 2), f3(arg2, f4(arg3))) --> unnamed_f(arg1, arg2, arg3)

Now, arg1, arg2 and arg3 are used as placeholders instead of ?. Take note that with this revised
scheme, we can now map two or more unsupplied arguments to a single actual argument. Example:

 f1(f2(arg1, 2), f3(arg2, f4(arg1))) --> unnamed_f(arg1, arg2)

Notice how we mapped the leftmost and the rightmost unnamed argument to arg1. Consequently, the
resulting (right hand) function now expects only two arguments (arg1 and arg2) instead of three. Here
are some interesting snippets where this might be useful:

 plus(arg1, arg1) --> mult_2(x)
 mult(arg1, arg1) --> square(x)
 mult(arg1, mult(arg1, arg1)) --> cube(x)

Extra arguments
In C and C++, a function can have extra arguments that are not at all used by the function body itself.
For instance, call-back functions may provide much more information than is actually needed at once.
These extra arguments are just ignored.

http://spirit.sf.net/

Phoenix also allows extra arguments to be passed. For example, recall our original add function:

 add(arg1, arg2)

We know now that partially evaluating this function results to a function that expects 2 arguments.
However, the framework is a bit more lenient and allows the caller to supply more arguments than is
actually required. Thus, our partially evaluated plus(arg1, arg2) function actually allows 2 *or more*
arguments to be passed in. For instance, with:

 add(arg1, arg2)(1, 2, 3)

 the third argument ’3’ is merely ignored.

Taking this further, in-between arguments may even be ignored. Example:

 add(arg1, arg5)(1, 2, 3, 4, 5)

Here, arguments 2, 3, and 4 are ignored. The function add just takes in the first argument (arg1) and
the fifth argument (arg5). The result is of course six (6).

 Strict Arity
There are a few reasons why enforcing strict arity is not desireable. A case in
point is the callback function. Typical callback functions provide more
information than is actually needed. Lambda functions are often used as
callbacks.

Copyright © 2001-2002 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Phoenix

The preceding chapter introduced Phoenix as a means to implementing your semantic actions. We
shall look a little bit more into this important library with focus on how you can use it handily with
Spirit. This chapter is by no means a thorough discourse of the library. For more information on
Phoenix, please take some time to read the Phoenix User’s Guide. If you just want to use it quickly,
this chapter will probably suffice. Rather than taking you to the theories and details of the library, we
shall try to provide you with annotated exemplars instead. Hopefully, this will get you into high gear
quickly.

Semantic actions in Spirit can be just about any function or function object (functor) as long as it can
satisfy the required signature. For example, uint_p requires a signature of void F(T) , where T is
the type of the integer (typically unsigned int). Plain vanilla actions are of the void
F(IterT, IterT) variety. You can code your actions in plain C++. Calls to C++ functions or
functors will thus be of the form P[&F] or P[F()] etc. (see Semantic Actions). Phoenix on the other
hand, attempts to mimic C++ such that you can define the function body inlined in the code.

 C++ in C++?
In as much as Spirit attempts to mimic EBNF in C++, Phoenix attempts to
mimic C++ in C++!!!

var
Remember the boost::ref ? We discussed that in the Parametric Parsers chapter. Phoenix has a
similar, but more flexible, counterpart. It’s called var . The usage is similar to boost::ref and you
can use it as a direct replacement. However, unlike boost::ref , you can use it to form more
complex expressions. Here are some examples:

 var(x) += 3
 var(x) = var(y) + var(z) var(x) = var(y) + (3 * var(z)) var(x) = var(y)[var(i)] // assuming y is indexable and i is an index

Let’s start with a simple example. We’ll want to parse a comma separated list of numbers and report
the sum of all the numbers. Using phoenix’s var, we do not have to write external semantic actions.
We simply inline the code inside the semantic action slots. Here’s the complete grammar with our
phoenix actions (see sum.cpp in the examples):

 real_p[var(n) = arg1] >> *(’,’ >> real_p[var(n) += arg1])

 The full source code can be viewed here. This is part of the Spirit distribution.

argN

Notice the expression: var(n) = arg1 . What is arg1 and what is it doing there? arg1 is an
argument placeholder. Remember that real_p (see Numerics) reports the parsed number to its
attached semantic action. arg1 is a placeholder for the first argument passed to the semantic action by
the parser. If there are more than one arguments passed in, these arguments can be referred to using

http://spirit.sf.net/
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/sum.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/sum.cpp

arg1 ..argN . For instance, generic semantic actions (transduction interface; see Semantic Actions)
are passed 2 arguments: the iterators (first /last) to the matching portion of the input stream. You
can refer to first and last through arg1 and arg2 , respectively.

Like var, argN is also composable. Here are some examples:

 var(x) += arg1
 var(x) = arg1 + var(z) var(x) = arg1 + (3 * arg2) var(x) = arg1[arg2] // assuming arg1 is indexable and arg2 is an index

val

Note the expression: 3 * arg2. This expression is actually a short-hand equivalent to: val(3) *
arg2 . We shall see later why, in some cases, we need to explicitly wrap constants and literals inside
the val. Again, like var and argN, val is also composable.

Functions

Remember our very first example? In the Quick Start chapter, we presented a parser that parses a
comma separated list and stuffs the parsed numbers in a vector (see number_list.cpp) . For simplicity,
we used Spirit’s pre-defined actors (see Predefined Actors). In the example, we used push_back_a :

 real_p[push_back_a(v)] >> *(’,’ >> real_p[push_back_a(v)])

Phoenix allows you to write more powerful polymorphic functions, similar to push_back_a , easily.
See stuff_vector.cpp. The example is similar to number_list.cpp in functionality, but this time, using
phoenix a function to actually implement the push_back function:

 struct push_back_impl
 {
 template <typename Container, typename Item>
 struct result
 {
 typedef void type;
 };

 template <typename Container, typename Item>
 void operator()(Container& c, Item const& item) const
 {
 c.push_back(item);
 }
 };

 function<push_back_impl> const push_back = push_back_impl();

 The full source code can be viewed here. This is part of the Spirit distribution.

 Predefined Phoenix Functions
A future version of Phoenix will include an extensive set of predefined
functions covering the whole of STL containers, iterators and algorithms.
push_back, will be part of this suite.

push_back_impl is a simple wrapper over the push_back member function of STL containers.
The extra scaffolding is there to provide phoenix with additional information that otherwise cannot be
directly deduced. result relays to phoenix the return type of the functor (operator()) given its

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/number_list.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/stuff_vector.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/number_list.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/stuff_vector.cpp

argument types (Container and Item) . In this case, the return type is always, simply void .

push_back is a phoenix function object. This is the actual function object that we shall use. The
beauty behind phoenix function objects is that the actual use is strikingly similar to a normal C++
function call. Here’s the number list parser rewritten using our phoenix function object:

 real_p[push_back(var(v), arg1)] >> *(’,’ >> real_p[push_back(var(v), arg1)])

And, unlike predefined actors, they can be composed. See the pattern? Here are some examples:

 push_back(var(v), arg1 + 2)
 push_back(var(v), var(x) + arg1)
 push_back(var(v)[arg1], arg2) // assuming v is a vector of vectors and arg1 is an index

push_back does not have a return type. Say, for example, we wrote another phoenix function sin , we
can use it in expressions as well:

 push_back(var(v), sin(arg1) * 2)

Construct

Sometimes, we wish to construct an object. For instance, we might want to create a std::string
given the first/last iterators. For instance, say we want to parse a list of identifiers instead. Our
grammar, without the actions, is:

 (+alpha_p) >> *(’,’ >> (+alpha_p))

construct_ is a predefined phoenix function that, you guessed it, constructs an object, from the
arguments passed in. The usage is:

 construct_<T>(arg1, arg2,... argN)

where T is the desired type and arg1..argN are the constructor arguments. For example, we can
construct a std::string from the first/last iterator pair this way:

 construct_<std::string>(arg1, arg2)

Now, we attach the actions to our grammar:

 (+alpha_p)
 [
 push_back(var(v), construct_<std::string>(arg1, arg2))
]
 >>
 *(’,’ >>
 (+alpha_p)
 [
 push_back(var(v), construct_<std::string>(arg1, arg2))
]
)

 The full source code can be viewed here. This is part of the Spirit distribution.

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/stuff_vector2.cpp

Lambda expressions

All these phoenix expressions we see above are lambda expressions. The important thing to note is
that these expressions are not evaluated immediately. At grammar construction time, when the actions
are attached to the productions, a lambda expression actually generates an unnamed function object
that is evaluated later, at parse time. In other words, lambda expressions are lazily evaluated.

 Lambda Expressions?
Lambda expressions are actually unnamed partially applied functions where
placeholders (e.g. arg1, arg2) are provided in place of some of the arguments.
The reason this is called a lambda expression is that traditionally, such

placeholders are written using the Greek letter lambda .

Phoenix uses tricks not unlike those used by Spirit to mimic C++ such that you can define the function
body inlined in the code. It’s weird, but as mentioned, Phoenix actually mimicks C++ in C++ using
expression templates. Surely, there are limitations...

All components in a Phoenix expression must be an actor (in phoenix parlance) in the same way that
components in Spirit should be a parser . In Spirit, you can write:

 r = ch_p(’x’) >> ’y’;

But not:

 r = ’x’ >> ’y’;

In essence, parser >> char is a parser, but char >> char is a char (the char shift-right by
another char).

The same restrictions apply to Phoenix. For instance:

 int x = 1;
 cout << var(x) << "pizza"

is a well formed Phoenix expression that’s lazily evaluated. But:

 cout << x << "pizza"

is not. Such expressions are immediately executed. C++ syntax dictates that at least one of the
operands must be a Phoenix actor type. This also applies to compound expressions. For example:

 cout << var(x) << "pizza" << "man"

This is evaluated as:

 (((cout << var(x)) << "pizza") << "man")

Since (cout << var(x)) is an actor, at least one of the operands is a phoenix actor, ((cout <<
var(x)) << "pizza") is also a Phoenix actor, and the whole expression is thus also an actor.

Sometimes, it is safe to write:

 cout << var(x) << val("pizza") << val("man")

just to make it explicitly clear what we are dealing with, especially with complex expressions, in the
same way as we explicitly wrap literal strings in str_p("lit") in Spirit.

Phoenix (and Spirit) also deals with unary operators. In such cases, we have no choice. The operand
must be a Phoenix actor (or Spirit parser). Examples:

Spirit:

 *ch_p(’z’) // good
 *(’z’) // bad

Phoenix:

 *var(x) // good (lazy)
 *x // bad (immediate)

Also, in Phoenix, for assignments and indexing to be lazily evaluated, the object acted upon should be
a Phoenix actor. Examples:

 var(x) = 123 // good (lazy)
 x = 123 // bad (immediate)
 var(x)[0] // good (lazy)
 x[0] // bad, immediate
 var(x)[var(i)] // good (lazy)
 x[var(i)] // bad and illegal (x is not an actor)
 var(x[var(i)]) // bad and illegal (x is not an actor)

Wrapping up

Well, there you have it. I hope with this jump-start chapter, you may be able to harness the power of
lambda expressions. By all means, please read the phoenix manual to learn more about the nitty gritty
details. Surely, you’ll get to know a lot more than just by reading this chapter. There are a lot of things
still to be touched. There won’t be enough space here to cover all the features of Phoenix even in brief.

The next chapter, Closures, we’ll see more of phoenix. Stay tuned.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Closures

Overview
Using phoenix, in the previous chapter, we’ve seen how we can get data from our parsers using var :

 int i; integer = int_p[var(i) = arg1];

Nifty! Our rule integer , if successful, passes the parsed integer to the variable i . Everytime we
need to parse an integer, we can call our rule integer and simply extract the parsed number from
the variable i . There’s something you should be aware of though. In the viewpoint of the grammar,
the variable i is global. When the grammar gets more complex, it’s hard to keep track of the current
state of i . And, with recursive rules, global variables simply won’t be adequate.

Closures are needed if you need your rules (or grammars) to be reentrant. For example, a rule (or
grammar) might be called recursively indirectly or directly by itself. The calculator is a good example.
The expression rule recursively calls itself indirectly when it invokes the factor rule.

Closures provide named (lazy) variables associated with each parse rule invocation. A closure variable
is addressed using member syntax:

 rulename.varname

A closure variable R.x may be addressed in the semantic action of any other rule invoked by R; it
refers to the innermost enclosing invocation of R. If no such invocation exists, an assertion occurs at
runtime.

Closures provide an environment, a stack frame, for local variables. Most importantly, the closure
variables are accessible from the EBNF grammar specification and can be used to pass parser
information upstream or downstream from the topmost rule down to the terminals in a top-down
recursive descent. Closures facilitate dynamic scoping in C++. Spirit’s closure implementation is
based on Todd Veldhuizen’s Dynamic scoping in C++ technique that he presented in his paper
Techniques for Scientic C++.

When a rule is given a closure, the closure’s local variables are created prior to entering the parse
function and destructed after exiting the parse function. These local variables are true local variables
that exist on the hardware stack.

 Closures and Phoenix
Spirit v1.8 closure support requires Phoenix. In the future, Spirit will fully
support BLL. Currently, work is underway to merge the features of both
libraries.

http://spirit.sf.net/
ftp://ftp.cs.indiana.edu/pub/techreports/TR542.pdf
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/lambda/index.html

Example
Let’s go back to the calculator grammar introduced in the Functional chapter. Here’s the full grammar
again, plus the closure declarations:

 struct calc_closure : boost::spirit::closure<calc_closure, double>
 {
 member1 val;
 };

 struct calculator : public grammar<calculator, calc_closure::context_t>
 {
 template <typename ScannerT>
 struct definition
 {
 definition(calculator const& self)
 {
 top = expression[self.val = arg1];

 expression
 = term[expression.val = arg1]
 >> *((’+’ >> term[expression.val += arg1])
 | (’-’ >> term[expression.val -= arg1])
)
 ;

 term
 = factor[term.val = arg1]
 >> *((’*’ >> factor[term.val *= arg1])
 | (’/’ >> factor[term.val /= arg1])
)
 ;

 factor
 = ureal_p[factor.val = arg1]
 | ’(’ >> expression[factor.val = arg1] >> ’)’
 | (’-’ >> factor[factor.val = -arg1])
 | (’+’ >> factor[factor.val = arg1])
 ;
 }

 typedef rule<ScannerT, calc_closure::context_t> rule_t;
 rule_t expression, term, factor;
 rule<ScannerT> top;

 rule<ScannerT> const&
 start() const { return top; }
 };
 };

 The full source code can be viewed here. This is part of the Spirit distribution.

Surely, we’ve come a long way from the original version of this calculator. With inline lambda
expressions, we were able to write self contained grammars complete with semantic actions.

The first thing to notice is the declaration of calc_closure .

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/phoenix_calc.cpp

Declaring closures

The general closure declaration syntax is:

 struct name : spirit::closure<name, type1, type2, type3,... typeN>
 {
 member1 m_name1;
 member2 m_name2;
 member3 m_name3;
 ...
 memberN m_nameN;
 };

member1... memberN are indirect links to the actual closure variables. Their indirect types
correspond to type1 ... typeN . In our example, we declared calc_closure :

 struct calc_closure : boost::spirit::closure<calc_closure, double>
 {
 member1 val;
 };

calc_closure has a single variable val of type double.

 BOOST_SPIRIT_CLOSURE_LIMIT
Spirit predefined maximum closure limit. This limit defines the maximum
number of elements a closure can hold. This number defaults to 3. The actual
maximum is rounded up in multiples of 3. Thus, if this value is 4, the actual
limit is 6. The ultimate maximum limit in this implementation is 15. It should
NOT be greater than PHOENIX_LIMIT (see phoenix). Example:
// Define these before including anything else
#define PHOENIX_LIMIT 10
#define BOOST_SPIRIT_CLOSURE_LIMIT 10

Attaching closures

Closures can be applied to rules, subrules and grammars (non-terminals). The closure has a special
parser context that can be used with these non-terminals. The closure’s context is its means to hook
into the non-terminal. The context of the closure C is C::context_t .

We can see in the example that we attached calc_closure to the expression , term and
factor rules in our grammar:

 typedef rule<ScannerT, calc_closure::context_t> rule_t;
 rule_t expression, term, factor;

as well as the grammar itself:

 struct calculator : public grammar<calculator, calc_closure::context_t>

Closure return value

The closure member1 is the closure’s return value. This return value, like the one returned by
anychar_p , for example, can be used to propagate data up the parser hierarchy or passed to
semantic actions. Thus, expression , term and factor , as well as the calculator grammar

itself, all return a double .

Accessing closure variables

Closure variables can be accessed from within semantic actions just like you would struct members:
by qualifying the member name with its owner rule, subrule or grammar. In our example above, notice
how we referred to the closure member val. Example:

 expression.val // refer to expression’s closure member val

Initializing closure variables

We didn’t use this feature in the example, yet, for completeness...

Sometimes, we need to initialize our closure variables upon entering a non-terminal (rule, subrule or
grammar). Closure enabled non-terminals, by default, default-construct variables upon entering the
parse member function. If this is not desirable, we can pass constructor arguments to the non-terminal.
The syntax mimics a function call.

For (a contrived) example, if you wish to construct calc_closure ’s variables to 3.6 , when we
invoke the rule expression , we write:

 expression(3.6) // invoke rule expression and set its closure variable to 3.6

The constructor arguments are actually Phoenix lambda expressions, so you can use arbitrarily
complex expressions. Here’s another contrived example:

 // call rule factor and set its closure variable to (expression.x / 8) * factor.y factor((expression.x / 8) * term.y)

 We can pass less arguments than the actual number of variables in the closure. The variables at the
right with no corresponding constructor arguments are default constructed. Passing more arguments
than there are closure variables is an error.

 See parameters.cpp for a compilable example. This is part of the Spirit distribution.

Closures and Dynamic parsing
Let’s write a very simple parser for an XML/HTML like language with arbitrarily nested tags. The
typical approach to this type of nested tag parsing is to delegate the actual tag matching to semantic
actions, perhaps using a symbol table. For example, the semantic actions are responsible for ensuring
that the tags are nested (e.g. this code: <p><table></p></table> is erroneous).

Spirit allows us to dynamically modify the parser at runtime. The ability to guide parser behavior
through semantic actions makes it possible to ensure the nesting of tags directly in the parser. We shall
see how this is possible. here’s the grammar in its simplest form:

 element = start_tag >> *element >> end_tag;

An element is a start_tag (e.g.) folowed by zero or more elements, and ended by an
end_tag (e.g.). Now, here’s a first shot at our start_tag :

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/intermediate/parameters.cpp

 start_tag = ’<’ >> lexeme_d[(+alpha_p)] >> ’>’;

Notice that the end_tag is just the same as start_tag with the addition of a slash:

 end_tag = "</" >> what_we_got_in_the_start_tag >> ’>’;

What we need to do is to temporarily store what we got in our start_tag and use that later to parse
our end_tag . Nifty, we can use the parametric parser primitives to parse our end_tag :

 end_tag = "</" >> f_str_p(tag) >> ’>’;

where we parameterize f_str_p with what we stored (tag).

Be reminded though that our grammar is recursive. The element rule calls itself. Hence, we can’t just
use a variable and use phoenix::var or boost::ref . Nested recursion will simply gobble up
the variable. Each invocation of element must have a closure variable tag . Here now is the complete
grammar:

 struct tags_closure : boost::spirit::closure<tags_closure, string> {
 member1 tag;
 };

 struct tags : public grammar<tags>
 {
 template <typename ScannerT>
 struct definition {

 definition(tags const& /*self*/)
 {
 element = start_tag >> *element >> end_tag;

 start_tag =
 ’<’
 >> lexeme_d
 [
 (+alpha_p)
 [
 // construct string from arg1 and arg2 lazily
 // and assign to element.tag

 element.tag = construct_<string>(arg1, arg2)
]
]
 >> ’>’;

 end_tag = "</" >> f_str_p(element.tag) >> ’>’;
 }

 rule<ScannerT, tags_closure::context_t> element;
 rule<ScannerT> start_tag, end_tag;

 rule<ScannerT, tags_closure::context_t> const&
 start() const { return element; }
 };
 };

We attached a semantic action to the (+alpha_p) part of the start_tag. There, we stored the parsed
tag in the element ’s closure variable tag . Later, in the end_tag , we simply used the element ’s
closure variable tag to parameterize our f_str_p parser. Simple and elegant. If some of the details

begin to look like greek (e.g. what is construct_ ?), please consult the Phoenix chapter.

 The full source code can be viewed here. This is part of the Spirit distribution.

 Closures in-depth
What are Closures?

The closure is an object that "closes" over the local variables of a function making them visible and
accessible outside the function. What is more interesting is that the closure actually packages a local
context (stack frame where some variables reside) and makes it available outside the scope in which
they actually exist. The information is essentially "captured" by the closure allowing it to be referred
to anywhere and anytime, even prior to the actual creation of the variables.

The following diagram depicts the situation where a function A (or rule) exposes its closure and
another function B references A’s variables through its closure.

The closure as an object that "closes" over the local variables of a function
making them visible and accessible outside the function

Of course, function A should be active when A.x is referenced. What this means is that function B is
reliant on function A (If B is a nested function of A, this will always be the case). The free form nature
of Spirit rules allows access to a closure variable anytime, anywhere. Accessing A.x is equivalent to
referring to the topmost stack variable x of function A. If function A is not active when A.x is
referenced, a runtime exception will be thrown.

Nested Functions

To fully understand the importance of closures, it is best to look at a language such as Pascal which
allows nested functions. Since we are dealing with C++, lets us assume for the moment that C++
allows nested functions. Consider the following pseudo C++ code:

 void a()
 {
 int va;
 void b()
 {

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/matching_tags.cpp

 int vb; void c()
 {
 int vc;
 }

 c();
 }

 b();
 }

We have three functions a, b and c where c is nested in b and b is nested in a. We also have three
variables va , vb and vc . The lifetime of each of these local variables starts when the function where
it is declared is entered and ends when the function exits. The scope of a local variable spans all nested
functions inside the enclosing function where the variable is declared.

Going downstream from function a to function c , when function a is entered, the variable va will be
created in the stack. When function b is entered (called by a), va is very well in scope and is visble in
b. At which point a fresh variable, vb , is created on the stack. When function c is entered, both va
and vb are visibly in scope, and a fresh local variable vc is created.

Going upstream, vc is not and cannot be visible outside the function c . vc ’s life has already expired
once c exits. The same is true with vb ; vb is accessible in function c but not in function a.

Nested Mutually Recursive Rules

Now consider that a, b and c are rules:

 a = b >> *((’+’ >> b) | (’-’ >> b));
 b = c >> *((’*’ >> c) | (’/’ >> c));
 c = int_p | ’(’ >> a >> ’)’ | (’-’ >> c) | (’+’ >> c);

We can visualize a, b and c as mutually recursive functions where a calls b, b calls c and c
recursively calls a. Now, imagine if a, b and c each has a local variable named value that can be
referred to in our grammar by explicit qualification:

 a.value // refer to a’s value local variable
 b.value // refer to b’s value local variable
 c.value // refer to c’s value local variable

Like above, when a is entered, a local variable value is created on the stack. This variable can be
referred to by both b and c . Again, when b is called by a, b creates a local variable value . This
variable is accessible by c but not by a.

Here now is where the analogy with nested functions end: when c is called, a fresh variable value is
created which, as usual, lasts the whole lifetime of c . Pay close attention however that c may call a
recursively. When this happens, a may now refer to the local variable of c.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Dynamic
Parsers

We see dynamic parsing everywhere in Spirit. A special group of parsers, aptly named dynamic
parsers, form the most basic building blocks to dynamic parsing. This chapter focuses on these critters.
You’ll notice the similarity of these parsers with C++’s control structures. The similarity is not a
coincidence. These parsers give an imperative flavor to parsing, and, since imperative constructs are
not native to declarative EBNF, mimicking the host language, C++, should make their use
immediately familiar.

Dynamic parsers modify the parsing behavior according to conditions. Constructing dynamic parsers
requires a condition argument and a body parser argument. Additional arguments are required by
some parsers.

Conditions
Functions or functors returning values convertable to bool can be used as conditions. When the
evaluation of the function/functor yields true it will be considered as meeting the condition.

Parsers can be used as conditions, as well. When the parser matches the condition is met. Parsers used
as conditions work in an all-or-nothing manner: the scanner will not be advanced when they don’t
match.

A failure to meet the condition will not result in a parse error.

if_p
if_p can be used with or without an else-part. The syntax is:

 if_p(condition)[then-parser]

or

 if_p(condition)[then-parser].else_p[else-parser]

When the condition is met the then-parser is used next in the parsing process. When the condition is
not met and an else-parser is available the else-parser is used next. When the condition isn’t met and

no else-parser is available then the whole parser matches the empty sequence. (Note: older versions
of if_p report a failure when the condition isn’t met and no else-parser is available.)

Example:

 if_p("0x")[hex_p].else_p[uint_p]

http://spirit.sf.net/

while_p, do_p
while_p /do_p syntax is:

 while_p(condition)[body-parser]
 do_p[body-parser].while_p(condition)

As long as the condition is met the dynamic parser constructed by while_p will try to match the
body-parser. do_p returns a parser that tries to match the body-parser and then behaves just like the
parser returned by while_p . A failure to match the body-parser will cause a failure to be reported by
the while/do-parser.

Example:

 uint_p[assign_a(sum)] >> while_p(’+’)[uint_p(add(sum)]
 ’"’ >> while_p(~eps_p(’"’))[c_escape_ch_p[push_back_a(result)]] >> ’"’

for_p
for_p requires four arguments. The syntax is:

 for_p(init, condition, step)[body-parser]

init and step have to be 0-ary functions/functors. for_p returns a parser that will:

1. call init
2. check the condition, if the condition isn’t met then a match is returned. The match will cover

everything that has been matched successfully up to this point.
3. tries to match the body-parser. A failure to match the body-parser will cause a failure to be

reported by the for-parser
4. calls step
5. goes to 2.

Copyright © 2002-2003 Joel de Guzman
Copyright © 2002-2003 Martin Wille
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Storable

Rules

The rule is a weird C++ citizen, unlike any other C++ object. It does not have the proper copy and
assignment semantics and cannot be stored and passed around by value. You cannot store rules in STL
containers (vector, stack, etc) for later use and you cannot pass and return rules to and from functions
by value.

EBNF is primarily declarative. Like in functional programming, an EBNF grammar is a static recipe
and there’s no notion of do this then that. However, in Spirit, we managed to coax imperative C++ to
take in declarative EBNF. Hah! Fun!... We did that by masquerading the C++ assignment operator to
mimic EBNF’s ::= . To do that, we gave the rule class’ assignment operator and copy constructor a
different meaning and semantics. The downside is that doing so made the rule unlike any other C++
object. You can’t copy it. You can’t assign it.

We want to have the dynamic nature of C++ to our advantage. We’ve seen dynamic Spirit in action
here and there. There are indeed some interesting applications of dynamic parsers using Spirit. Yet, we
will not fully utilize the power of dynamic parsing, unless we have a rule that behaves like any other
good C++ object. With such a beast, we can write full parsers that’s defined at run time, as opposed to
compile time.

We now have dynamic rules: stored_rules . Basically they are rules with perfect C++
assignment/copy-constructor semantics. This means that stored_rules can be stored in containers
and/or dynamically created at run-time.

 template<
 typename ScannerT = scanner<>,
 typename ContextT = parser_context<>,
 typename TagT = parser_address_tag>
 class stored_rule;

The interface is exactly the same as with the rule class (see the section on rules for more information
regarding the API). The only difference is with the copy and assignment semantics. Now, with
stored_rule s, we can dynamically and algorithmically define our rules. Here are some samples...

Say I want to dynamically create a rule for:

 start = *(a | b | c);

I can write it dynamically step-by-step:

 stored_rule<> start;

 start = a;
 start = start.copy() | b;
 start = start.copy() | c;
 start = *(start.copy());

http://spirit.sf.net/

Later, I changed my mind and want to redefine it (again dynamically) as:

 start = (a | b) >> (start | b);

I write:

 start = b;
 start = a | start.copy();
 start = start.copy() >> (start | b);

Notice the statement:

 start = start.copy() | b;

Why is start.copy() required? Well, because like rules, stored rules are still embedded by reference
when found in the RHS (one reason is to avoid cyclic-shared-pointers). If we write:

 start = start | b;

We have left-recursion! Copying copy of start avoids self referencing. What we are doing is making a
copy of start, ORing it with b, then destructively assigning the result back to start.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

The
Lazy
Parser

Closures are cool. It allows us to inject stack based local variables anywhere in our parse descent
hierarchy. Typically, we store temporary variables, generated by our semantic actions, in our closure
variables, as a means to pass information up and down the recursive descent.

Now imagine this... Having in mind that closure variables can be just about any type, we can store a
parser, a rule, or a pointer to a parser or rule, in a closure variable. Yeah, right, so what?... Ok, hold
on... What if we can use this closure variable to initiate a parse? Think about it for a second. Suddenly
we’ll have some powerful dynamic parsers! Suddenly we’ll have a full round trip from to Phoenix and
Spirit and back! Phoenix semantic actions choose the right Spirit parser and Spirit parsers choose the
right Phoenix semantic action. Oh MAN, what a honky cool idea, I might say!!

lazy_p
This is the idea behind the lazy_p parser. The lazy_p syntax is:

 lazy_p(actor)

where actor is a Phoenix expression that returns a Spirit parser. This returned parser is used in the
parsing process.

Example:

 lazy_p(phoenix::val(int_p))[assign_a(result)]

Semantic actions attached to the lazy_p parser expects the same signature as that of the returned
parser (int_p , in our example above).

lazy_p example
To give you a better glimpse (see the lazy_parser.cpp), say you want to parse inputs such as:

 dec
 { 1 2 3 bin
 { 1 10 11 } 4 5 6 }

where bin {...} and dec {...} specifies the numeric format (binary or decimal) that we are
expecting to read. If we analyze the input, we want a grammar like:

 base = "bin" | "dec"; block = base >> ’{’ >> *block_line >> ’}’;
 block_line = number | block;

http://spirit.sf.net/
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/intermediate/lazy_parser.cpp

We intentionally left out the number rule. The tricky part is that the way number rule behaves
depends on the result of the base rule. If base got a "bin", then number should parse binary
numbers. If base got a "dec", then number should parse decimal numbers. Typically we’ll have to
rewrite our grammar to accomodate the different parsing behavior:

 block =
 "bin" >> ’{’ >> *bin_line >> ’}’ | "dec" >> ’{’ >> *dec_line >> ’}’ ;
 bin_line = bin_p | block;
 dec_line = int_p | block;

while this is fine, the redundancy makes us want to find a better solution; after all, we’d want to make
full use of Spirit’s dynamic parsing capabilities. Apart from that, there will be cases where the set of
parsing behaviors for our number rule is not known when the grammar is written. We’ll only be
given a map of string descriptors and corresponding rules [e.g. (("dec", int_p), ("bin", bin_p) ... etc...)].

The basic idea is to have a rule for binary and decimal numbers. That’s easy enough to do (see
numerics). When base is being parsed, in your semantic action, store a pointer to the selected base in
a closure variable (e.g. block.int_rule). Here’s an example:

 base
 = str_p("bin")[block.int_rule = &var(bin_rule)]
 | str_p("dec")[block.int_rule = &var(dec_rule)]
 ;

With this setup, your number rule will now look something like:

 number = lazy_p(*block.int_rule);

The lazy_parser.cpp does it a bit differently, ingeniously using the symbol table to dispatch the
correct rule, but in essence, both strategies are similar. This technique, using the symbol table, is
detailed in the Techiques section: nabialek_trick. Admitedly, when you add up all the rules, the
resulting grammar is more complex than the hard-coded grammar above. Yet, for more complex
grammar patterns with a lot more rules to choose from, the additional setup is well worth it.

Copyright © 2003 Joel de Guzman
Copyright © 2003 Vaclav Vesely
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/intermediate/lazy_parser.cpp

The
Select
Parser

Select parsers may be used to identify a single parser from a given list of parsers, which successfully
recognizes the current input sequence. Example:

 rule<> rule_select =
 select_p (
 parser_a , parser_b /* ... */
 , parser_n
);

The parsers (parser_a, parser_b etc.) are tried sequentially from left to right until a parser matches the
current input sequence. If there is a matching parser found, the select_p parser returns the parser’s
position (zero based index). For instance, in the example above, 1 is returned if parser_b matches.

There are two predefined parsers of the select parser family: select_p and select_fail_p .
These parsers differ in the way the no match case is handled (when none of the parsers match the
current input sequence). While the select_p parser will return -1 if no matching parser is found,
the select_fail_p parser will not match at all.

The following sample shows how the select parser may be used very conveniently in conjunction with
a switch parser:

 int choice = -1;
 rule<> rule_select =
 select_fail_p(’a’, ’b’, ’c’, ’d’)[assign_a(choice)]
 >> switch_p(var(choice)) [case_p<0>(int_p), case_p<1>(ch_p(’,’)), case_p<2>(str_p("bcd")), default_p] ;

This example shows a rule, which matches:

’a’ followed by an integer
’b’ followed by a ’,’
’c’ followed by "bcd"
a single ’d’.

For other input sequences the give rule does not match at all.

 BOOST_SPIRIT_SELECT_LIMIT
The number of possible entries inside the select_p parser is limited by the
Spirit compile time constant BOOST_SPIRIT_SELECT_LIMIT , which
defaults to 3. This value should not be greater than the compile time constant
given by PHOENIX_LIMIT (see phoenix). Example:

// Define these before including anything else
#define PHOENIX_LIMIT 10
#define BOOST_SPIRIT_SELECT_LIMIT 10

http://spirit.sf.net/

Copyright © 2003-2004 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

The
Switch
Parser

Switch parsers may be used to simplify certain alternation constructs. Consider the following code:

 rule<> rule_overall =
 ch_p(’a’) >> parser_a
 | ch_p(’b’) >> parser_b
 // ...
 | ch_p(’n’) >> parser_n
 ;

Each of the alternatives are evaluated normally in a sequential manner. This tend to be inefficient,
especially for a large number of alternatives. To avoid this inefficiency and to make it possible to write
such constructs in a more readable form, Spirit contains the switch_p family of parsers. The
switch_p parser allows us to rewrite the previous construct as:

 rule<> rule_overall =
 switch_p
 [
 case_p<’a’>(parser_a),
 case_p<’b’>(parser_b),
 // ...
 case_p<’n’>(parser_n)
]
 ;

This switch_p parser takes the next character (or token) from the input stream and tries to match it
against the given integral compile time constants supplied as the template parameters to the case_p
parsers. If this character matches one of the case_p branches, the associated parser is executed (i.e. if
’a’ is matched, parser_a is executed, if ’b’ is matched, parser_b is executed and so on) . If no
case_p branch matches the next input character, the overall construct does not match at all.

 Nabialek trick
The "Nabialek trick" (from the name of its inventor, Sam Nabialek), can also
improve the rule dispatch from linear non-deterministic to deterministic. This
is similar to the switch_p parser, yet, can handle grammars where a
keyword (operator, etc), instead of a single character or token, precedes a
production.

Sometimes it is desireable to add handling of the default case (none of the case_p branches
matched). This may be achieved with the help of a default_p branch:

http://spirit.sf.net/

 rule<> rule_overall =
 switch_p
 [
 case_p<’a’>(parser_a),
 case_p<’b’>(parser_b),
 // ...
 case_p<’n’>(parser_n),
 default_p(parser_default)
]
 ;

This form chooses the parser_default parser if none of the cases matches the next character
from the input stream. Please note that, obviously, only one default_p branch may be added to the
switch_p parser construct.

Moreover, it is possible to omit the parentheses and body from the default_p construct, in which
case, no additional parser is executed and the overall switch_p construct simply returns a match on
any character of the input stream, which does not match any of the case_p branches:

 rule<> rule_overall =
 switch_p
 [
 case_p<’a’>(parser_a),
 case_p<’b’>(parser_b),
 // ...
 case_p<’n’>(parser_n),
 default_p
]
 ;

There is another form of the switch_p construct. This form allows us to explicitly specify the value to
be used for matching against the case_p branches:

 rule<> rule_overall =
 switch_p(cond)
 [
 case_p<’a’>(parser_a),
 case_p<’b’>(parser_b),
 // ...
 case_p<’n’>(parser_n)
]
 ;

where cond is a parser or a nullary function or function object (functor). If it is a parser, then it is
tried and its return value is used to match against the case_p branches. If it is a nullary function or
functor, then its return value will be used.

Please note that during its compilation, the switch_p construct is transformed into a real C++
switch statement. This makes the runtime execution very efficient.

 BOOST_SPIRIT_SWITCH_CASE_LIMIT
The number of possible case_p /default_p branches is limited by the
Spirit compile time constant BOOST_SPIRIT_SWITCH_CASE_LIMIT,
which defaults to 3. There is no theoretical upper limit for this constant, but
most compilers won’t allow you to specify a very large number.

Example:

// Define these before including switch.hpp
#define BOOST_SPIRIT_SWITCH_CASE_LIMIT 10

Copyright © 2003-2004 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Escape
Character

Parser

The Escape Character Parser is a utility parser, which parses escaped character sequences used in
C/C++, LEX or Perl regular expressions. Combined with the confix_p utility parser, it is useful for
parsing C/C++ strings containing double quotes and other escaped characters:

 confix_p(’"’, *c_escape_ch_p, ’"’)

There are two different types of the Escape Character Parser: c_escape_ch_p , which parses C/C++
escaped character sequences and lex_escape_ch_p , which parses LEX style escaped character
sequences. The following table shows the valid character sequences understood by these utility
parsers.

Summary of valid escaped character sequences

c_escape_ch_p

\b, \t, \n, \f, \r, \\, \", \’, \xHH,
\OOO
where: H is some hexadecimal digit (0..9, a..f, A..F) and O is
some octal digit (0..7)

lex_escape_ch_p
all C/C++ escaped character sequences as described above
and additionally any other character, which follows a
backslash

If there is a semantic action attached directly to the Escape Character Parser, all valid escaped
characters are converted to their character equivalent (i.e. a backslash followed by a ’r’ is converted to
’\r’), which is fed to the attached actor. The number of hexadecimal or octal digits parsed depends on
the size of one input character. An overflow will be detected and will generate a non-match.
lex_escape_ch_p will strip the leading backslash for all character sequences which are not listed as
valid C/C++ escape sequences when passing the unescaped character to an attached action.

Please note though, that if there is a semantic action attached to an outermost parser (for instance as in
(*c_escape_ch_p)[some_actor] , where the action is attached to the kleene star generated
parser) no conversion takes place at the moment, but nevertheless the escaped characters are parsed
correctly. This limitation will be removed in a future version of the library.

Copyright © 2001-2002 Daniel C. Nuffer
Copyright © 2003 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/

Loops

So far we have introduced a couple of EBNF operators that deal with looping. We have the + positive
operator, which matches the preceding symbol one (1) or more times, as well as the Kleene star *
which matches the preceding symbol zero (0) or more times.

Taking this further, we may want to have a generalized loop operator. To some this may seem to be a
case of overkill. Yet there are grammars that are impractical and cumbersome, if not impossible, for
the basic EBNF iteration syntax to specify. Examples:

 A file name may have a maximum of 255 characters only.
 A specific bitmap file format has exactly 4096 RGB color information.
 A 32 bit binary string (1..32 1s or 0s).

Other than the Kleene star * , the Positive closure +, and the optional ! , a more flexible mechanism for
looping is provided for by the framework.

Loop Constructs

repeat_p (n) [p] Repeat p exactly n times

repeat_p (n1,
n2) [p]

Repeat p at least n1 times and at most n2 times

repeat_p (n,
more) [p]

Repeat p at least n times, continuing until p fails or the
input is consumed

Using the repeat_p parser, we can now write our examples above:

A file name with a maximum of 255 characters:

 valid_fname_chars = /*..*/;
 filename = repeat_p(1, 255)[valid_fname_chars];

A specific bitmap file format which has exactly 4096 RGB color information:

 uint_parser<unsigned, 16, 6, 6> rgb_p;
 bitmap = repeat_p(4096)[rgb_p];

As for the 32 bit binary string (1..32 1s or 0s), of course we could have easily used the bin_p
numeric parser instead. For the sake of demonstration however:

 bin32 = lexeme_d[repeat_p(1, 32)[ch_p(’1’) | ’0’]];

 Loop parsers are run-time parametric.

http://spirit.sf.net/

The Loop parsers can be dynamic. Consider the parsing of a binary file of Pascal-style length prefixed
string, where the first byte determines the length of the incoming string. Here’s a sample input:

11 h e l l o _ w o r l d

This trivial example cannot be practically defined in traditional EBNF. Although some EBNF syntax
allow more powerful repetition constructs other than the Kleene star, we are still limited to parsing
fixed strings. The nature of EBNF forces the repetition factor to be a constant. On the other hand,
Spirit allows the repetition factor to be variable at run time. We could write a grammar that accepts the
input string above:

 int c;
 r = anychar_p[assign_a(c)] >> repeat_p(boost::ref(c))[anychar_p];

The expression

 anychar_p[assign_a(c)]

extracts the first character from the input and puts it in c . What is interesting is that in addition to
constants, we can also use variables as parameters to repeat_p , as demonstrated in

 repeat_p(boost::ref(c))[anychar_p]

Notice that boost::ref is used to reference the integer c . This usage of repeat_p makes the
parser defer the evaluation of the repetition factor until it is actually needed. Continuing our example,
since the value 11 is already extracted from the input, repeat_p is is now expected to loop exactly
11 times.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Character

Sets

The character set chset matches a set of characters over a finite range bounded by the limits of its
template parameter CharT . This class is an optimization of a parser that acts on a set of single
characters. The template class is parameterized by the character type CharT and can work efficiently
with 8, 16 and 32 and even 64 bit characters.

 template <typename CharT = char>
 class chset;

The chset is constructed from literals (e.g. ’x’), ch_p or chlit<> , range_p or range<> ,
anychar_p and nothing_p (see primitives) or copy-constructed from another chset . The
chset class uses a copy-on-write scheme that enables instances to be passed along easily by value.

 Sparse bit vectors
To accomodate 16/32 and 64 bit characters, the chset class statically
switches from a std::bitset implementation when the character type is
not greater than 8 bits, to a sparse bit/boolean set which uses a sorted vector of
disjoint ranges (range_run). The set is constructed from ranges such that
adjacent or overlapping ranges are coalesced.
range_runs are very space-economical in situations where there are lots of
ranges and a few individual disjoint values. Searching is O(log n) where n is
the number of ranges.

Examples:

 chset<> s1(’x’);
 chset<> s2(anychar_p - s1);

Optionally, character sets may also be constructed using a definition string following a syntax that
resembles posix style regular expression character sets, except that double quotes delimit the set
elements instead of square brackets and there is no special negation ^ character.

 range = anychar_p >> ’-’ >> anychar_p;
 set = *(range_p | anychar_p);

Since we are defining the set using a C string, the usual C/C++ literal string syntax rules apply.
Examples:

 chset<> s1("a-zA-Z"); // alphabetic characters
 chset<> s2("0-9a-fA-F"); // hexadecimal characters
 chset<> s3("actgACTG"); // DNA identifiers
 chset<> s4("\x7f\x7e"); // Hexadecimal 0x7F and 0x7E

The standard Spirit set operators apply (see operators) plus an additional character-set-specific inverse
(negation ~) operator:

http://spirit.sf.net/

Character set operators

~a Set inverse

a | b Set union

a & Set intersection

a - b Set difference

a ^ b Set xor

where operands a and b are both chsets or one of the operand is either a literal character, ch_p or
chlit , range_p or range , anychar_p or nothing_p . Special optimized overloads are
provided for anychar_p and nothing_p operands. A nothing_p operand is converted to an
empty set, while an anychar_p operand is converted to a set having elements of the full range of the
character type used (e.g. 0-255 for unsigned 8 bit chars).

A special case is ~anychar_p which yields nothing_p , but ~nothing_p is illegal. Inversion of
anychar_p is asymmetrical, a one-way trip comparable to converting T* to a void*.

Special conversions

chset<CharT>(nothing_p) empty set

chset<CharT>(anychar_p) full range of CharT (e.g. 0-255 for unsigned 8 bit chars)

~anychar_p nothing_p

~nothing_p illegal

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Confix
Parsers

Confix Parsers

Confix Parsers recognize a sequence out of three independent elements: an opening, an expression and
a closing. A simple example is a C comment:

 /* This is a C comment */

which could be parsed through the following rule definition:

 rule<> c_comment_rule
 = confix_p("/*", *anychar_p, "*/")
 ;

The confix_p parser generator should be used for generating the required Confix Parser. The three
parameters to confix_p can be single characters (as above), strings or, if more complex parsing
logic is required, auxiliary parsers, each of which is automatically converted to the corresponding
parser type needed for successful parsing.

The generated parser is equivalent to the following rule:

 open >> (expr - close) >> close

If the expr parser is an action_parser_category type parser (a parser with an attached
semantic action) we have to do something special. This happens, if the user wrote something like:

 confix_p(open, expr[func], close)

where expr is the parser matching the expr of the confix sequence and func is a functor to be called
after matching the expr . If we would do nothing, the resulting code would parse the sequence as
follows:

 open >> (expr[func] - close) >> close

which in most cases is not what the user expects. (If this is what you’ve expected, then please use the
confix_p generator function direct() , which will inhibit the parser refactoring). To make the
confix parser behave as expected:

 open >> (expr - close)[func] >> close

the actor attached to the expr parser has to be re-attached to the (expr - close) parser
construct, which will make the resulting confix parser ’do the right thing’. This refactoring is done by
the help of the Refactoring Parsers. Additionally special care must be taken, if the expr parser is a
unary_parser_category type parser as

 confix_p(open, *anychar_p, close)

http://spirit.sf.net/

which without any refactoring would result in

 open >> (*anychar_p - close) >> close

and will not give the expected result (*anychar_p will eat up all the input up to the end of the input
stream). So we have to refactor this into:

 open >> *(anychar_p - close) >> close

what will give the correct result.

The case, where the expr parser is a combination of the two mentioned problems (i.e. the expr parser is
a unary parser with an attached action), is handled accordingly too, so:

 confix_p(open, (*anychar_p)[func], close)

will be parsed as expected:

 open >> (*(anychar_p - end))[func] >> close

The required refactoring is implemented here with the help of the Refactoring Parsers too.

Summary of Confix Parser refactorings

You write it as: It is refactored to:

confix_p(open, expr,
close)

open >> (expr - close) >> close

confix_p(open,
expr[func], close)

open >> (expr - close)[func] >>
close

confix_p(open, *expr,
close)

open >> *(expr - close) >> close

confix_p(open,
(*expr)[func], close)

open >> (*(expr - close))[func] >>
close

Comment Parsers

The Comment Parser generator template comment_p is helper for generating a correct Confix Parser
from auxiliary parameters, which is able to parse comment constructs as follows:

 StartCommentToken >> Comment text >> EndCommentToken

There are the following types supported as parameters: parsers, single characters and strings (see
as_parser). If it is used with one parameter, a comment starting with the given first parser parameter
up to the end of the line is matched. So for instance the following parser matches C++ style comments:

 comment_p("//")

If it is used with two parameters, a comment starting with the first parser parameter up to the second
parser parameter is matched. For instance a C style comment parser could be constrcuted as:

 comment_p("/*", "*/")

The comment_p parser generator allows to generate parsers for matching non-nested comments (as
for C/C++ comments). Sometimes it is necessary to parse nested comments as for instance allowed in
Pascal.

 { This is a { nested } PASCAL-comment }

Such nested comments are parseable through parsers generated by the comment_nest_p generator
template functor. The following example shows a parser, which can be used for parsing the two
different (nestable) Pascal comment styles:

 rule<> pascal_comment
 = comment_nest_p("(*", "*)")
 | comment_nest_p(’{’, ’}’)
 ;

Please note, that a comment is parsed implicitly as if the whole comment_p(...) statement were
embedded into a lexeme_d[] directive, i.e. during parsing of a comment no token skipping will
occur, even if you’ve defined a skip parser for your whole parsing process.

 comments.cpp demonstrates various comment parsing schemes:

1. Parsing of different comment styles
parsing C/C++-style comment
parsing C++-style comment
parsing PASCAL-style comment

2. Parsing tagged data with the help of the confix_parser
3. Parsing tagged data with the help of the confix_parser but the semantic

action is directly attached to the body sequence parser

This is part of the Spirit distribution.

Copyright © 2001-2002 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/comments.cpp

List
Parsers

List Parsers are generated by the special predefined parser generator object list_p , which generates
parsers recognizing list structures of the type

 item >> *(delimiter >> item) >> !end

where item is an expression, delimiter is a delimiter and end is an optional closing expression. As
you can see, the list_p generated parser does not recognize empty lists, i.e. the parser must find at
least one item in the input stream to return a successful match. If you wish to also match an empty list,
you can make your list_p optional with operator! An example where this utility parser is helpful is
parsing comma separated C/C++ strings, which can be easily formulated as:

 rule<> list_of_c_strings_rule
 = list_p(confix_p(’\"’, *c_escape_char_p, ’\"’), ’,’)
 ;

The confix_p and c_escape_char_p parser generators are described here and here.

The list_p parser generator object can be used to generate the following different types of List
Parsers:

List Parsers

list_p

list_p used by itself parses comma separated lists without
special item formatting, i.e. everything in between two
commas is matched as an item , no end of list token is
matched

list_p(delimiter)
generates a list parser, which recognizes lists with the given
delimiter and matches everything in between them as an
item , no end of list token is matched

list_p(item, delimiter)
generates a list parser, which recognizes lists with the given
delimiter and matches items based on the given item
parser, no end of list token is matched

list_p(item, delimiter,
end)

generates a list parser, which recognizes lists with the given
delimiter and matches items based on the given item
parser and additionally recognizes an optional end
expression

All of the parameters to list_p can be single characters, strings or, if more complex parsing logic is
required, auxiliary parsers, each of which is automatically converted to the corresponding parser type
needed for successful parsing.

http://spirit.sf.net/

If the item parser is an action_parser_category type (parser with an attached semantic
action) we have to do something special. This happens, if the user wrote something like:

 list_p(item[func], delim)

where item is the parser matching one item of the list sequence and func is a functor to be called
after matching one item. If we would do nothing, the resulting code would parse the sequence as
follows:

 (item[func] - delim) >> *(delim >> (item[func] - delim))

what in most cases is not what the user expects. (If this is what you’ve expected, then please use one
of the list_p generator functions direct() , which will inhibit refactoring of the item parser).
To make the list parser behave as expected:

 (item - delim)[func] >> *(delim >> (item - delim)[func])

the actor attached to the item parser has to be re-attached to the (item - delim) parser construct,
which will make the resulting list parser ’do the right thing’. This refactoring is done by the help of the
Refactoring Parsers. Additionally special care must be taken, if the item parser is a
unary_parser_category type parser as for instance:

 list_p(*anychar_p, ’,’)

which without any refactoring would result in

 (*anychar_p - ch_p(’,’))
 >> *(ch_p(’,’) >> (*anychar_p - ch_p(’,’)))

and will not give the expected result (the first *anychar_p will eat up all the input up to the end of
the input stream). So we have to refactor this into:

 *(anychar_p - ch_p(’,’))
 >> *(ch_p(’,’) >> *(anychar_p - ch_p(’,’)))

what will give the correct result.

The case, where the item parser is a combination of the two mentioned problems (i.e. the item parser is
a unary parser with an attached action), is handled accordingly too:

 list_p((*anychar_p)[func], ’,’)

will be parsed as expected:

 (*(anychar_p - ch_p(’,’)))[func]
 >> *(ch_p(’,’) >> (*(anychar_p - ch_p(’,’)))[func])

The required refactoring is implemented with the help of the Refactoring Parsers.

Summary of List Parser refactorings

You write it as: It is refactored to:

list_p(item, delimiter)
(item - delimiter)
>> *(delimiter >> (item -
delimiter))

list_p(item[func],
delimiter)

(item - delimiter)[func]
>> *(delimiter >> (item -
delimiter)[func])

list_p(*item, delimiter)
*(item - delimiter)
>> *(delimiter >> *(item -
delimiter))

list_p((*item)[func],
delimiter)

(*(item - delimiter))[func]
>> *(delimiter >> (*(item -
delimiter))[func])

 list_parser.cpp sample shows the usage of the list_p utility parser:

1. parsing a simple ’,’ delimited list w/o item formatting
2. parsing a CSV list (comma separated values - strings, integers or reals)
3. parsing a token list (token separated values - strings, integers or reals)

with an action parser directly attached to the item part of the list_p generated parser

This is part of the Spirit distribution.

Copyright © 2001-2003 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/list_parser.cpp

Functor

Parser

The simplest way to write your hand coded parser that works well with the rest of the Spirit library is
to simply write a functor parser.

A functor parser is expected to have the interface:

 struct functor
 {
 typedef T result_t;

 template <typename ScannerT>
 std::ptrdiff_t
 operator()(ScannerT const& scan, result_t& result) const;
 };

where typedef T result_t; is the attribute type of the parser that will be passed back to the match result
(see In-depth: The Parser). If the parser does not need to return an attribute, this can simply be nil_t.
The std::ptrdiff_t result is the number of matching characters matched by your parser. A
negative value flags an unsucessful match.

A conforming functor parser can transformed into a well formed Spirit parser by wrapping it in the
functor_parser template:

 functor_parser<functor> functor_p;

Example
The following example puts the functor_parser into action:

 struct number_parser
 {
 typedef int result_t;
 template <typename ScannerT>
 std::ptrdiff_t
 operator()(ScannerT const& scan, result_t& result) const
 {
 if (scan.at_end())
 return -1;

 char ch = *scan;
 if (ch < ’0’ || ch > ’9’)
 return -1;

 result = 0;
 std::ptrdiff_t len = 0;

 do
 {
 result = result*10 + int(ch - ’0’);
 ++len;

http://spirit.sf.net/

 ++scan;
 } while (!scan.at_end() && (ch = *scan, ch >= ’0’ && ch <= ’9’));

 return len;
 }
 };

 functor_parser<number_parser> number_parser_p;

 The full source code can be viewed here. This is part of the Spirit distribution.

To further understand the implementation, see In-depth: The Scanner for the scanner API details. We
now have a parser number_parser_p that we can use just like any other Spirit parser. Example:

 r = number_parser_p >> *(’,’ >> number_parser_p);

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/functor_parser.cpp

Refactoring

Parsers

There are three types of Refactoring Parsers implemented right now, which help to abstract common
parser refactoring tasks. Parser refactoring means, that a concrete parser construct is replaced
(refactored) by another very similar parser construct. Two of the Refactoring Parsers described here
(refactor_unary_parser and refactor_action_parser) are introduced to allow a
simple and more expressive notation while using Confix Parsers and List Parsers. The third
Refactoring Parser (attach_action_parser) is implemented to abstract some functionality
required for the Grouping Parser. Nevertheless these Refactoring Parsers may help in solving other
complex parsing tasks too.

Refactoring unary parsers

The refactor_unary_d parser generator, which should be used to generate a unary refactoring
parser, transforms a construct of the following type

 refactor_unary_d[*some_parser - another_parser]

to

 *(some_parser - another_parser)

where refactor_unary_d is a predefined object of the parser generator struct
refactor_unary_gen<>

The refactor_unary_d parser generator generates a new parser as shown above, only if the
original construct is an auxilliary binary parser (here the difference parser) and the left operand of this
binary parser is an auxilliary unary parser (here the kleene star operator). If the original parser isn’t a
binary parser the compilation will fail. If the left operand isn’t an unary parser, no refactoring will take
place.

Refactoring action parsers

The refactor_action_d parser generator, which should be used to generate an action refactoring
parser, transforms a construct of the following type

 refactor_action_d[some_parser[some_actor] - another_parser]

to

 (some_parser - another_parser)[some_actor]

where refactor_action_d is a predefined object of the parser generator struct
refactor_action_gen<>

http://spirit.sf.net/

The refactor_action_d parser generator generates a new parser as shown above, only if the
original construct is an auxilliary binary parser (here the difference parser) and the left operand of this
binary parser is an auxilliary parser generated by an attached semantic action. If the original parser
isn’t a binary parser the compilation will fail. If the left operand isn’t an action parser, no refactoring
will take place.

Attach action refactoring

The attach_action_d parser generator, which should be used to generate an attach action
refactoring parser, transforms a construct of the following type

 attach_action_d[(some_parser >> another_parser)[some_actor]]

to

 some_parser[some_actor] >> another_parser[some_actor]

where attach_action_d is a predefined object of the parser generator struct
attach_action_gen<>

The attach_action_d parser generator generates a new parser as shown above, only if the
original construct is an auxilliary action parser and the parser to it this action is attached is an
auxilliary binary parser (here the sequence parser). If the original parser isn’t a action parser the
compilation will fail. If the parser to which the action is attached isn’t an binary parser, no refactoring
will take place.

Nested refactoring

Sometimes it is required to nest different types of refactoring, i.e. to transform constructs like

 (*some_parser)[some_actor] - another_parser

to

 (*(some_parser - another_parser))[some_actor]

To simplify the construction of such nested refactoring parsers the refactor_unary_gen<> and
refactor_action_gen<> both can take another refactoring parser generator type as their
respective template parameter. For instance, to construct a refactoring parser generator for the
mentioned nested transformation we should write:

 typedef refactor_action_gen<refactor_unary_gen<> > refactor_t;
 const refactor_t refactor_nested_d = refactor_t(refactor_unary_d);

Now we could use it as follows to get the required result:

 refactor_nested_d[(*some_parser)[some_actor] - another_parser]

An empty template parameter means not to nest this particular refactoring parser. The default template
parameter is non_nesting_refactoring , a predefined helper structure for inhibiting nesting.
Sometimes it is required to nest a particular refactoring parser with itself. This is achieved by
providing the predefined helper structure self_nested_refactoring as the template parameter
to the corresponding refactoring parser generator template.

 See refactoring.cpp for a compilable example. This is part of the Spirit distribution.

Copyright © 2001-2003 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/refactoring.cpp

Regular
Expression

Parser

Regular expressions are a form of pattern-matching that are often used in text processing. Many users
will be familiar with the usage of regular expressions. Initially there were the Unix utilities grep, sed
and awk, and the programming language perl, each of which make extensive use of regular
expressions. Today the usage of such regular expressions is integrated in many more available
systems.

During parser construction it is often useful to have the power of regular expressions available. The
Regular Expression Parser was introduced, to make the use of regular expressions accessible for Spirit
parser construction.

The Regular Expression Parser rxstrlit has a single template type parameter: an iterator type.
Internally, rxstrlit holds the Boost Regex object containing the provided regular expression. The
rxstrlit attempts to match the current input stream with this regular expression. The template type
parameter defaults to char const* . rxstrlit has two constructors. The first accepts a
null-terminated character pointer. This constructor may be used to build rxstrlit’s from quoted
regular expression literals. The second constructor takes in a first/last iterator pair. The function
generator version is regex_p .

Here are some examples:

 rxstrlit<>("Hello[[:space:]]+[W|w]orld")
 regex_p("Hello[[:space:]]+[W|w]orld")

 std::string msg("Hello[[:space:]]+[W|w]orld");
 rxstrlit<>(msg.begin(), msg.end());

The generated parser object acts at the character level, thus an eventually given skip parser is not used
during the attempt to match the regular expression (see The Scanner Business).

The Regular Expression Parser is implemented by the help of the Boost Regex++ library, so you have
to have some limitations in mind.

 Boost libraries have to be installed on your computer and the Boost root directory has to be
added to your compiler #include<...> search path. You can download the actual version at
the Boost web site.

 The Boost Regex library requires the usage of bi-directional iterators. So you have to ensure
this during the usage of the Spirit parser, which contains a Regular Expression Parser.

 The Boost Regex library is not a header only library, as Spirit is, though it provides the
possibility to include all of the sources, if you are using it in one compilation unit only. Define
the preprocessor constant BOOST_SPIRIT_NO_REGEX_LIB before including the spirit
Regular Expression Parser header, if you want to include all the Boost Regex sources into this
compilation unit. If you are using the Regular Expression Parser in more than one compilation

http://spirit.sf.net/
http://www.boost.org/libs/regex/index.html
http://www.boost.org/

unit, you should not define this constant and must link your application against the regex library
as described in the related documentation.

 See regular_expression.cpp for a compilable example. This is part of the Spirit distribution.

Copyright © 2001-2002 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/regular_expression.cpp

Scoped

Lock

scoped_lock_d
The scoped_lock_d directive constructs a parser that locks a mutex during the attempt to match
the contained parser.

Syntax:

 scoped_lock_d(mutex&)[body-parser]

Note, that nesting scoped_lock_d directives bears the risk of deadlocks since the order of locking
depends on the grammar used and may even depend on the input being parsed. Locking order has to
be consistent within an application to ensure deadlock free operation.

Copyright © 2003 Martin Wille
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/

Distinct
Parser

Distinct Parsers

The distinct parsers are utility parsers which ensure that matched input is not immediately followed by
a forbidden pattern. Their typical usage is to distinguish keywords from identifiers.

distinct_parser

The basic usage of the distinct_parser is to replace the str_p parser. For example the
declaration_rule in the following example:

 rule<ScannerT> declaration_rule = str_p("declare") >> lexeme_d[+alpha_p];

would correctly match an input "declare abc", but as well an input"declareabc" what is usually not
intended. In order to avoid this, we can use distinct_parser :

 // keyword_p may be defined in the global scope
 distinct_parser<> keyword_p("a-zA-Z0-9_");

 rule<ScannerT> declaration_rule = keyword_p("declare") >> lexeme_d[+alpha_p];

The keyword_p works in the same way as the str_p parser but matches only when the matched
input is not immediately followed by one of the characters from the set passed to the constructor of
keyword_p . In the example the "declare" can’t be immediately followed by any alphabetic character,
any number or an underscore.

See the full example here .

distinct_directive

For more sophisticated cases, for example when keywords are stored in a symbol table, we can use
distinct_directive .

 distinct_directive<> keyword_d("a-zA-Z0-9_");

 symbol<> keywords = "declare", "begin", "end";
 rule<ScannerT> keyword = keyword_d[keywords];

dynamic_distinct_parser and dynamic_distinct_directive

In some cases a set of forbidden follow-up characters is not sufficient. For example ASN.1 naming
conventions allows identifiers to contain dashes, but not double dashes (which marks the beginning of
a comment). Furthermore, identifiers can’t end with a dash. So, a matched keyword can’t be followed
by any alphanumeric character or exactly one dash, but can be followed by two dashes.

http://spirit.sf.net/
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/distinct/distinct_parser.cpp

This is when dynamic_distinct_parser and the dynamic_distinct_directive come
into play. The constructor of the dynamic_distinct_parser accepts a parser which matches
any input that must NOT follow the keyword.

 // Alphanumeric characters and a dash followed by a non-dash
 // may not follow an ASN.1 identifier.
 dynamic_distinct_parser<> keyword_p(alnum_p | (’-’ >> ~ch_p(’-’)));

 rule<ScannerT> declaration_rule = keyword_p("declare") >> lexeme_d[+alpha_p];

Since the dynamic_distinct_parser internally uses a rule, its type is dependent on the scanner
type. So, the keyword_p shouldn’t be defined globally, but rather within the grammar.

See the full example here.

How it works

When the keyword_p_1 and the keyword_p_2 are defined as

 distinct_parser<> keyword_p(forbidden_chars);
 distinct_parser_dynamic<> keyword_p(forbidden_tail_parser);

the parsers

 keyword_p_1(str)
 keyword_p_2(str)

are equivalent to the rules

 lexeme_d[chseq_p(str) >> ~epsilon_p(chset_p(forbidden_chars))]
 lexeme_d[chseq_p(str) >> ~epsilon_p(forbidden_tail_parser)]

Copyright © 2003-2004 Vaclav Vesely
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/distinct/distinct_parser_dynamic.cpp

Symbols

This class symbols implements a symbol table. The symbol table holds a dictionary of symbols where
each symbol is a sequence of CharTs (a char , wchar_t , int , enumeration etc.) . The template
class, parameterized by the character type (CharT), can work efficiently with 8, 16, 32 and even 64 bit
characters. Mutable data of type T is associated with each symbol.

Traditionally, symbol table management is maintained seperately outside the BNF grammar through
semantic actions. Contrary to standard practice, the Spirit symbol table class symbols is-a parser. An
instance of which may be used anywhere in the EBNF grammar specification. It is an example of a
dynamic parser. A dynamic parser is characterized by its ability to modify its behavior at run time.
Initially, an empty symbols object matches nothing. At any time, symbols may be added, thus,
dynamically altering its behavior.

Each entry in a symbol table has an associated mutable data slot. In this regard, one can view the
symbol table as an associative container (or map) of key-value pairs where the keys are strings.

The symbols class expects two template parameters (actually there is a third, see detail box). The first
parameter T specifies the data type associated with each symbol (defaults to int) and the second
parameter CharT specifies the character type of the symbols (defaults to char).

 template
 <
 typename T = int,
 typename CharT = char,
 typename SetT = impl::tst<T, CharT>
 >
 class symbols;

 Ternary State Trees
The actual set implementation is supplied by the SetT template parameter (3rd
template parameter of the symbols class) . By default, this uses the tst class
which is an implementation of the Ternary Search Tree.
Ternary Search Trees are faster than hashing for many typical search
problems especially when the search interface is iterator based. Searching for
a string of length k in a ternary search tree with n strings will require at most
O(log n+k) character comparisons. TSTs are many times faster than hash
tables for unsuccessful searches since mismatches are discovered earlier after
examining only a few characters. Hash tables always examine an entire key
when searching.
For details see http://www.cs.princeton.edu/~rs/strings/.

Here are some sample declarations:

http://spirit.sf.net/
http://www.cs.princeton.edu/%7Ers/strings/

 symbols<> sym;
 symbols<short, wchar_t> sym2;

 struct my_info
 {
 int id;
 double value;
 };

 symbols<my_info> sym3;

After having declared our symbol tables, symbols may be added statically using the construct:

 sym = a, b, c, d ...;

where sym is a symbol table and a..d etc. are strings. Note that the comma operator is separating
the items being added to the symbol table, through an assignment. Due to operator overloading this is
possible and correct (though it may take a little getting used to) and is a concise way to initialize the
symbol table with many symbols. Also, it is perfectly valid to make multiple assignments to a symbol
table to iteratively add symbols (or groups of symbols) at different times.

Simple example:

 sym = "pineapple", "orange", "banana", "apple", "mango";

Note that it is invalid to add the same symbol multiple times to a symbol table, though you may
modify the value associated with a symbol artibrarily many times.

Now, we may use sym in the grammar. Example:

 fruits = sym >> *(’,’ >> sym);

Alternatively, symbols may be added dynamically through the member functor add (see
symbol_inserter below). The member functor add may be attached to a parser as a semantic
action taking in a begin/end pair:

 p[sym.add]

where p is a parser (and sym is a symbol table). On success, the matching portion of the input is added
to the symbol table.

add may also be used to directly initialize data. Examples:

 sym.add("hello", 1)("crazy", 2)("world", 3);

Assuming of course that the data slot associated with sym is an integer.

The data associated with each symbol may be modified any time. The most obvious way of course is
through semantic actions. A function or functor, as usual, may be attached to the symbol table. The
symbol table expects a function or functor compatible with the signature:

Signature for functions:

 void func(T& data);

Signature for functors:

 struct ftor
 {
 void operator()(T& data) const;
 };

Where T is the data type of the symbol table (the T in its template parameter list). When the symbol
table successfully matches something from the input, the data associated with the matching entry in
the symbol table is reported to the semantic action.

Symbol table utilities
Sometimes, one may wish to deal with the symbol table directly. Provided are some symbol table
utilities.

add

 template <typename T, typename CharT, typename SetT>
 T* add(symbols<T, CharT, SetT>& table, CharT const* sym, T const& data = T());

adds a symbol sym (C string) to a symbol table table plus an optional data data associated with
the symbol. Returns a pointer to the data associated with the symbol or NULL if add failed (e.g. when
the symbol is already added before).
find

 template <typename T, typename CharT, typename SetT>
 T* find(symbols<T, CharT, SetT> const& table, CharT const* sym);

finds a symbol sym (C string) from a symbol table table . Returns a pointer to the data associated
with the symbol or NULL if not found

symbol_inserter
The symbols class holds an instance of this class named add . This can be called directly just like a
member function, passing in a first/last iterator and optional data:

 sym.add(first, last, data);

Or, passing in a C string and optional data:

 sym.add(c_string, data);

where sym is a symbol table. The data argument is optional. The nice thing about this scheme is that
it can be cascaded. We’ve seen this applied above. Here’s a snippet from the roman numerals parser

 // Parse roman numerals (1..9) using the symbol table.
 struct ones : symbols<unsigned>
 {
 ones()
 {
 add
 ("I" , 1)

 ("II" , 2)
 ("III" , 3)
 ("IV" , 4)
 ("V" , 5)
 ("VI" , 6)
 ("VII" , 7)
 ("VIII" , 8)
 ("IX" , 9)
 ;
 }

 } ones_p;

Notice that a user defined struct ones is subclassed from symbols . Then at construction time, we
added all the symbols using the add symbol_inserter.

 The full source code can be viewed here. This is part of the Spirit distribution.

Again, add may also be used as a semantic action since it conforms to the action interface (see
semantic actions):

 p[sym.add]

where p is a parser of course.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/roman_numerals.cpp

Trees

Why use parse trees
Parse trees are an in-memory representation of the input with a structure that conforms to the
grammar.

The advantages of using parse trees instead of semantic actions:

You can make multiple passes over the data without having to re-parse the input.
You can perform transformations on the tree.
You can evaluate things in any order you want, whereas with attribute schemes you have to
process in a begin to end fashion.
You do not have to worry about backtracking and action side effects that may occur with an
ambiguous grammar.

Example

Now that you think you may want to use trees, I’ll give an example of how to use them and you can
see how easy they are to use. So, following with tradition (and the rest of the documentation) we’ll do
a calculator. Here’s the grammar:

 integer = lexeme_d[token_node_d[(!ch_p(’-’) >> +digit_p)]] ; factor = integer | ’(’ >> expression >> ’)’ | (’-’ >> factor) ; term = factor >> *((’*’ >> factor) | (’/’ >> factor)) ; expression = term >> *((’+’ >> term) | (’-’ >> term)) ;

Now, you’ll notice the only thing different in this grammar is the token_node_d directive. This
causes the integer rule to group all the input into one node. Without token_node_d , each character
would get it’s own node. As you’ll soon see, it’s easier to convert the input into an int when all the
characters are in one node. Here is how the parse is done to create a tree:

 tree_parse_info<> info = pt_parse(first, expression);

pt_parse() is similar to parse() . There are four overloads: two for pairs of first and last
iterators and two for character strings. Two of the functions take a skipper parser and the other two do
not.

The tree_parse_info struct contains the same information as a parse_info struct as well as
one extra data member called trees. When the parse finishes, trees will contain the parse tree.

Here is how you can use the tree to evaluate the input:

 if (info.full) { cout << "parsing succeeded\n"; cout << "result = " << evaluate(info) << "\n\n"; }

Now you ask, where did evaluate() come from? Is it part of spirit? Unfortunately, no,
evaluate() is only a part of the sample. Here it is:

http://spirit.sf.net/

 long evaluate(const tree_parse_info<>& info) { return eval_expression(info.trees.begin()); }

So here you see evaluate() simply calls eval_expression() passing the begin() iterator of
info.trees. Now here’s the rest of the example:
 // Here’s some typedefs to simplify things typedef char const* iterator_t; typedef tree_match<iterator_t> parse_tree_match_t; typedef parse_tree_match_t::const_tree_iterator iter_t; // Here’s the function prototypes that we’ll use. One function for each // grammar rule. long evaluate(const tree_parse_info<>& info); long eval_expression(iter_t const& i); long eval_term(iter_t const& i); long eval_factor(iter_t const& i); long eval_integer(iter_t const& i); // i should be pointing to a node created by the expression rule long eval_expression(iter_t const& i) { // first child points to a term, so call eval_term on it iter_t chi = i->children.begin(); long lhs = eval_term(chi); for (++chi; chi != i->children.end(); ++chi) { // next node points to the operator. The text of the operator is // stored in value (a vector<char>) char op = *(chi->value.begin()); ++chi; long rhs = eval_term(chi); if (op == ’+’) lhs += rhs; else if (op == ’-’) lhs -= rhs; else assert(0); } return lhs; } long eval_term(iter_t const& i) { // ... see parse_tree_calc1.cpp for complete example // (it’s rather similar to eval_expression()) ... } long eval_factor(iter_t const& i) { // ... again, see parse_tree_calc1.cpp if you want all the details ... } long eval_integer(iter_t const& i) { // use the range constructor for a string string integer(i->value.begin(), i->value.end()); // convert the string to an integer return strtol(integer.c_str(), 0, 10); }

 The full source code can be viewed here. This is part of the Spirit distribution.

So, you like what you see, but maybe you think that the parse tree is too hard to process? With a few
more directives you can generate an abstract syntax tree (ast) and cut the amount of evaluation code by
at least 50%. So without any delay, here’s the ast calculator grammar:

 integer = leaf_node_d[lexeme_d[(!ch_p(’-’) >> +digit_p)]] ; factor = integer | inner_node_d[ch_p(’(’) >> expression >> ch_p(’)’)] | (root_node_d[ch_p(’-’)] >> factor) ; term = factor >> *((root_node_d[ch_p(’*’)] >> factor) | (root_node_d[ch_p(’/’)] >> factor)) ; expression = term

The differences from the parse tree grammar are hi-lighted in bold-red. The inner_node_d
directive causes the first and last nodes generated by the enclosed parser to be discarded, since we
don’t really care about the parentheses when evaluating the expression. The root_node_d directive
is the key to ast generation. A node that is generated by the parser inside of root_node_d is marked
as a root node. When a root node is created, it becomes a root or parent node of the other nodes
generated by the same rule.

To start the parse and generate the ast, you must use the ast_parse functions, which are similar to the
pt_parse functions.

 tree_parse_info<> info = ast_parse(first, expression);

Here is the eval_expression function (note that to process the ast we only need one function instead of
four):
 long eval_expression(iter_t const& i) { if (i->value.id() == parser_id(&integer)) { // convert string to integer string integer(i->value.begin(), i->value.end()); return strtol(integer.c_str(), 0, 10); } else if (i->value.id() == parser_id(&factor)) { // factor can only be unary minus return - eval_expression(i->children.begin()); } else if (i->value.id() == parser_id(&term)) { if (*i->value.begin() == ’*’) { return eval_expression(i->children.begin()) * eval_expression(i->children.begin()+1); } else if (*i->value.begin() == ’/’) { return eval_expression(i->children.begin()) / eval_expression(i->children.begin()+1); } } else if (i->value.id() == parser_id(&expression)) { if (*i->value.begin() == ’+’) { return eval_expression(i->children.begin()) + eval_expression(i->children.begin()+1); } else if (*i->value.begin() == ’-’) { return eval_expression(i->children.begin()) - eval_expression(i->children.begin()+1); } } return 0; }

 An entire working example is ast_calc.cpp. Hopefully this example has been enough to whet your
appetite for trees. For more nitty-gritty details, keep on reading the rest of this chapter.

Usage

pt_parse

To create a parse tree, you can call one of the five free functions:
 template <typename FactoryT, typename IteratorT, typename ParserT, typename SkipT> tree_parse_info<IteratorT, FactoryT> pt_parse(IteratorT const& first_, IteratorT const& last_, parser<ParserT> const& parser, SkipT const& skip_,
 FactoryT const & factory_ = FactoryT()); template <typename IteratorT, typename ParserT, typename SkipT> tree_parse_info<IteratorT> pt_parse(IteratorT const& first_, IteratorT const& last_, parser<ParserT> const& parser, SkipT const& skip_); template <typename IteratorT, typename ParserT> tree_parse_info<IteratorT> pt_parse(IteratorT const& first_, IteratorT const& last_, parser<ParserT> const& parser); template <typename CharT, typename ParserT, typename SkipT> tree_parse_info<CharT const*> pt_parse(CharT const* str, parser<ParserT> const& parser, SkipT const& skip); template <typename CharT, typename ParserT> tree_parse_info<CharT const*> pt_parse(CharT const* str, parser<ParserT> const& parser);

ast_parse

To create an abstract syntax tree (ast for short) you call one of the five free functions:
 template <typename FactoryT, typename IteratorT, typename ParserT, typename SkipT> tree_parse_info<IteratorT, FactoryT> ast_parse(IteratorT const& first_, IteratorT const& last_, parser<ParserT> const& parser, SkipT const& skip_,
 FactoryT const & factory_ = FactoryT()); template <typename IteratorT, typename ParserT, typename SkipT> tree_parse_info<IteratorT> ast_parse(IteratorT const& first_, IteratorT const& last_, parser<ParserT> const& parser, SkipT const& skip_); template <typename IteratorT, typename ParserT> tree_parse_info<IteratorT> ast_parse(IteratorT const& first_, IteratorT const& last, parser<ParserT> const& parser); template <typename CharT, typename ParserT, typename SkipT> tree_parse_info<CharT const*> ast_parse(CharT const* str, parser<ParserT> const& parser, SkipT const& skip); template <typename CharT, typename ParserT> tree_parse_info<CharT const*> ast_parse(CharT const* str, parser<ParserT> const& parser);

tree_parse_info

The tree_parse_info struct returned from pt_parse and ast_parse contains information about the
parse:

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/parse_tree_calc1.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/parse_tree_calc1.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/parse_tree_calc1.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/ast_calc.cpp

 template <typename IteratorT = char const*> struct tree_parse_info { IteratorT stop; bool match; bool full; std::size_t length; typename tree_match<IteratorT>::container_t trees; };

tree_parse_info

stop
points to the final parse position (i.e. parsing
processed the input up to this point).

match
true if parsing is successful. This may be full (the
parser consumed all the input), or partial (the parser
consumed only a portion of the input.)

full
true when we have a full match (when the parser
consumed all the input).

length
The number of characters consumed by the parser.
This is valid only if we have a successful match
(either partial or full).

trees Contains the root node(s) of the tree.

tree_match

When Spirit is generating a tree, the parser’s parse() member function will return a tree_match object,
instead of a match object. tree_match has three template parameters. The first is the Iterator type
which defaults to char const* . The second is the node factory, which defaults to
node_val_data_factory. The third is the attribute type stored in the match. A tree_match has a member
variable which is a container (a std::vector) of tree_node objects named trees. For efficiency
reasons, when a tree_match is copied, the trees are not copied, they are moved to the new object, and
the source object is left with an empty tree container. tree_match supports the same interface as the
match class: it has an operator bool() so you can test it for a sucessful match: if (matched), and you
can query the match length via the length() function. The class has this interface:
 template <typename IteratorT = char const*, typename NodeFactoryT = node_val_data_factory<> > struct tree_match { typedef typename NodeFactoryT::template factory<IteratorT> node_factory_t; typedef typename node_factory_t::node_t parse_node_t; typedef tree_node<parse_node_t> node_t; typedef typename node_t::children_t container_t; typedef typename container_t::iterator tree_iterator; typedef typename container_t::const_iterator const_tree_iterator; tree_match(); tree_match(std::size_t length, parse_node_t const& n); tree_match(tree_match const& x); explicit tree_match(match const& x); tree_match& operator=(tree_match const& x); void swap(tree_match& x); operator bool() const; int length() const; container_t trees; };

When a parse has sucessfully completed, the trees data member will contain the root node of the tree.

 vector?
You may wonder, why is it a vector then? The answer is that it is partly for
implementation purposes, and also if you do not use any rules in your
grammar, then trees will contain a sequence of nodes that will not have any
children.

Having spirit create a tree is similar to how a normal parse is done:

 tree_match<> hit = expression.parse(tree_scanner); if (hit) process_tree_root(hit.trees[0]); // do something with the tree

tree_node

Once you have created a tree by calling pt_parse or ast_parse, you have a tree_parse_info which
contains the root node of the tree, and now you need to do something with the tree. The data member
trees of tree_parse_info is a std::vector<tree_node>. tree_node provides the tree structure. The class
has one template parameter named T. tree_node contains an instance of type T. It also contains a
std::vector<tree_node<T> > which are the node’s children. The class looks like this:

 template <typename T> struct tree_node { typedef T parse_node_t; typedef std::vector<tree_node<T> > children_t; typedef typename children_t::iterator tree_iterator; typedef typename children_t::const_iterator const_tree_iterator; T value; children_t children; tree_node(); explicit tree_node(T const& v); tree_node(T const& v, children_t const& c); void swap(tree_node<T>& x); };

This class is simply used to separate the tree framework from the data stored in the tree. It is a generic
node and any type can be stored inside it and acessed via the data member value. The default type for
T is node_val_data .

node_val_data

The node_val_data class contains the actual information about each node. This includes the text
or token sequence that was parsed, an id that indicates which rule created the node, a boolean flag
that indicates whether the node was marked as a root node, and an optional user-specified value. This
is the interface:
 template <typename IteratorT = char const*, typename ValueT = nil_t> struct node_val_data { typedef typename std::iterator_traits<IteratorT>::value_type value_type; typedef std::vector<value_type> container_t; typedef typename container_t::iterator iterator_t; typedef typename container_t::const_iterator const_iterator_t; node_val_data(); node_val_data(IteratorT const& _first, IteratorT const& _last); template <typename IteratorT2> node_val_data(IteratorT2 const& _first, IteratorT2 const& _last); void swap(node_val_data& x); container_t::iterator begin(); container_t::const_iterator begin() const; container_t::iterator end(); container_t::const_iterator end() const; bool is_root() const; void is_root(bool b); parser_id id() const; void id(parser_id r); ValueT const& value() const; void value(ValueT const& v); };

parser_id, checking and setting

If a node is generated by a rule, it will have an id set. Each rule has an id that it sets of all nodes
generated by that rule. The id is of type parser_id . The default id of each rule is set to the address
of that rule (converted to an integer). This is not always the most convenient, since the code that
processes the tree may not have access to the rules, and may not be able to compare addresses. So, you
can override the default id used by each rule by giving it a specific ID. Then, when processing the tree
you can call node_val_data::id() to see which rule created that node.

structure/layout of a parse tree

parse tree layout

The tree is organized by the rules. Each rule creates a new level in the tree. All parsers attached to a
rule create a node when a sucessful match is made. These nodes become children of a node created by
the rule. So, the following code:

 rule_t myrule = ch_p(’a’) >> ’,’ >> *ch_p(’b’); char const* input = "a,bb"; scanner_t scanner(input, input + strlen(input)); tree_match<> m = myrule.parse(scanner);

When executed, this code would return a tree_match, m. m.trees[0] would contain a tree like this:

The root node would not contain any text, and it’s id would be set to the address of myrule. It would
have four children. Each child’s id would be set to the address of myrule, would contain the text as
shown in the diagram, and would have no children.

ast layout
When calling ast_parse, the tree gets generated differently. It mostly works the same as when
generating a parse tree. The difference happens when a rule only generated one sub-node. Instead of
creating a new level, ast_parse will not create a new level, it will just leave the existing node. So, this
code:

 rule_t myrule = ch_p(’a’); char const* input = "a"; ast_scanner_t scanner(input, input+strlen(input)); tree_match<> m = myrule.parse(scanner);

will generate a single node that contains ’a’. If tree_match_policy had been used instead of
ast_match_policy , the tree would have looked like this:

ast_match_policy has the effect of eliminating intermediate rule levels which are simply pass-through
rules. This is not enough to generate abstract syntax trees, root_node_d is also needed. root_node_d
will be explained later.

switching: gen_pt_node_d[] & gen_ast_node_d[]
If you want to mix and match the parse tree and ast behaviors in your application, you can use the
gen_pt_node_d[] and gen_ast_node_d[] directives. When parsing passes through the
gen_pt_node_d directive, parse tree creation behavior is turned on. When the gen_ast_node_d
directive is used, the enclosed parser will generate a tree using the ast behavior. Note that you must
pay attention to how your rules are declared if you use a rule inside of these directives. The match
policy of the scanner will have to correspond to the desired behavior. If you avoid rules and use
primitive parsers or grammars, then you will not have problems.

Directives
There are a few more directives that can be used to control the generation of trees. These directives
only effect tree generation. Otherwise, they have no effect.

no_node_d

This directive is similar to gen_pt_node_d and gen_ast_node_d , in that is modifies the
scanner’s match policy used by the enclosed parser. As it’s name implies, it does no tree generation, it
turns it off completely. This is useful if there are parts of your grammar which are not needed in the
tree. For instance: keywords, operators (* , - , &&, etc.) By eliminating these from the tree, both
memory usage and parsing time can be lowered. This directive has the same requirements with respect
to rules as gen_pt_node_d and gen_ast_node_d do. See the example file xml_grammar.hpp

(in libs/spirit/example/application/xml directory) for example usage of no_node_d[] .

discard_node_d

This directive has a similar purpose to no_node_d , but works differently. It does not switch the
scanner’s match policy, so the enclosed parser still generates nodes. The generated nodes are
discarded and do not appear in the tree. Using discard_node_d is slower than no_node_d , but it
does not suffer from the drawback of having to specify a different rule type for any rule inside it.

leaf_node_d/token_node_d

Both leaf_node_d and token_node_d work the same. They group together all the nodes
generated by the enclosed parser. Note that a rule should not be used inside these directives.

This rule:

 rule_t integer = !ch_p(’-’) >> *(range_p(’0’, ’9’));

would generate a root node with the id of integer and a child node for each character parsed

This:

 rule_t integer = token_node_d[!ch_p(’-’) >> *(range_p(’0’, ’9’))];

would generate a root node with only one child node that contained the entire integer.

infix_node_d

This is useful for removing separators from lists. It discards all the nodes in even positions. Thus this
rule:

 rule_t intlist = infix_node_d[integer >> *(’,’ >> integer)];

would discard all the comma nodes and keep all the integer nodes.

discard_first_node_d

This discards the first node generated.

discard_last_node_d

This discards the last node generated.

inner_node_d

This discards the first and last node generated.

root_node_d and ast generation
The root_node_d directive is used to help out ast generation. It has no effect when generating a
parse tree. When a parser is enclosed in root_node_d , the node it generates is marked as a root.
This affects the way it is treated when it’s added to the list of nodes being generated. Here’s an
example:

 rule_t add = integer >> *(root_node_d[ch_p(’+’)] >> integer);

When parsing 5+6 the following tree will be generated:

When parsing 1+2+3 the following will be generated:

When a new node is created the following rules are used to determine how the tree will be generated:
 Let a be the previously generated node. Let b be the new node. If b is a root node then b’s children become a + b’s previous children. a is the new first child of b. else if a is a root node and b is not, then b becomes the last child of a. else a and b become siblings.

After parsing leaves the current rule, the root node flag on the top node is turned off. This means that
the root_node_d directive only affects the current rule.

 The example ast_calc.cpp demonstrates the use of root_node_d and ast_parse. The full source code
can be viewed here. This is part of the Spirit distribution.

parse_tree_iterator
The parse_tree_iterator class allows you to parse a tree using spirit. The class iterates over
the tokens in the leaf nodes in the same order they were created. The parse_tree_iterator is
templated on ParseTreeMatchT . It is constructed with a container of trees, and a position to start.

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/ast_calc.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/ast_calc.cpp

Here is an example usage:
 rule_t myrule = ch_p(’a’); char const* input = "a"; // generate parse tree tree_parse_info<> i = pt_parse(input, myrule); typedef parse_tree_iterator<tree_match<> > parse_tree_iterator_t; // create a first and last iterator to work off the tree parse_tree_iterator_t first(i.trees, i.trees.begin()); parse_tree_iterator_t last; // parse the tree rule<parse_tree_iterator_t> tree_parser =... tree_parser.parse(first, last);

advanced tree generation

node value

The node_val_data can contain a value. By default it contains a void_t , which is an empty
class. You can specify the type, using a template parameter, which will then be stored in every node.
The type must be default constructible, and assignable. You can get and set the value using

 ValueT node_val_data::value;

and

 void node_val_data::value(Value const& value);

To specify the value type, you must use a different node_val_data factory than the default. The
following example shows how to modify the factory to store and retrieve a double inside each
node_val_data.
 typedef node_val_data_factory<double> factory_t; my_grammar gram; my_skip_grammar skip; tree_parse_info<iterator_t, factory_t> i = ast_parse<factory_t>(first, last, gram, skip); // access the double in the root node double d = i.trees.begin()->value;

access_node_d

Now, you may be wondering, "What good does it do to have a value I can store in each node, but not
to have any way of setting it?" Well, that’s what access_node_d is for. access_node_d is a
directive. It allows you to attach an action to it, like this:

 access_node_d[...some parsers...][my_action()]

The attached action will be passed 3 parameters: A reference to the root node of the tree generated by
the parser, and the current first and last iterators. The action can set the value stored in the node.

Tree node factories

By setting the factory, you can control what type of nodes are created and how they are created. There
are 3 predefined factories: node_val_data_factory , node_all_val_data_factory , and
node_iter_data_factory . You can also create your own factory to support your own node
types.

Using factories with grammars is quite easy, you just need to specify the factory type as explicit
template parameter to the free ast_parse function:

 typedef node_iter_data_factory<int> factory_t; my_grammar gram; my_skip_grammar skip; tree_parse_info<iterator_t, factory_t> i = ast_parse<factory_t>(first, last, gram, skip);

Instead, using the factory directly with rules is slightly harder because the factory is a template
parameter to the scanner match policy, so you must use a custom scanner:
 typedef spirit::void_t value_t; typedef node_val_data_factory<value_t> factory_t; typedef tree_match<iterator_t, factory_t> match_t; typedef ast_match_policy<iterator_t, factory_t> match_policy_t; typedef scanner<iterator_t, scanner_policies<iter_policy_t, match_policy_t> > scanner_t; typedef rule<scanner_t> rule_t; rule_t r =...; scanner_t scan = scanner_t(first, last); match_t hit = r.parse(scan);

node_val_data_factory

This is the default factory. It creates node_val_data nodes. Leaf nodes contain a copy of the
matched text, and intermediate nodes don’t. node_val_data_factory has one template
parameter: ValueT . ValueT specifies the type of value that will be stored in the node_val_data .

node_all_val_data_factory

This factory also creates node_val_data . The difference between it and
node_val_data_factory is that every node contains all the text that spans it. This means that
the root node will contain a copy of the entire parsed input sequence.
node_all_val_data_factory has one template parameter: ValueT . ValueT specifies the
type of value that will be stored in the node_val_data .

node_iter_data_factory

This factory creates the parse_tree_iter_node . This node stores iterators into the input
sequence instead of making a copy. It can use a lot less memory. However, the input sequence must
stay valid for the life of the tree, and it’s not a good idea to use the multi_pass iterator with this
type of node. All levels of the tree will contain a begin and end iterator.
node_iter_data_factory has one template parameter: ValueT . ValueT specifies the type of
value that will be stored in the node_val_data.

custom

You can create your own factory. It should look like this:
 class my_factory { public: // This inner class is so that the factory can simulate // a template template parameter template <typename IteratorT> class factory { public: // This is your node type typedef my_node_type node_t; static node_t create_node(IteratorT const& first, IteratorT const& last, bool is_leaf_node) { // create a node and return it. } // This function is used by the leaf_node and token_node directives. // If you don’t use them, then you can leave this function // unimplemented. template <typename ContainerT> static node_t group_nodes(ContainerT const& nodes) { // Group all the nodes into one and return it. } }; }; // Typedefs to use my_factory typedef my_factory factory_t; typedef tree_match<iterator_t, factory_t> match_t; typedef tree_match_policy<iterator_t, factory_t> match_policy_t; // Typedefs if you are using rules instead of grammars typedef scanner<iterator_t, scanner_policies<iter_policy_t, match_policy_t> > scanner_t; typedef rule<scanner_t> rule_t;

Copyright © 2001-2002 Daniel C. Nuffer
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

The
multi_pass

Backtracking in Spirit requires the use of the following types of iterator: forward, bidirectional, or
random access. Because of backtracking, input iterators cannot be used. Therefore, the standard
library classes istreambuf_iterator and istream_iterator, that fall under the category of input iterators,
cannot be used. Another input iterator that is of interest is one that wraps a lexer, such as LEX.

 Input Iterators
In general, Spirit is a backtracking parser. This is not an absolute requirement
though. In the future, we shall see more deterministic parsers that require no
more than 1 character (token) of lookahead. Such parsers allow us to use input
iterators such as the istream_iterator as is.

Unfortunately, with an input iterator, there is no way to save an iterator position, and thus input
iterators will not work with backtracking in Spirit. One solution to this problem is to simply load all
the data to be parsed into a container, such as a vector or deque, and then pass the begin and end of the
container to Spirit. This method can be too memory intensive for certain applications, which is why
the multi_pass iterator was created.

The multi_pass iterator will convert any input iterator into a forward iterator suitable for use with
Spirit. multi_pass will buffer data when needed and will discard the buffer when only one copy of the
iterator exists.

A grammar must be designed with care if the multi_pass iterator is used. Any rule that may need to
backtrack, such as one that contains an alternative, will cause data to be buffered. The rules that are
optimal to use are sequence and repetition. Sequences of the form a >> b will not buffer data at all.
Any rule that repeats, such as kleene_star (*a) or positive such as (+a), will only buffer the data for
the current repetition.

In typical grammars, ambiguity and therefore lookahead is often localized. In fact, many well designed
languages are fully deterministic and require no lookahead at all. Peeking at the first character from
the input will immediately determine the alternative branch to take. Yet, even with highly ambiguous
grammars, alternatives are often of the form *(a | b | c | d) . The input iterator moves on and
is never stuck at the beginning. Let’s look at a Pascal snippet for example:
 program = programHeading >> block >> ’.’ ; block = *(labelDeclarationPart | constantDefinitionPart | typeDefinitionPart | variableDeclarationPart | procedureAndFunctionDeclarationPart) >> statementPart ;

Notice the alternatives inside the Kleene star in the rule block . The rule gobbles the input in a linear
manner and throws away the past history with each iteration. As this is fully deterministic LL(1)
grammar, each failed alternative only has to peek 1 character (token). The alternative that consumes
more than 1 character (token) is definitely a winner. After which, the Kleene star moves on to the next.

Be mindful if you use the free parse functions. All of these make a copy of the iterator passed to them.

http://spirit.sf.net/

Now, after the lecture on the features to be careful with when using multi_pass, you may think that
multi_pass is way too restrictive to use. That’s not the case. If your grammar is deterministic, you
can make use of flush_multi_pass in your grammar to ensure that data is not buffered when
unnecessary.

Again, following up the example we started to use in the section on the scanner . Here’s an example
using the multi_pass: This time around we are extracting our input from the input stream using an
istreambuf_iterator.

 #include <boost/spirit/core.hpp>
 #include <boost/spirit/iterator/multi_pass.hpp>
 using namespace boost::spirit;
 using namespace std;

 ifstream in("input_file.txt"); // we get our input from this file typedef char char_t;
 typedef multi_pass<istreambuf_iterator<char_t> > iterator_t;

 typedef skip_parser_iteration_policy<space_parser> iter_policy_t;
 typedef scanner_policies<iter_policy_t> scanner_policies_t;
 typedef scanner<iterator_t, scanner_policies_t> scanner_t;

 typedef rule<scanner_t> rule_t;

 iter_policy_t iter_policy(space_p);
 scanner_policies_t policies(iter_policy);
 iterator_t first(
 make_multi_pass(std::istreambuf_iterator<char_t>(in)));

 scanner_t scan(
 first, make_multi_pass(std::istreambuf_iterator<char_t>()),
 policies);
 rule_t n_list = real_p >> *(’,’ >> real_p); match<> m = n_list.parse(scan);

flush_multi_pass
There is a predefined pseudo-parser called flush_multi_pass. When this parser is used with multi_pass,
it will call multi_pass::clear_queue(). This will cause any buffered data to be erased. This also will
invalidate all other copies of multi_pass and they should not be used. If they are, an
boost::illegal_backtracking exception will be thrown.

multi_pass Policies
multi_pass is a templated policy driven class. The description of multi_pass above is how it was
originally implemented (before it used policies), and is the default configuration now. But, multi_pass
is capable of much more. Because of the open-ended nature of policies, you can write your own policy
to make multi_pass behave in a way that we never before imagined.

The multi_pass class has five template parameters:

InputT - The type multi_pass uses to acquire it’s input. This is typically an input iterator, or
functor.
InputPolicy - A class that defines how multi_pass acquires it’s input. The InputPolicy is
parameterized by InputT.
OwnershipPolicy - This policy determines how multi_pass deals with it’s shared components.
CheckingPolicy - This policy determines how checking for invalid iterators is done.
StoragePolicy - The buffering scheme used by multi_pass is determined and managed by the

StoragePolicy.

Predefined policies
All predefined multi_pass policies are in the namespace boost::spirit::multi_pass_policies.

Predefined InputPolicy classes

input_iterator

This policy directs multi_pass to read from an input iterator of type InputT.

lex_input

This policy obtains it’s input by calling yylex(), which would typically be provided by a scanner
generated by LEX. If you use this policy your code must link against a LEX generated scanner.

functor_input

This input policy obtains it’s data by calling a functor of type InputT. The functor must meet certain
requirements. It must have a typedef called result_type which should be the type returned from
operator(). Also, since an input policy needs a way to determine when the end of input has been
reached, the functor must contain a static variable named eof which is comparable to a variable of
result_type.

Predefined OwnershipPolicy classes

ref_counted

This class uses a reference counting scheme. multi_pass will delete it’s shared components when the
count reaches zero.

first_owner

When this policy is used, the first multi_pass created will be the one that deletes the shared data. Each
copy will not take ownership of the shared data. This works well for spirit, since no dynamic
allocation of iterators is done. All copies are made on the stack, so the original iterator has the longest
lifespan.

Predefined CheckingPolicy classes

no_check

This policy does no checking at all.

buf_id_check

buf_id_check keeps around a buffer id, or a buffer age. Every time clear_queue() is called on a
multi_pass iterator, it is possible that all other iterators become invalid. When clear_queue() is called,
buf_id_check increments the buffer id. When an iterator is dereferenced, this policy checks that the

buffer id of the iterator matches the shared buffer id. This policy is most effective when used together
with the std_deque StoragePolicy. It should not be used with the fixed_size_queue StoragePolicy,
because it will not detect iterator dereferences that are out of range.

full_check

This policy has not been implemented yet. When it is, it will keep track of all iterators and make sure
that they are all valid.

Predefined StoragePolicy classes

std_deque

This policy keeps all buffered data in a std::deque. All data is stored as long as there is more than one
iterator. Once the iterator count goes down to one, and the queue is no longer needed, it is cleared,
freeing up memory. The queue can also be forcibly cleared by calling multi_pass::clear_queue().

fixed_size_queue<N>

fixed_size_queue keeps a circular buffer that is size N+1 and stores N elements. fixed_size_queue is a
template with a std::size_t parameter that specified the queue size. It is your responsibility to ensure
that N is big enough for your parser. Whenever the foremost iterator is incremented, the last character
of the buffer is automatically erased. Currently there is no way to tell if an iterator is trailing too far
behind and has become invalid. No dynamic allocation is done by this policy during normal iterator
operation, only on initial construction. The memory usage of this StoragePolicy is set at N+1 bytes,
unlike std_deque, which is unbounded.

Combinations: How to specify your own custom multi_pass
The beauty of policy based designs is that you can mix and match policies to create your own custom
class by selecting the policies you want. Here’s an example of how to specify a custom multi_pass that
wraps an istream_iterator<char>, and is slightly more efficient than the default because it uses the
first_owner OwnershipPolicy and the no_check CheckingPolicy:
 typedef multi_pass< istream_iterator<char>, multi_pass_policies::input_iterator, multi_pass_policies::first_owner, multi_pass_policies::no_check, multi_pass_policies::std_deque > first_owner_multi_pass_t;

The default template parameters for multi_pass are: input_iterator InputPolicy, ref_counted
OwnershipPolicy, buf_id_check CheckingPolicy and std_deque StoragePolicy. So if you use
multi_pass<istream_iterator<char> > you will get those pre-defined behaviors while wrapping an
istream_iterator<char>.

There is one other pre-defined class called look_ahead. look_ahead has two template parameters:
InputT, the type of the input iterator to wrap, and a std::size_t N, which specifies the size of the buffer
to the fixed_size_queue policy. While the default multi_pass configuration is designed for safey,
look_ahead is designed for speed. look_ahead is derived from a multi_pass with the following
policies: input_iterator InputPolicy, first_owner OwnershipPolicy, no_check CheckingPolicy, and
fixed_size_queue<N> StoragePolicy.

How to write a functor for use with the functor_input InputPolicy

If you want to use the functor_input InputPolicy, you can write your own functor that will supply the
input to multi_pass. The functor must satisfy two requirements. It must have a typedef result_type
which specifies the return type of operator(). This is standard practice in the STL. Also, it must supply
a static variable called eof which is compared against to know whether the input has reached the end.
Here is an example:
 class my_functor { public: typedef char result_type; my_functor() : c(’A’) {} char operator()() const { if (c == ’M’) return eof; else return c++; } static result_type eof; private: char c; }; my_functor::result_type my_functor::eof = ’\0’; typedef multi_pass< my_functor, multi_pass_policies::functor_input, multi_pass_policies::first_owner, multi_pass_policies::no_check, multi_pass_policies::std_deque > functor_multi_pass_t; functor_multi_pass_t first = functor_multi_pass_t(my_functor()); functor_multi_pass_t last;

How to write policies for use with multi_pass

InputPolicy

An InputPolicy must have the following interface:
 class my_input_policy // your policy name { public: // class inner will be instantiated with the type given // as the InputT parameter to multi_pass. template <typename InputT> class inner { public: // these typedefs determine the iterator_traits for multi_pass typedef x value_type; typedef x difference_type; typedef x pointer; typedef x reference; protected: inner(); inner(InputT x); inner(inner const& x); // delete or clean up any state void destroy(); // return true if *this and x have the same input bool same_input(inner const& x) const; void swap(inner& x); public: // get an instance from the input result_type get_input() const; // advance the input void advance_input(); // return true if the input is at the end bool input_at_eof() const; }; };

Because of the way that multi_pass shares a buffer and input among multiple copies, class inner
should keep a pointer to it’s input. The copy constructor should simply copy the pointer. destroy()
should delete it. same_input should compare the pointers. For more details see the various
implementations of InputPolicy classes.

OwnershipPolicy

The OwnershipPolicy must have the following interface:
 class my_ownership_policy { protected: my_ownership_policy(); my_ownership_policy(my_ownership_policy const& x); // clone is called when a copy of the iterator is made void clone(); // called when a copy is deleted. Return true to indicate // resources should be released bool release(); void swap(my_ownership_policy& x); public: // returns true if there is only one iterator in existence. // std_dequeue StoragePolicy will free it’s buffered data if this // returns true. bool unique() const; };

CheckingPolicy

The CheckingPolicy must have the following interface:
 class my_check { protected: my_check(); my_check(my_check const& x); void destroy(); void swap(my_check& x); // check should make sure that this iterator is valid void check() const; void clear_queue(); };

StoragePolicy

A StoragePolicy must have the following interface:
 class my_storage_policy { public: // class inner will be instantiated with the value_type from the InputPolicy template <typename ValueT> class inner { protected: inner(); inner(inner const& x); // will be called from the destructor of the last iterator. void destroy(); void swap(inner& x); // This is called when the iterator is dereferenced. It’s a template // method so we can recover the type of the multi_pass iterator // and access it. template <typename MultiPassT> static ValueT dereference(MultiPassT const& mp); // This is called when the iterator is incremented. It’s a template // method so we can recover the type of the multi_pass iterator // and access it. template <typename MultiPassT> static void increment(MultiPassT& mp); void clear_queue(); // called to determine whether the iterator is an eof iterator template <typename MultiPassT> static bool is_eof(MultiPassT const& mp); // called by operator== bool equal_to(inner const& x) const; // called by operator< bool less_than(inner const& x) const; }; // class inner };

A StoragePolicy is the trickiest policy to write. You should study and understand the existing
StoragePolicy classes before you try and write your own.

Copyright © 2001-2002 Daniel C. Nuffer
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

File
Iterator

Since Spirit is a back-tracking parser, it requires at least a forward iterator. In particular, an input
iterator is not sufficient. Many times it is convenient to read the input to a parser from a file, but the
STL file iterators are input iterators. To get around this limitation, Spirit has a utility class
file_iterator , which is a read-only random-access iterator for files.

To use the Spirit file iterator, simply create a file iterator with the path to the file you wish to parse,
and then create an EOF iterator for the file:

 #include <boost/spirit/iterator/file_iterator.hpp> // the header file

 file_iterator<> first("input.dat");

 if (!first)
 {
 std::cout << "Unable to open file!\n";

 // Clean up, throw an exception, whatever
 return -1;
 }

 file_iterator<> last = first.make_end();

You now have a pair of iterators to use with Spirit . If your parser is fully parametrized (no hard-coded
<char const *>), it is a simple matter of redefining the iterator type to file_iterator :

 typedef char char_t;
 typedef file_iterator <char_t> iterator_t;
 typedef scanner<iterator_t> scanner_t;
 typedef rule <scanner_t> rule_t;

 rule_t my_rule;

 // Define your rule

 parse_info<iterator_t> info = parse(first, last, my_rule);

Of course, you don’t have to deal with the scanner-business at all if you use grammars rather than
rules as arguments to the parse functions. You simply pass the iterator pairs and the grammar as is:

 my_grammar g;
 parse_info<iterator_t> info = parse(first, last, g);

 Generic iterator
The Spirit file iterator can be parameterized with any type that is default
constructible and assignable. It transparently supports large files (greater than
2GB) on systems that provide an appropriate interface. The file iterator can be
useful outside of Spirit as well. For instance, the Boost.Tokenizer package
requires a bidirectional iterator, which is provided by file_iterator.

http://spirit.sf.net/

 See file_parser.cpp for a compilable example. This is part of the Spirit distribution.

Copyright © 2002 Jeff Westfahl

Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/file_parser.cpp

Position
Iterator

Often, when writing a parser that is able to detect errors in the format of the input stream, we want it
to communicate to the user where the error happened within that input. The classic example is when
writing a compiler or interpreter that detects syntactical errors in the parsed program, indicating the
line number and maybe even the position within the line where the error was found.

The class position_iterator is a tool provided within Spirit that allows parser writers to easily
implement this functionality. The concept is quite simple: this class is an iterator wrapper that keeps
track of the current position within the file, including current file, line and column. It requires a single
template parameter, which should be the type of the iterator that is to be wrapped.

To use it, you’ll need to add the following include:

 #include <boost/spirit/iterator/position_iterator.hpp>

Or include all the iterators in Spirit:

 #include <boost/spirit/iterator.hpp>

To construct the wrapper, it needs both the begin and end iterators of the input sequence, and the file
name of the input sequence. Optionally, you can also specify the starting line and column numbers,
which default to 1. Default construction, with no parameters, creates a generic end-of-sequence
iterator, in a similar manner as it’s done in the stream operators of the standard C++ library.

The wrapped iterator must belong to the input or forward iterator category, and the position_iterator
just inherits that category.

For example, to create begin and end positional iterators from an input C- string, you’d use:

 char const* inputstring = "...";
 typedef position_iterator<char const*> iterator_t;

 iterator_t begin(inputstring, inputstring+strlen(inputstring));
 iterator_t end;

Operations
 void set_position(file_position const&);

Call this function when you need to change the current position stored in the iterator. For example, if
parsing C-style #include directives, the included file’s input must be marked by restarting the file and
column to 1 and 1 and the name to the new file’s name.

 file_position const& get_position() const;

http://spirit.sf.net/

Call this function to retrieve the current position.

 void set_tabchars(int);

Call this to set the number of tabs per character. This value is necessary to correctly track the column
number.

file_position
file_position is a structure that holds the position within a file. Its fields are:

file_position fields

std::string
file;

Name of the file. Hopefully a full pathname

int line; Line number within the file. By default, the first line is number 1

int column; Column position within the file. The first column is 1

 See position_iterator.cpp for a compilable example. This is part of the Spirit distribution.

Copyright © 2002 Juan Carlos Arevalo-Baeza
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/position_iterator/position_iterator.cpp

Debugging

The top-down nature of Spirit makes the generated parser easy to micro- debug using the standard
debugger bundled with the C++ compiler we are using. With recursive-descent, the parse traversal
utilizes the hardware stack through C++ function call mechanisms. There are no difficult to debug
tables or state machines that obscure the parsing logic flow. The stack trace we see in the debugger
follows faithfully the hierarchical grammar structure.

Since any production rule can initiate a parse traversal , it is a lot easier to pinpoint the bugs by
focusing on one or a few rules. For relatively complex parsing tasks, the same way we write robust
C++ programs, it is advisable to develop a grammar iteratively on a per-module basis where each
module is a small subset of the complete grammar. That way, we can stress-test individual modules
piecemeal until we reach the top-most module. For instance, when developing a scripting language,
we can start with expressions, then move on to statements, then functions, upwards until we have a
complete grammar.

At some point when the grammar gets quite complicated, it is desirable to visualize the parse traversal
and see what’s happening. There are some facilities in the framework that aid in the visualisation of
the parse traversal for the purpose of debugging. The following macros enable these features.

Debugging Macros

BOOST_SPIRIT_ASSERT_EXCEPTION

Spirit contains assertions that may activate when spirit is used incorrectly. By default these assertions
use the assert macro from the standard library. If you want spirit to throw an exception instead, define
BOOST_SPIRIT_ASSERT_EXCEPTION to the name of the class that you want to be thrown. This
class’s constructor will be passed a const char* stringified version of the file, line, and assertion
condition, when it is thrown. If you want to totally disable the assertion, #define NDEBUG .

BOOST_SPIRIT_DEBUG

Define this to enable debugging.

With debugging enabled, special output is generated at key points of the parse process, using the
standard output operator (operator<<) with BOOST_SPIRIT_DEBUG_OUT (default is
std::cout , see below) as its left operand.

http://spirit.sf.net/

 In order to use spirit’s debugging support you must ensure that appropriate
overloads of operator<< taking BOOST_SPIRIT_DEBUG_OUT as its left
operand are available. The expected semantics are those of the standard output
operator.
These overloads may be provided either within the namespace where the
corresponding class is declared (will be found through Argument Dependent
Lookup) or [within an anonymous namespace] within namespace
boost::spirit , so it is visible where it is called.

 Note in particular that when
BOOST_SPIRIT_DEBUG_FLAGS_CLOSURES is set, overloads of
operator<< taking instances of the types used in closures as their right
operands are required.
You may find an example of overloading the output operator for std::pair
in a related FAQ entry.

By default, if the BOOST_SPIRIT_DEBUG macro is defined, all available debug output is generated.
To fine tune the amount of generated text you can define the BOOST_SPIRIT_DEBUG_FLAGS
constant to be equal of a combination of the following flags:

Available flags to fine tune debug output

BOOST_SPIRIT_DEBUG_FLAGS_NODES
print information about nodes
(general for all parsers)

BOOST_SPIRIT_DEBUG_FLAGS_TREES
print information about parse trees
and AST’s (general for all tree
parsers)

BOOST_SPIRIT_DEBUG_FLAGS_CLOSURES
print information about closures
(general for all parsers with
closures)

BOOST_SPIRIT_DEBUG_FLAGS_ESCAPE_CHAR
print information out of the
esc_char_parser

BOOST_SPIRIT_DEBUG_FLAGS_SLEX
print information out of the SLEX
parser

BOOST_SPIRIT_DEBUG_OUT

Define this to redirect the debugging diagnostics printout to somewhere else (e.g. a file or stream).
Defaults to std::cout .

BOOST_SPIRIT_DEBUG_TOKEN_PRINTER

The BOOST_SPIRIT_DEBUG_TOKEN_PRINTER macro allows you to redefine the way characters
are printed on the stream.

If BOOST_SPIRIT_DEBUG_OUT is of type StreamT , the character type is CharT and
BOOST_SPIRIT_DEBUG_TOKEN_PRINTER is defined to foo , it must be compatible with this
usage:

 foo(StreamT, CharT)

The default printer requires operator<<(StreamT, CharT) to be defined. Additionaly, if
CharT is convertible to a normal character type (char , wchar_t or int), it prints control
characters in a friendly manner (e.g., when it receives ’\n’ it actually prints the \ and n charactes,
instead of a newline).

BOOST_SPIRIT_DEBUG_PRINT_SOME

The BOOST_SPIRIT_DEBUG_PRINT_SOME constant defines the number of characters from the
stream to be printed for diagnosis. This defaults to the first 20 characters.

BOOST_SPIRIT_DEBUG_TRACENODE

By default all parser nodes are traced. This constant may be used to redefine this default. If this is 1
(true), then tracing is enabled by default, if this constant is 0 (false), the tracing is disabled by
default. This preprocessor constant is set to 1 (true) by default.

Please note, that the following BOOST_SPIRIT_DEBUG_...() macros are to be used at function
scope only.

BOOST_SPIRIT_DEBUG_NODE(p)

Define this to print some debugging diagnostics for parser p. This macro

Registers the parser name for debugging
Enables/disables the tracing for parser depending on BOOST_SPIRIT_DEBUG_TRACENODE

Pre-parse: Before entering the rule, the rule name followed by a peek into the data at the current
iterator position is printed.

Post-parse: After parsing the rule, the rule name followed by a peek into the data at the current
iterator position is printed. Here, ’/’ before the rule name flags a succesful match while ’#’ before
the rule name flags an unsuccesful match.

The following are synonyms for BOOST_SPIRIT_DEBUG_NODE

1. BOOST_SPIRIT_DEBUG_RULE
2. BOOST_SPIRIT_DEBUG_GRAMMAR

BOOST_SPIRIT_DEBUG_TRACE_NODE(p, flag)

Similar to BOOST_SPIRIT_DEBUG_NODE. Additionally allows selective debugging. This is useful
in situations where we want to debug just a hand picked set of nodes.

The following are synonyms for BOOST_SPIRIT_DEBUG_TRACE_NODE

1. BOOST_SPIRIT_DEBUG_TRACE_RULE
2. BOOST_SPIRIT_DEBUG_TRACE_GRAMMAR

BOOST_SPIRIT_DEBUG_TRACE_NODE_NAME(p, name, flag)

Similar to BOOST_SPIRIT_DEBUG_NODE. Additionally allows selective debugging and allows to
specify the name used during debug printout. This is useful in situations where we want to debug just
a hand picked set of nodes. The name may be redefined in situations, where the parser parameter does
not reflect the name of the parser to debug.

The following are synonyms for BOOST_SPIRIT_DEBUG_TRACE_NODE

1. BOOST_SPIRIT_DEBUG_TRACE_RULE_NAME
2. BOOST_SPIRIT_DEBUG_TRACE_GRAMMAR_NAME

Here’s the original calculator with debugging features enabled:

 #define BOOST_SPIRIT_DEBUG ///$$$ DEFINE THIS BEFORE ANYTHING ELSE $$$///
 #include "boost/spirit.hpp"

 /***/

 /*** CALCULATOR GRAMMAR DEFINITIONS HERE ***/

 BOOST_SPIRIT_DEBUG_RULE(integer);
 BOOST_SPIRIT_DEBUG_RULE(group);
 BOOST_SPIRIT_DEBUG_RULE(factor);
 BOOST_SPIRIT_DEBUG_RULE(term);
 BOOST_SPIRIT_DEBUG_RULE(expr);

 Be sure to add the macros inside the grammar definition’s constructor. Now here’s a sample
session with the calculator.

 Type an expression...or [q or Q] to quit

 1 + 2

 grammar(calc): "1 + 2"
 rule(expression): "1 + 2"
 rule(term): "1 + 2"
 rule(factor): "1 + 2"
 rule(integer): "1 + 2"
 push 1
 /rule(integer): " + 2"
 /rule(factor): " + 2"
 /rule(term): " + 2"
 rule(term): "2"
 rule(factor): "2"
 rule(integer): "2"
 push 2
 /rule(integer): ""
 /rule(factor): ""
 /rule(term): ""
 popped 1 and 2 from the stack. pushing 3 onto the stack.

 /rule(expression): ""
 /grammar(calc): ""

 Parsing succeeded
 result = 3

We typed in "1 + 2". Notice that there are two successful branches from the top rule expr . The text in
red is generated by the parser’s semantic actions while the others are generated by the
debug-diagnostics of our rules. Notice how the first integer rule took "1", the first term rule took
"+" and finally the second integer rule took "2".

Please note the special meaning of the first characters appearing on the printed lines:

a single ’/’ starts a line containing the information about a successfully matched parser node
(rule<> , grammar<> or subrule<>)
a single ’#’ starts a line containing the information about a failed parser node
a single ’^’ starts a line containing the first member (return value/synthesised attribute) of the
closure of a successfully matched parser node.

Check out calc_debug.cpp to see debugging in action.

Copyright © 1998-2003 Joel de Guzman
Copyright © 2003 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/calc_debug.cpp

Error
Handling

C++’s exception handling mechanism is a perfect match for error handling in the framework. Imagine
a complete parser as a maze. At each branch, the input dictates where we will turn. Given an erroneous
input, we may reach a dead end. If we ever reach one, it would be a waste of time to backtrack from
where we came from. Instead, we supply guards in strategic points. Beyond a certain point, we put put
parser assertions in places where one is not allowed to go.

The assertions are like springs that catapult us back to the guard. If we ever reach a brick wall given a
specific input pattern, everything unwinds quickly and we are thrown right back to the guard. This can
be a very effective optimization when used wisely. Right back at the guard, we have a chance to
correct the situation, if possible. The following illustration depicts the scenario.

Parser Errors
The parser_error class is the generic parser exception class used by Spirit. This is the base class
for all parser exceptions.

 template <typename ErrorDescrT, typename IteratorT = char const*>
 class parser_error {
 public:
 parser_error(IteratorT where, ErrorDescrT descriptor);
 IteratorT where;
 ErrorDescrT descriptor;
 };

The exception holds the iterator position where the error was encountered in its where member
variable. In addition to the iterator, parser_error also holds information regarding the error (error
descriptor) in its descriptor member variable.

http://spirit.sf.net/

Semantic actions are free to throw parser exceptions when necessary. A utility function throw_ may
be called. This function creates and throws a parser_error given an iterator and an error
descriptor:

 template <typename ErrorDescrT, typename IteratorT>
 void throw_(IteratorT where, ErrorDescrT descriptor);

Parser Assertions
Assertions may be put in places where we don’t have any other option other than expect parsing to
succeed. If parsing fails, a specific type of exception is thrown.

Before declaring the grammar, we declare some assertion objects. assertion is a template class
parameterized by the type of error that will be thrown once the assertion fails. The following
assertions are parameterized by a user defined Error enumeration.

Examples
 enum Errors
 {
 program_expected,
 begin_expected,
 end_expected
 };

 assertion<Errors> expect_program(program_expected);
 assertion<Errors> expect_begin(begin_expected);
 assertion<Errors> expect_end(end_expected);

The example above uses enums to hold the information regarding the error, we are free to use other
types such as integers and strings. For example, assertion<string> accepts a string as its info. It
is advisable to use light-weight objects though, after all, error descriptors are usually static. Enums are
convenient for error handlers to detect and easily catch since C++ treats enums as unique types.

 The assertive_parser
Actually, the expression expect_end(str_p("end")) creates an
assertive_parser object. An assertive_parser is a parser that throws an
exception in response to a parsing failure. The assertive_parser throws a
parser_error exception rather than returning an unsuccessful match to signal
that the parser failed to match the input. During parsing, parsers are given an
iterator of type IteratorT . This is combined with the error descriptor type
ErrorDescrT of the assertion (in this case enum Errors). Both are used
to create a parser_error<Errors, IteratorT> which is then
thrown to signal the exception.

The predeclared expect_end assertion object may now be used in the grammar as wrappers around
parsers. For example:

 expect_end(str_p("end"))

This will throw an exception if it fails to see "end" from the input.

The Guard
The guard is used to catch a specific type of parser_error . guards are typically predeclared just
like assertions. Extending our previous example:

 guard<Errors> my_guard;

Errors , in this example is the error descriptor type we want to detect. This is the same enum as
above. my_guard may now be used in a grammar declaration:

 my_guard(p)[error_handler]

where p is an expression that evaluates to a parser. Somewhere inside p, a parser may throw a parser
exception. error_handler is the error handler which may be a function or functor compatible with
the interface:

 error_status<T> f(ScannerT const& scan, ErrorT error);

Where scan points to the scanner state prior to parsing and error is the error that arose. The handler is
allowed to move the scanner position as it sees fit, possibly in an attempt to perform error correction.
The handler must then return an error_status<T> object.

 The fallback_parser
The expression my_guard(expr, error_handler) creates a
fallback_parser object. The fallback_parser handles parser_error exceptions of
a specific type. Since my_guard is declared as guard<Errors> , the
fallback_parser catches Errors specific parser errors:
parser_error<Errors, IteratorT> . The class sets up a try block.
When an exception is caught, the catch block then calls the error_handler.

error_status<T>
 template <typename T = nil_t>
 struct error_status
 {
 enum result_t { fail, retry, accept, rethrow };

 error_status(result_t result = fail,
 int length = -1,
 T const& value = T());
 result_t result;
 int length;
 T value;
 };

Where T is an attribute type compatible with the match attribute of the fallback_parser ’s
subject (defaults to nil_t). The class error_status reports the result of an error handler. This
result can be one of:

error_status result

fail
quit and fail.
Return a
no_match

retry

attempt
error
recovery,
possibly
moving
the
scanner

accept

force success
returning a
matching
length, moving
the scanner
appropriately
and returning an
attribute value

rethrow
rethrows
the error

 See error_handling.cpp for a compilable example. This is part of the Spirit distribution.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/fundamental/error_handling.cpp

Quick
Reference

This isn’t intended to be a full, detailed reference; nor is it intended to be of any use to readers who
aren’t already familiar with Spirit. It’s just a brief reminder of the syntax and behaviour of each
component, with links to the full documentation.

Primitive parser generators (action arguments are listed on the right)
Null parsers
Character parsers
Number parsers
Other lexeme parsers
Text parsers

Other parser elements
Compound parsers
General directives
Tree-specific directives

Operators
Unary operators
Binary operators (in order of precedence)

http://spirit.sf.net/

Null parsers

end_p
Matches
EOF

iter,iter

eps_p
eps_p(P)

Matches
without
consuming
text

iter,iter

epsilon_p
epsilon_p(P)

Synonym for
eps_p

iter,iter

nothing_p Always fails iter,iter

Character parsers

alnum_p
Matches any
alphanumeric
character

char

alpha_p
Matches any
letter

char

anychar_p
Matches any
character

char

blank_p
Matches a
space or tab

char

ch_p(char)
Matches a
character

char

chset_p(charset)
Matches a
character in
the set

char

cntrl_p
Matches any
control
character

char

digit_p
Matches any
digit

char

f_ch_p(func)
Matches a
character

char

f_range_p(func1,
func2)

Matches any
character in
the inclusive
range

char

graph_p

Matches any
non-space
printable
character

char

lower_p
Matches any
lower-case
letter

char

print_p
Matches any
printable
character

char

punct_p
Matches any
punctuation
mark

char

range_p(char1,
char2)

Matches any
character in
the inclusive
range

char

sign_p
Matches a
plus or minus
sign

bool

space_p
Matches any
whitespace
character

char

upper_p
Matches any
upper-case
letter

char

xdigit_p
Matches any
hexadecimal
digit

char

Number parsers

bin_p

Matches an
unsigned
binary
integer

numeric

hex_p

Matches an
unsigned
hexadecimal
integer

numeric

int_p

Matches a
signed
decimal
integer

numeric

int_parser<type,
base, min, max>

Matches a
signed
integer with
min to max
digits

numeric

oct_p
Matches an
unsigned
octal integer

numeric

real_p
Matches a
floating point
number

numeric

real_parser<type,
policy>

Matches a
floating point
number

numeric

strict_real_p

Matches a
floating point
number
(requires
decimal
point)

numeric

strict_ureal_p

Matches an
unsigned FP
number
(requires
decimal
point)

numeric

uint_p

Matches an
unsigned
decimal
integer

numeric

uint_parser<type,
base, min, max>

Matches an
unsigned
integer with
min to max
digits

numeric

ureal_p
Matches an
unsigned FP
number

numeric

Other lexeme parsers

c_escape_ch_p
Matches a C
escape code

char

comment_p(string)
comment_p
(string1,
string2)

Matches C++
or C-style
comments

iter,iter

eol_p
Matches CR,
LF, or any
combination

iter,iter

f_str_p(func1,
func2)

Matches a
string

iter,iter

lex_escape_ch_p

Matches a C
escape code
or any
backslash
escape

char

regex_p(regex)
Matches a
regular
expression

iter,iter

str_p(string)
str_p(iter1,
iter2)

Matches a
string

iter,iter

Text parsers

chseq_p(string)
chseq_p(iter1,
iter2)

Matches a
string,
possibly with
embedded
whitespace

iter,iter

f_chseq_p(func1,
func2)

Matches a
string,
possibly with
embedded
whitespace

iter,iter

Compound parsers

confix_p(open, exp,
close)

Matches
open >>
(exp - close)
>> close

do_p[P].while_p(cond)

Matches
while a
condition is
true (at least
once)

for_p(init, cond,
step)[P]

Matches in a
loop

functor_parser<func>
Wraps an
external
parser

if_p(cond)[P]
if_p(cond)[P].else_p[P]

Matches
depending on
a condition

lazy_p(P)
Evaluates a
parser at run
time

list_p
list_p(del)
list_p(item, del)
list_p(item, del, end)

Matches a
delimited list

repeat_p(num)[P]
repeat_p(min, max)[P]
repeat_p(min, more)[P]

Matches
multiple
times

while_p (cond) [P]

Matches
while a
condition is
true

General directives

as_lower_d[P]

Converts text
to lower case
before
matching

attach_action_d[(P1 op
P2)[act]]

Transforms
to P1 [act]
op P2 [act]

lexeme_d[P]
Turns off
whitespace
skipping

limit_d[P](min, max)

Matches only
if the value is
within the
range

longest_d[P]
Matches the
longest of
alternatives

max_limit_d[P](max)
Matches only
if value <=
max

min_limit_d[P](min)
Matches only
if value >=
min

refactor_action_d[P1
[act] op P2]

Transforms
to (P1 op
P2) [act]

refactor_unary_d[op1 P1
op2 P2]

Transforms
to op1 (P1
op2 P2)

scoped_lock_d[P](mutex)
Locks a
mutex while
matching

shortest_d[P]
Matches the
shortest of
alternatives

Tree-specific directives

access_node_d[P]
Passes node
value to
action

discard_first_node_d[P]
Discards first
node

discard_last_node_d[P]
Discards last
node

discard_node_d[P]
Discards the
generated
node

infix_node_d[P]
Discards
even-position
nodes

inner_node_d[P]
Discards first
and last
nodes

leaf_node_d[P]

Generates a
single node
with no
children

no_node_d[P]
Does not
generate a
node

root_node_d[P]
Identifies
root nodes
for an AST

token_node_d[P]
Synonym for
leaf_node_d

Unary operators

!P
Matches P or
an empty
string

*P
Matches P
zero or more
times

+P
Matches P
one or more
times

~P

Matches
anything that
does not
match P

Binary operators

P1 % P2

Matches one
or more P1
separated by
P2

P1 - P2
Matches P1
but not P2

P1 >> P2
Matches P1
followed by
P2

P1 & P2
Matches both
P1 and P2

P1 ^ P2
Matches P1
or P2, but
not both

P1 | P2
Matches P1
or P2

P1 && P2
Synonym for
P1 >> P2

P1 || P2
Matches P1 |
P2 | P1 >>
P2

Copyright © 2003 Ross Smith
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Includes

Modules
Spirit is designed to be header only. Generally, there are no libraries to build and link against. Certain
features, however, require additional libraries; in particular the regular expression parser requires
Boost.Regex and multithreading support requires Boost.Threads.

Using Spirit is as easy as including the main header file:

 #include <boost/spirit.hpp>

Doing so will include all the header files. This might not be desirable. A low cholesterol alternative is
to include only the module that you need. Each of the modules has its own header file. The master
spirit header file actually includes all the module files. To avoid unnecessary inclusion of features that
you do not need, it is better to include only the modules that you need.

 #include <boost/spirit/actor.hpp> #include <boost/spirit/attribute.hpp>
 #include <boost/spirit/core.hpp> #include <boost/spirit/debug.hpp> #include <boost/spirit/dynamic.hpp> #include <boost/spirit/error_handling.hpp> #include <boost/spirit/iterator.hpp>
 #include <boost/spirit/meta.hpp> #include <boost/spirit/symbols.hpp> #include <boost/spirit/tree.hpp> #include <boost/spirit/utility.hpp>

Sub-Modules
For even finer control over header file inclusion, you can include only the specific files that you need.
Each module is in its own sub-directory:

actor
 #include <boost/spirit/actor/assign_actor.hpp> #include <boost/spirit/actor/assign_key.hpp>
 #include <boost/spirit/actor/clear_actor.hpp>
 #include <boost/spirit/actor/decrement_actor.hpp>
 #include <boost/spirit/actor/erase_actor.hpp> #include <boost/spirit/actor/increment_actor.hpp> #include <boost/spirit/actor/insert_key_actor.hpp>
 #include <boost/spirit/actor/push_back_actor.hpp>
 #include <boost/spirit/actor/push_front_actor.hpp>
 #include <boost/spirit/actor/swap_actor.hpp>

attribute
 #include <boost/spirit/attribute/closure.hpp> #include <boost/spirit/attribute/closure_context.hpp>
 #include <boost/spirit/attribute/parametric.hpp>

debug

 The debug module should not be directly included. See Debugging for more info on how to use
Spirit’s debugger.

dynamic
 #include <boost/spirit/dynamic/for.hpp> #include <boost/spirit/dynamic/if.hpp>
 #include <boost/spirit/dynamic/lazy.hpp> #include <boost/spirit/dynamic/rule_alias.hpp>
 #include <boost/spirit/dynamic/select.hpp>
 #include <boost/spirit/dynamic/stored_rule.hpp>
 #include <boost/spirit/dynamic/switch.hpp>
 #include <boost/spirit/dynamic/while.hpp>

http://spirit.sf.net/
http://www.boost.org/libs/regex/index.html
http://www.boost.org/libs/thread/doc/index.html

error_handling
 #include <boost/spirit/error_handling/exceptions.hpp>

iterator
 #include <boost/spirit/iterator/file_iterator.hpp> #include <boost/spirit/iterator/fixed_size_queue.hpp>
 #include <boost/spirit/iterator/multi_pass.hpp> #include <boost/spirit/iterator/position_iterator.hpp>

meta
 #include <boost/spirit/meta/as_parser.hpp> #include <boost/spirit/meta/fundamental.hpp>
 #include <boost/spirit/meta/parser_traits.hpp> #include <boost/spirit/meta/refactoring.hpp> #include <boost/spirit/meta/traverse.hpp>

tree
 #include <boost/spirit/tree/ast.hpp> #include <boost/spirit/tree/parse_tree.hpp>
 #include <boost/spirit/tree/parse_tree_utils.hpp> #include <boost/spirit/tree/tree_to_xml.hpp>

utility
 #include <boost/spirit/utility/chset.hpp> #include <boost/spirit/utility/chset_operators.hpp> #include <boost/spirit/utility/confix.hpp>
 #include <boost/spirit/utility/distinct.hpp>
 #include <boost/spirit/utility/escape_char.hpp>
 #include <boost/spirit/utility/flush_multi_pass.hpp>
 #include <boost/spirit/utility/functor_parser.hpp>
 #include <boost/spirit/utility/lists.hpp>
 #include <boost/spirit/utility/loops.hpp>
 #include <boost/spirit/utility/regex.hpp>
 #include <boost/spirit/utility/scoped_lock.hpp>

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Portability

Historically, Spirit supported a lot of compilers, including (to some extent) poorly conforming
compilers such as VC6. Spirit v1.6.x will be the last release that will support older poorly conforming
compilers. Starting from Spirit v1.8.0, ill conforming compilers will not be supported. If you are still
using one of these older compilers, you can still use Spirit v1.6.x.

The reason why Spirit v1.6.x worked on old non-conforming compilers is that the authors laboriously
took the trouble of searching for workarounds to make these compilers happy. The process takes a lot
of time and energy, especially when one encounters the dreaded ICE or "Internal Compiler Error".
Sometimes searching for a single workaround takes days or even weeks. Sometimes, there are no
known workarounds. This stifles progress a lot. And, as the library gets more progressive and takes on
more advanced C++ techniques, the difficulty is escalated to even new heights.

Spirit v1.6.x will still be supported. Maintenance will still happen and bug fixes will still be applied.
There will still be active development for the back-porting of new features introduced in Spirit v1.8.0
(and Spirit 1.9.0) to lesser able compilers; hopefully, fueled by contributions from the community. We
welcome active support from the C++ community, especially those with special expertise on
compilers such as older Borland and MSVC++ compilers.

Spirit 1.8 has been tested to compile and run properly on these compilers:

1. g++ 3.1 and above
2. Comeau 4.24.5
3. MSVC 7.1
4. Intel 7.1

If your compiler is sufficiently conforming, chances are, you can compile Spirit as it is or with
minimal portability fixes here and there. Please inform us if your compiler is known to be ISO/ANSI
conforming and is not in this list above. Feel free to post feedback to Spirit-general mailing list
[Spirit-general@lists.sourceforge.net].

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sf.net/
https://lists.sourceforge.net/lists/listinfo/spirit-general

Style
Guide

At some point, especially when there are lots of semantic actions attached to various points, the
grammar tends to be quite difficult to follow. In order to keep an easy-to-read, consistent en
aesthetically pleasing look to the Spirit code, the following coding styleguide is advised.

This coding style is adapted and extended from the ANTLR/PCCTS style (Terrence Parr) and Boost
coding guidelines (David Abrahams and Nathan Myers) and is the combined work of Joel de Guzman,
Chris Uzdavinis and Hartmut Kaiser.

Rule names use std C++ (Boost) convention. The rule name may be very long.
The ’=’ is neatly indented 4 spaces below. Like Boost, use spaces instead of tabs.
Breaking the operands into separate lines puts the semantic actions neatly to the right.
Semicolon at the last line terminates the rule.
The adjacent parts of a sequence should be indented accordingly to have all, what belongs to one
level, at one indentation level.

 program
 = program_heading [heading_action]
 >> block [block_action]
 >> ’.’
 | another_sequence
 >> etc
 ;

Prefer literals in the grammar instead of identifiers. e.g. "program" instead of PROGRAM,
’>=’ instead of GTE and ’.’ instead of DOT. This makes it much easier to read. If this isn’t
possible (for instance where the used tokens must be identified through integers) capitalized
identifiers should be used instead.
Breaking the operands may not be needed for short expressions. e.g. *(’,’ >>
file_identifier) as long as the line does not exceed 80 characters.
If a sequence fits on one line, put spaces inside the parentheses to clearly separate them from the
rules.

 program_heading
 = as_lower_d["program"]
 >> identifier
 >> ’(’
 >> file_identifier
 >> *(’,’ >> file_identifier)
 >> ’)’
 >> ’;’
 ;

Nesting directives: If a rule does not fit on one line (80 characters) it should be continued on the
next line intended by one level.
The brackets of directives, semantic expressions (using Phoenix or LL lambda expressions) or
parsers should be placed as follows.

http://spirit.sf.net/
http://groups.yahoo.com/group/boost/files/coding_guidelines.html
http://groups.yahoo.com/group/boost/files/coding_guidelines.html

 identifier
 = nocase
 [
 lexeme
 [
 alpha >> *(alnum | ’_’) [id_action]
]
]
 ;

Nesting unary operators (e.g.Kleene star)
Unary rule operators (Kleene star, ’!’ , ’+’ etc.) should be moved out one space before the
corresponding indentation level, if this rule has a body or a sequence after it, which does not fit
on on line. This makes the formatting more consistent and moves the rule ’body’ at the same
indentation level as the rule itself, highlighting the unary operator.

 block
 = *(label_declaration_part
 | constant_definition_part
 | type_definition_part
 | variable_declaration_part
 | procedure_and_function_declaration_part
)
 >> statement_part
 ;

Copyright © 2001-2003 Joel de Guzman
Copyright © 2001-2002 Hartmut Kaiser
Copyright © 2001-2002 Chris Uzdavinis
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Techniques

Templatized Functors
Rule With Multiple Scanners
Look Ma’ No Rules!
typeof
Nabialek trick

Templatized Functors

For the sake of genericity, it is often better to make the functor’s member operator() a template.
That way, we do not have to concern ourselves with the type of the argument to expect as long as the
behavior is appropriate. For instance, rather than hard-coding char const* as the argument of a
generic semantic action, it is better to make it a template member function. That way, it can accept any
type of iterator:

 struct my_functor
 {
 template <typename IteratorT>
 void operator()(IteratorT first, IteratorT last) const;
 };

Take note that this is only possible with functors. It is not possible to pass in template functions as
semantic actions unless you cast it to the correct function signature; in which case, you monomorphize
the function. This clearly shows that functors are superior to plain functions.

Rule With Multiple Scanners

As of v1.8.0, rules can use one or more scanner types. There are cases, for instance, where we need a
rule that can work on the phrase and character levels. Rule/scanner mismatch has been a source of
confusion and is the no. 1 FAQ. To address this issue, we now have multiple scanner support.

Here is an example of a grammar with a rule r that can be called with 3 types of scanners
(phrase-level, lexeme, and lower-case). See the rule, grammar, lexeme_scanner and as_lower_scanner
for more information.

Here’s the grammar (see multiple_scanners.cpp):

 struct my_grammar : grammar<my_grammar>
 {
 template <typename ScannerT>
 struct definition
 {
 definition(my_grammar const& self)
 {
 r = lower_p;
 rr = +(lexeme_d[r] >> as_lower_d[r] >> r);
 }

http://spirit.sf.net/
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/multiple_scanners.cpp

 typedef scanner_list<
 ScannerT
 , typename lexeme_scanner<ScannerT>::type
 , typename as_lower_scanner<ScannerT>::type
 > scanners;

 rule<scanners> r;
 rule<ScannerT> rr;
 rule<ScannerT> const& start() const { return rr; }
 };
 };

By default support for multiple scanners is disabled. The macro
BOOST_SPIRIT_RULE_SCANNERTYPE_LIMIT must be defined to the maximum number of
scanners allowed in a scanner_list. The value must be greater than 1 to enable multiple scanners.
Given the example above, to define a limit of three scanners for the list, the following line must be
inserted into the source file before the inclusion of Spirit headers:

 #define BOOST_SPIRIT_RULE_SCANNERTYPE_LIMIT 3

Look Ma’ No Rules

You use grammars and you use lots of ’em? Want a fly-weight, no-cholesterol, super-optimized
grammar? Read on...

I have a love-hate relationship with rules. I guess you know the reasons why. A lot of problems stem
from the limitation of rules. Dynamic polymorphism and static polymorphism in C++ do not mix well.
There is no notion of virtual template functions in C++; at least not just yet. Thus, the rule is tied to a
specific scanner type. This results in problems such as the scanner business, our no. 1 FAQ. Apart
from that, the virtual functions in rules slow down parsing, kill all meta-information, and kills inlining,
hence bloating the generated code, especially for very tiny rules such as:

 r = ch_p(’x’) >> uint_p;

The rule’s limitation is the main reason why the grammar is designed the way it is now, with a nested
template definition class. The rule’s limitation is also the reason why subrules exists. But do we really
need rules? Of course! Before C++ adopts some sort of auto-type deduction, such as that proposed by
David Abrahams in clc++m:

 auto r = ...definition ...

we are tied to the rule as RHS placeholders. However.... in some occasions we can get by without
rules! For instance, rather than writing:

 rule<> x = ch_p(’x’);

It’s better to write:

 chlit<> x = ch_p(’x’);

That’s trivial. But what if the rule is rather complicated? Ok, let’s proceed stepwise... I’ll investigate a
simple skip_parser based on the C grammar from Hartmut Kaiser. Basically, the grammar is written as
(see no_rule1.cpp):

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule1.cpp

 struct skip_grammar : grammar<skip_grammar>
 {
 template <typename ScannerT>
 struct definition
 {
 definition(skip_grammar const& /*self*/)
 {
 skip
 = space_p
 | "//" >> *(anychar_p - ’\n’) >> ’\n’
 | "/*" >> *(anychar_p - "*/") >> "*/"
 ;
 }

 rule<ScannerT> skip;

 rule<ScannerT> const&
 start() const { return skip; }
 };
 };

Ok, so far so good. Can we do better? Well... since there are no recursive rules there (in fact there’s
only one rule), you can expand the type of rule’s RHS as the rule type (see no_rule2.cpp):

 struct skip_grammar : grammar<skip_grammar>
 {
 template <typename ScannerT>
 struct definition
 { definition(skip_grammar const& /*self*/)
 : skip (space_p
 | "//" >> *(anychar_p - ’\n’) >> ’\n’
 | "/*" >> *(anychar_p - "*/") >> "*/"
)
 {
 }

 typedef
 alternative<alternative<space_parser, sequence<sequence<
 strlit<const char*>, kleene_star<difference<anychar_parser,
 chlit<char> > > >, chlit<char> > >, sequence<sequence<
 strlit<const char*>, kleene_star<difference<anychar_parser,
 strlit<const char*> > > >, strlit<const char*> > >
 skip_t; skip_t skip;

 skip_t const&
 start() const { return skip; }
 };
 };

Ughhh! How did I do that? How was I able to get at the complex typedef? Am I insane? Well, not
really... there’s a trick! What you do is define the typedef skip_t first as int:

 typedef int skip_t;

Try to compile. Then, the compiler will generate an obnoxious error message such as:

 "cannot convert boost::spirit::alternative<... blah blah...to int".

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule2.cpp

THERE YOU GO! You got it’s type! I just copy and paste the correct type (removing explicit
qualifications, if preferred).

Can we still go further? Yes. Remember that the grammar was designed for rules. The nested template
definition class is needed to get around the rule’s limitations. Without rules, I propose a new class
called sub_grammar , the grammar’s low-fat counterpart:

 namespace boost { namespace spirit
 {
 template <typename DerivedT>
 struct sub_grammar : parser<DerivedT>
 {
 typedef sub_grammar self_t;
 typedef DerivedT const& embed_t;

 template <typename ScannerT>
 struct result
 {
 typedef typename parser_result<
 typename DerivedT::start_t, ScannerT>::type
 type;
 };

 DerivedT const& derived() const
 { return *static_cast<DerivedT const*>(this); }

 template <typename ScannerT>
 typename parser_result<self_t, ScannerT>::type
 parse(ScannerT const& scan) const
 {
 return derived().start.parse(scan);
 }
 };
 }}

With the sub_grammar class, we can define our skipper grammar this way (see no_rule3.cpp):

 struct skip_grammar : sub_grammar<skip_grammar>
 {
 typedef
 alternative<alternative<space_parser, sequence<sequence<
 strlit<const char*>, kleene_star<difference<anychar_parser,
 chlit<char> > > >, chlit<char> > >, sequence<sequence<
 strlit<const char*>, kleene_star<difference<anychar_parser,
 strlit<const char*> > > >, strlit<const char*> > >
 start_t;

 skip_grammar()
 : start
 (
 space_p
 | "//" >> *(anychar_p - ’\n’) >> ’\n’
 | "/*" >> *(anychar_p - "*/") >> "*/"
)
 {}

 start_t start;
 };

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule3.cpp

But what for, you ask? You can simply use the start_t type above as-is. It’s already a parser! We
can just type:

 skipper_t skipper =
 space_p
 | "//" >> *(anychar_p - ’\n’) >> ’\n’ | "/*" >> *(anychar_p - "*/") >> "*/"
 ;

and use skipper just as we would any parser? Well, a subtle difference is that skipper , used this
way will be embedded by value when you compose more complex parsers using it. That is, if we use
skipper inside another production, the whole thing will be stored in the composite. Heavy!

The proposed sub_grammar OTOH will be held by reference. Note:

 typedef DerivedT const& embed_t;

The proposed sub_grammar does not have the inherent limitations of rules, is very lighweight, and
should be blazingly fast (can be fully inlined and does not use virtual functions). Perhaps this class
will be part of a future spirit release.

 The no-rules result
So, how much did we save? On MSVCV7.1, the original code: no_rule1.cpp
compiles to 28k. Eliding rules, no_rule2.cpp, we got 24k. Not bad, we shaved
off 4k amounting to a 14% reduction. But you’ll be in for a surprise. The last
version, using the sub-grammar: no_rule3.cpp, compiles to 5.5k! That’s a
whopping 80% reduction.

no_rule1.cpp 28k standard rule and grammar

no_rule2.cpp 24k standard grammar, no rule

no_rule3.cpp 5.5k sub_grammar, no rule, no grammar

typeof

Some compilers already support the typeof keyword. Examples are g++ and Metrowerks
CodeWarrior. Someday, typeof will become commonplace. It is worth noting that we can use
typeof to define non-recursive rules without using the rule class. To give an example, we’ll use the
skipper example above; this time using typeof . First, to avoid redundancy, we’ll introduce a macro
RULE:

 #define RULE(name, definition) typeof(definition) name = definition

Then, simply:

 RULE(
 skipper,
 (space_p
 | "//" >> *(anychar_p - ’\n’) >> ’\n’
 | "/*" >> *(anychar_p - "*/") >> "*/"
)
);

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule1.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule2.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule3.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule1.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule2.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/no_rules/no_rule3.cpp

(see typeof.cpp)

That’s it! Now you can use skipper just as you would any parser. Be reminded, however, that
skipper above will be embedded by value when you compose more complex parsers using it (see
sub_grammar rationale above). You can use the sub_grammar class to avoid this problem.

Nabialek trick

This technique, I’ll call the "Nabialek trick" (from the name of its inventor, Sam Nabialek), can
improve the rule dispatch from linear non-deterministic to deterministic. The trick applies to
grammars where a keyword (operator, etc), precedes a production. There are lots of grammars similar
to this:

 r =
 keyword1 >> production1
 | keyword2 >> production2
 | keyword3 >> production3
 | keyword4 >> production4
 | keyword5 >> production5
 /*** etc ***/
 ;

The cascaded alternatives are tried one at a time through trial and error until something matches. The
Nabialek trick takes advantage of the symbol table’s search properties to optimize the dispatching of
the alternatives. For an example, see nabialek.cpp. The grammar works as follows. There are two rules
(one and two). When "one" is recognized, rule one is invoked. When "two" is recognized, rule two
is invoked. Here’s the grammar:

 one = name;
 two = name >> ’,’ >> name;

 continuations.add
 ("one", &one)
 ("two", &two)
 ;

 line = continuations[set_rest<rule_t>(rest)] >> rest;

where continuations is a symbol table with pointer to rule_t slots. one, two, name, line and rest are
rules:

 rule_t name;
 rule_t line;
 rule_t rest;
 rule_t one;
 rule_t two;

 symbols<rule_t*> continuations;

set_rest, the semantic action attached to continuations is:

http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/typeof.cpp
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/example/techniques/nabialek.cpp

 template <typename Rule>
 struct set_rest
 {
 set_rest(Rule& the_rule)
 : the_rule(the_rule) {}

 void operator()(Rule* newRule) const
 { m_theRule = *newRule; }

 Rule& the_rule;
 };

Notice how the rest rule gets set dynamically when the set_rule action is called. The dynamic
grammar parses inputs such as:

"one only"
"one again"
"two first, second"

The cool part is that the rest rule is set (by the set_rest action) depending on what the symbol
table got. If it got a "one" then rest = one. If it got "two", then rest = two. Very nifty! This technique
should be very fast, especially when there are lots of keywords. It would be nice to add special
facilities to make this easy to use. I imagine:

 r = keywords >> rest;

where keywords is a special parser (based on the symbol table) that automatically sets its RHS (rest)
depending on the acquired symbol. This, I think, is mighty cool! Someday perhaps...

 Also, see the switch parser for another deterministic parsing trick for character/token prefixes.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

FAQ

The Scanner Business
Eliminating Left Recursion
The lexeme_d directive and rules
Kleene Star infinite loop
Boost CVS and Spirit CVS
How to reduce compilation times with complex Spirit grammars
Closure frame assertion
Greedy RD
Referencing a rule at construction time
Storing Rules
Parsing ints and reals
BOOST_SPIRIT_DEBUG and missing operator<<
Applications that used to be part of spirit

The Scanner Business

Question: Why doesn’t this compile?

 rule<> r = /*...*/; parse("hello world", r, space_p); // BAD [attempts phrase level parsing]

But if I remove the skip-parser, everything goes back to normal again:

 rule<> r = *anychar_p;
 parse("hello world", r); // OK [character level parsing]

Sometimes you’ll want to pass in a rule to one of the functions parse functions that Spirit provides.
The problem is that the rule is a template class that is parameterized by the scanner type. This is rather
awkward but unavoidable: the rule is tied to a scanner. What’s not obvious is that this scanner must
be compatible with the scanner that is ultimately passed to the rule’s parse member function.
Otherwise, the compiler will complain.

Why does the first call to parse not compile? Because of scanner incompatibility. Behind the scenes,
the free parse function creates a scanner from the iterators passed in. In the first call to parse, the
scanner created is a plain vanilla scanner<> . This is compatible with the default scanner type of
rule<> [see default template parameters of the rule]. The second call creates a scanner of type
phrase_scanner_t . Thus, in order for the second call to succeed, the rule must be parameterized
as rule<phrase_scanner_t> :

 rule<phrase_scanner_t> r = *anychar_p;
 parse("hello world", r, space_p); // OK [phrase level parsing]

Take note however that phrase_scanner_t is compatible only when you are using char
const* iterators and space_p as the skip parser. Other than that, you’ll have to find the right type
of scanner. This is tedious to do correctly. In light of this issue, it is best to avoid rules as arguments
to the parse functions. Keep in mind that this happens only with rules. The rule is the only parser that

http://spirit.sf.net/

has to be tied to a particular scanner type. For instance:

 parse("hello world", *anychar_p); // OK [character level parsing]
 parse("hello world", *anychar_p, space_p); // OK [phrase level parsing]

 Multiple Scanner Support
As of v1.8.0, rules can use one or more scanner types. There are cases, for
instance, where we need a rule that can work on the phrase and character
levels. Rule/scanner mismatch has been a source of confusion and is the no. 1
FAQ. To address this issue, we now have multiple scanner support.

 See the techniques section for an example of a grammar using a multiple
scanner enabled rule, lexeme_scanner and as_lower_scanner.

Eliminating Left Recursion

Question: I ported a grammar from YACC. It’s "kinda" working - the parser itself compiles with no
errors. But when I try to parse, it gives me an "invalid page fault". I tracked down the problem to this
grammar snippet:

 or_expr = xor_expr | (or_expr >> VBAR >> xor_expr);

What you should do is to eliminate direct and indirect left-recursion. This causes the invalid page fault
because the program enters an infinite loop. The code above is good for bottom up parsers such as
YACC but not for LL parsers such as Spirit.

This is similar to a rule in Hartmut Kaiser’s C parser (this should be available for download from
Spirit’s site as soon as you read this).

 inclusive_or_expression
 = exclusive_or_expression
 | inclusive_or_expression >> OR >> exclusive_or_expression
 ;

Transforming left recursion to right recursion, we have:

 inclusive_or_expression
 = exclusive_or_expression >> inclusive_or_expression_helper
 ;

 inclusive_or_expression_helper
 = OR >> exclusive_or_expression >> inclusive_or_expression_helper
 | epsilon_p
 ;

I’d go further. Since:

 r = a | epsilon_p;

is equivalent to:

 r = !a;

http://spirit.sf.net/

we can simplify inclusive_or_expression_helper thus:

 inclusive_or_expression_helper
 = !(OR >> exclusive_or_expression >> inclusive_or_expression_helper)
 ;

Now, since:

 r = !(a >> r);

is equivalent to:

 r = *a;

we have:

 inclusive_or_expression_helper
 = *(OR >> exclusive_or_expression)
 ;

Now simplifying inclusive_or_expression fully, we have:

 inclusive_or_expression
 = exclusive_or_expression >> *(OR >> exclusive_or_expression)
 ;

Reminds me of the calculators. So in short:

 a = b | a >> op >> b;

in pseudo-YACC is:

 a = b >> *(op >> b);

in Spirit. What could be simpler? Look Ma, no recursion, just iteration.

The lexeme_d directive and rules

Question: Does lexeme_d not support expressions which include rules? In the example below, the
definition of atomicRule compiles,

 rule<phrase_scanner_t> atomicRule
 = lexeme_d[(alpha_p | ’_’) >> *(alnum_p | ’.’ | ’-’ | ’_’)];

but if I move alnum_p | ’.’ | ’-’ | ’_’ into its own rule, the compiler complains about
conversion from const scanner<...> to const phrase_scaner_t& .

 rule<phrase_scanner_t> ch = alnum_p | ’.’ | ’-’ | ’_’;

 rule<phrase_scanner_t> compositeRule
 = lexeme_d[(alpha_p | ’_’) >> *(ch)]; // <- error source

You might get the impression that the lexeme_d directive and rules do not mix. Actually, this
problem is related to the first FAQ entry: The Scanner Business. More precisely, the lexeme_d
directive and rules with incompatible scanner types do not mix. This problem is more subtle. What’s
causing the scanner incompatibility is the directive itself. The lexeme_d directive transforms the
scanner it receives into something that disables the skip parser. This non-skipping scanner,

unfortunately, is incompatible with the original scanner before transformation took place.

The simplest solution is not to use rules in the lexeme_d . Instead, you can definitely apply
lexeme_d to subrules and grammars if you really need more complex parsers inside the lexeme_d .
If you really must use a rule, you need to know the exact scanner used by the directive. The
lexeme_scanner metafunction is your friend here. The example above will work as expected once
we give the ch rule a correct scanner type:

 rule<lexeme_scanner<phrase_scanner_t>::type> ch = alnum_p | ’.’ | ’-’ | ’_’;

Note: make sure to add "typename " before lexeme_scanner when this is used inside a template
class or function.

The same thing happens when rules are used inside the as_lower_d directive. In such cases, you
can use the as_lower_scanner . See the lexeme_scanner and as_lower_scanner .

 See the techniques section for an example of a grammar using a multiple
scanner enabled rule, lexeme_scanner and as_lower_scanner.

Kleene Star infinite loop

Question: Why Does This Loop Forever?

 rule<> optional = !(str_p("optional"));
 rule<> list_of_optional = *optional;

The problem with this is that the kleene star will continue looping until it gets a no-match from it’s
enclosed parser. Because the optional rule is optional, it will always return a match. Even if the
input doesn’t match "optional" it will return a zero length match. list_of_optional will keep
calling optional forever since optional will never return a no-match. So in general, any rule that can be
"nullable" (meaning it can return a zero length match) must not be put inside a kleene star.

Boost CVS and Spirit CVS

Question: There is Boost CVS and Spirit CVS. Which is used for further development of Spirit?

Generally, development takes place in Spirit’s CVS. However, from time to time a new version of
Spirit will be integrated in Boost. When this happens development takes place in the Boost CVS.
There will be announcements on the Spirit mailing lists whenever the status of the Spirit CVS
changes.

 During development of Spirit v1.8.1 (released as part of boost-1.32.0) and
v1.6.2, Spirit’s developers decided to stop maintaining Spirit CVS for
BRANCH_1_8 and BRANCH_1_6. This was necessary to reduce the added
work of maintaining and synch’ing two repositories. The maintenance of these
branches will take place on Boost CVS. At this time, new developments
towards Spirit v2 and other experimental developments are expected to
happen in Spirit CVS.

How to reduce compilation times with complex Spirit grammars

Question: Are there any techniques to minimize compile times using spirit? For simple parsers
compile time doesn’t seem to be a big issue, but recently I created a parser with about 78 rules and it
took about 2 hours to compile. I would like to break the grammar up into smaller chunks, but it is not
as easy as I thought it would be because rules in two grammar capsules are defined in terms of each
other. Any thoughts?

The only way to reduce compile times is

to split up your grammars into smaller chunks
prevent the compiler from seeing all grammar definitions at the same time (in the same
compilation unit)

The first task is merely logistical, the second is rather a technical one.

A good example of solving the first task is given in the Spirit cpp_lexer example written by JCAB
(you may find it on the applications’ repository).

The cross referencing problems may be solved by some kind of forward declaration, or, if this does
not work, by introducing some dummy template argument to the non-templated grammars. Thus
allows the instantiation time to be defered until the compiler has seen all the defintions:

 template <typename T = int> grammar2;

 template <typename T = int> struct grammar1 : public grammar<grammar1> {
 // refers to grammar2<>
 };

 template <typename T>
 struct grammar2 : public grammar<grammar2>
 {
 // refers to grammar1<>
 };

 //...
 grammar1<> g; // both grammars instantiated here

The second task is slightly more complex. You must ensure that in the first compilation unit the
compiler sees only some function/template declaration and in the second compilation unit the
function/template definition . Still no problem, if no templates are involved. If templates are involved,
you need to manually (explicitly) instantiate these templates with the correct template parameters
inside a separate compilation unit. This way the compilation time is split between several compilation
units, reducing the overall required time drastically too.

For a sample, showing how to achieve this, you may want to look at the Wave preprocessor library,
where this technique is used extensively. (this should be available for download from Spirit’s site as
soon as you read this).

Closure frame assertion

Question: When I run the parser I get an assertion "frame.get() != 0 in file closures.hpp". What am I
doing wrong?

http://spirit.sourceforge.net/repository/applications/show_contents.php
http://spirit.sf.net/

Basically, the assertion fires when you are accessing a closure variable that is not constructed yet.
Here’s an example. We have three rules a, b and c . Consider that the rule a has a closure member m.
Now:

 a = b;
 b = int_p[a.m = 123];
 c = b;

When the rule a is invoked, its frame is set, along with its member m. So, when b is called from a, the
semantic action [a.m = 123] will store 123 into a’s closure member m. On the other hand, when c
is invoked, and c attempts to call b, no frame for a is set. Thus, when b is called from c , the semantic
action [a.m = 123] will fire the "frame.get() != 0 in file closures.hpp" assertion.

Greedy RD

Question: I’m wondering why the this won’t work when parsed:

 a = +anychar_p;
 b = ’(’ >> a >> ’)’;

Try this:

 a = +(anychar_p - ’)’);
 b = ’(’ >> a >> ’)’;

David Held writes: That’s because it’s like the langoliers--it eats everything up. You usually want to
say what it shouldn’t eat up by subtracting the terminating character from the parser. The moral being:
Using *anychar_p or +anychar_p all by itself is usually a Bad Thing™.

In other words: Recursive Descent is inherently greedy (however, see Exhaustive backtracking and
greedy RD).

Referencing a rule at construction time

Question: The code below terminates with a segmentation fault, but I’m (obviously) confused about
what I’m doing wrong.

 rule<ScannerT, clos::context_t> id = int_p[id.i = arg1];

You have a rule id being constructed. Before it is constructed, you reference id.i in the RHS of the
constructor. It’s a chicken and egg thing. The closure member id.i is not yet constructed at that
point. Using assignment will solve the problem. Try this instead:

 rule<ScannerT, clos::context_t> id;
 id = int_p[id.i = arg1];

Storing Rules

Question: Why can’t I store rules in STL containers for later use and why can’t I pass and return rules
to and from functions by value?

EBNF is primarily declarative. Like in functional programming, It’s a static recipe and there’s no
notion of do this then that. However, in Spirit, we managed to coax imperative C++ to take in
declarative EBNF. Hah! Fun!... We did that by masquerading the C++ assignment operator to mimic
EBNF’s ::= , among other things (e.g. >>, | , & etc.). We used the rule class to let us do that by giving

its assignment operator (and copy constructor) a different meaning and semantics. Doing so made the
rule unlike any other C++ object. You can’t copy it. You can’t assign it. You can’t place it in a
container (vector, stack, etc).Heck, you can’t even return it from a function *by value*.

 The rule is a weird object, unlike any other C++ object. It does not have the
proper copy and assignment semantics and cannot be stored and passed
around by value.

However nice declarative EBNF is, the dynamic nature of C++ can be an advantage. We’ve seen this
in action here and there. There are indeed some interesting applications of dynamic parsers using
Spirit. Yet, we haven’t fully utilized the power of dynamic parsing, unless(!), we have a rule that’s not
so alien to C++ (i.e. behaves as a good C++ object). With such a beast, we can write parsers that’s
defined at run time, as opposed to at compile time.

Now that I started focusing on rules (hey, check out the hunky new rule features), it might be a good
time to implement the rule-holder. It is basically just a rule, but with C++ object semantics. Yet it’s
not as simple. Without true garbage collection, the implementation will be a bit tricky. We can’t
simply use reference counting because a rule-holder (hey, anyone here has a better name?) *is-a* rule,
and rules are typically recursive and thus cyclic. The problem is which will own which.

Ok... this will do for now. You’ll definitely see more of the rule-holder in the coming days.

Parsing Ints and Reals

Question: I was trying to parse an int or float value with the longest_d directive and put some
actors on the alternatives to visualize the results. When I parse "123.456", the output reports:

1. (int) has been matched: full match = false
2. (double) has been matched: full match = true

That is not what I expected. What am I missing?

Actually, the problem is that both semantic actions of the int and real branch will be triggered because
both branches will be tried. This doesn’t buy us much. What actually wins in the end is what you
expected. But there’s no easy way to know which one wins. The problem stems from the ambiguity.

Case1: Consider this input: "2". Is it an int or a real? They are both (strictly following the
grammar of a real).

Case2 : Now how about "1.0"? Is it an int or a real? They are both, albeit the int part gets a partial
match: "1". That is why you are getting a (partial) match for your int rule (full match = false).

Instead of using the longest_d to parse ints and reals, what I suggest is to remove the ambiguity
and use the plain short-circuiting alternatives. The first step is to use strict_real_p to make the
first case unambiguous. Unlike real_p , strict_real_p requires a dot to be present for a number
to be considered a successful match. Your grammar can be written unambiguously as:

 strict_real_p | int_p

Note that because ambiguity is resolved, attaching actions to both branches is safe. Only one will be
triggered:

 strict_real_p[R] | int_p[I]

"1.0" ---> triggers R
"2" ---> triggers I

Again, as a rule of thumb, it is always best to resolve as much ambiguity as possible. The best
grammars are those which involve no backtracking at all: an LL(1) grammar. Backtracking and
semantic actions do not mix well.

BOOST_SPIRIT_DEBUG and missing operator<<

Question: My code compiles fine in release mode but when I try to define BOOST_SPIRIT_DEBUG
the compiler complains about a missing operator<< .

When BOOST_SPIRIT_DEBUG is defined debug output is generated for spirit parsers. To this end it
is expected that each closure member has the default output operator defined.

You may provide the operator overload either in the namespace where the class is declared (will be
found through Argument Dependent Lookup) or make it visible where it is used, that is namespace
boost::spirit . Here’s an example for std::pair :

 #include <iosfwd>
 #include <utility>

 namespace std {

 template <
 typename C,
 typename E,
 typename T1,
 typename T2
 >
 basic_ostream<C, E> & operator<<(
 basic_ostream<C, E> & out,
 pair<T1, T2> const & what)
 {
 return out << ’(’ << what.first << ", "
 << what.second << ’)’;
 }

 }

Applications that used to be part of spirit

Question: Where can I find <insert great application>, that used to be part of the Spirit distribution?

Old versions of Spirit used to include applications built with it. In order to streamline the distribution
they were moved to a separate applications repository. In that page you’ll find links to full applications
that use the Spirit parser framework. We encourage you to send in your own applications for inclusion
(see the page for instructions).

http://spirit.sourceforge.net/repository/applications/show_contents.php

You may also check out the grammars’ repository.

 You’ll still find the example applications that complement (actually are
part of) the documentation in the usual place: libs/spirit/example .

 The applications and grammars listed in the repositories are works of the
respective authors. It is the author’s responsibility to provide support and
maintenance. Should you have any questions, please send the author an email.

Copyright © 1998-2003 Joel de Guzman
Copyright © 2002-2003 Hartmut Kaiser
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://spirit.sourceforge.net/repository/grammars/show_contents.php

Rationale

 Virtual functions: From static to dynamic C++

Rules straddle the border between static and dynamic C++. In effect, a rule transforms compile-time
polymorphism (using templates) into run-time polymorphism (using virtual functions). This is
necessary due to C++’s inability to automatically declare a variable of a type deduced from an
arbitrarily complex expression in the right-hand side (rhs) of an assignment. Basically, we want to do
something like:

 T rule = an_arbitrarily_complex_expression;

without having to know or care about the resulting type of the right-hand side (rhs) of the assignment
expression. Apart from this, we also need a facility to forward declare an unknown type:

 T rule;
 ...
 rule = a | b;

These limitations lead us to this implementation of rules. This comes at the expense of the overhead of
a virtual function call, once through each invocation of a rule.

 Multiple declaration

Some BNF variants allow multiple declarations of a rule . The declarations are taken as alternatives.
Example:

 r = a; r = b;

is equivalent to:

 r = a | b;

Spirit v1.3 allowed this behavior. However, the current version of Spirit no longer allows this because
experience shows that this behavior leads to unwanted gotchas (for instance, it does not allow rules to
be held in containers). In the current release of Spirit, a second assignment to a rule will simply
redefine it. The old definition is destructed. This follows more closely C++ semantics and is more in
line with what the user expects the rule to behave.

 Sequencing Syntax
The comma operator as in a, b seems to be a better candidate, syntax-wise. But then the problem is
with its precedence. It has the lowest precedence in C/C++, which makes it virtually useless.
Bjarne Stroustrup, in his article "Generalizing Overloading for C++2000" talks about overloading
whitespace. Such a feature would allow juxtapositioning of parser objects exactly as we do in (E)BNF
(e.g. a b | c instead of a >> b | c). Unfortunately, the article was dated April 1, 1998. Oh well.

http://spirit.sf.net/

 Forward iterators
In general, the scanner expects at least a standard conforming forward iterator. Forward iterators are
needed for backtracking where the iterator needs to be saved and restored later. Generally speaking,
Spirit is a backtracking parser. The implication of this is that at some point, the iterator position will
have to be saved to allow the parser to backtrack to a previous point. Thus, for backtracking to work,
the framework requires at least a forward iterator.
Some parsers might require more specialized iterators (bi-directional or even random access). Perhaps
in the future, deterministic parsers when added to the framework, will perform no backtracking and
will need just a single token lookahead, hence will require input iterators only.

 Why are subrules important?
Subrules open up the oportunity to do aggressive meta programming as well because they do not rely
on virtual functions. The virtual function is the meta-programmer’s hell. Not only does it slow down
the program due to the virtual function indirect call, it is also an opaque wall where no metaprogram
can get past. It kills all meta-information beyond the virtual function call. Worse, the virtual function
cannot be templated. Which means that its arguments have to be tied to a actual types. Many problems
stem from this limitation.
While Spirit is a currently classified as a non-deterministic recursive-descent parser, Doug Gregor first
noted that other parsing techniques apart from top-down recursive descent may be applied. For
instance, apart from non-deterministic recursive descent, deterministic LL(1) and LR(1) can
theoretically be implemented using the same expression template front end. Spirit rules use virtual
functions to encode the RHS parser expression in an opaque abstract parser type. While it serves its
purpose well, the rule’s virtual functions are the stumbling blocks to more advanced
metaprogramming. Subrules are free from virtual functions.

 Exhaustive backtracking and greedy RD

Spirit doesn’t do exhaustive backtracking like regular expressions are expected to. For example:

 *chlit_p(’a’) >> chlit_p(’a’);

will always fail to match because Spirit’s Kleene star does not back off when the rest of the rule fails
to match.

Actually, there’s a solution to this greedy RD problem. Such a scheme is discussed in section 6.6.2 of
Parsing Techniques: A Practical Guide. The trick involves passing a tail parser (in addition to the
scanner) to each parser. The start parser will then simply be: start >> end_p; (end_p is the
start’s tail).

Spirit is greedy --using straight forward, naive RD. It is certainly possible to implement the fully
backtracking scheme presented above, but there will be also certainly be a performance hit. The
scheme will always try to match all possible parser paths (full parser hierarchy traversal) until it
reaches a point of certainty, that the whole thing matches or fails to match.

http://www.cs.vu.nl/%7Edick/PTAPG.html

 Backtracking and Greedy RD
Spirit is quite consistent and intuitive about when it backtracks and to where,
although it may not be obvious to those coming from different backgrounds.
In general, any (sub)parser will, given the same input, always match the same
portion of the input (or fail to match the input at all). This means that Spirit is
inherently greedy. Spirit will only backtrack when a (sub)parser fails to match
the input, and it will always backtrack to the next choice point upward (not
backward) in the parser structure. In other words abb|ab will match "ab", as
will a(bb|b), but (ab|a)b won’t because the (ab|a) subparser will always match
the ’b’ after the ’a’ if it is available.

--Rainer Deyke

There’s a strong preference on "simplicity with all the knobs when you need them" approach, right
now. On the other hand, the flexibility of Spirit makes it possible to have different optional schemes
available. It might be possible to implement an exhaustive backtracking RD scheme as an optional
feature in the future.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Acknowledgments

Special thanks to

Dan Nuffer for his work on lexers, parse trees, ASTs, XML parsers, the multi-pass iterator as well as
administering Spirit’s site, editing, maintaining the CVS and doing the releases plus a zillion of other
chores that were almost taken for granted.

Hartmut Kaiser for his work on the C parser, the work on the C/C++ preprocessor, utility parsers, the
original port to Intel 5.0, various work on Phoenix, porting to v1.5, the meta-parsers, the
grouping-parsers, extensive testing and painstaking attention to details.

Martin Wille who improved grammar multi thread safety, contributed the eol_p parser, the dynamic
parsers, documentation and for taking an active role in almost every aspect from brainstorming and
design to coding. And, as always, helps keep the regression tests for g++ on Linux as green as ever :-).

Martijn W. Van Der Lee our Web site administrator and for contributing the RFC821 parser.

Giovanni Bajo for last minute tweaks of Spirit 1.8.0 for CodeWarrior 8.3. Actually, I’m ashamed
Giovanni was not in this list already. He’s done a lot since Spirit 1.5, the first Boost.Spirit release.
He’s instrumental in the porting of the Spirit iterators stuff to the new Boost Iterators Library (version
2). He also did various bug fixes and wrote some tests here and there.

Juan Carlos Arevalo-Baeza (JCAB) for his work on the C++ parser, the position iterator, ports to
v1.5 and keeping the mailing list discussions alive and kicking.

Vaclav Vesely, lots of stuff, the no_actions directive, various patches fixes, the distinct parsers, the
lazy parser, some phoenix tweaks and add-ons (e.g. new_). Also, Stefan Slapeta and wife for editing
Vaclav’s distinct parser doc.

Raghavendra Satish for doing the original v1.3 port to VC++ and his work on Phoenix.

Noah Stein for following up and helping Ragav on the VC++ ports.

Hakki Dogusan, for his original v1.0 Pascal parser.

John (EBo) David for his work on the VM and watching over my shoulder as I code giving the
impression of distance eXtreme programming.

Chris Uzdavinis for feeding in comments and valuable suggestions as well as editing the
documentation.

Carsten Stoll, for his work on dynamic parsers.

Andy Elvey and his conifer parser.

http://spirit.sf.net/

Bruce Florman, who did the original v1.0 port to VC++.

Jeff Westfahl for porting the loop parsers to v1.5 and contributing the file iterator.

Peter Simons for the RFC date parser example and tutorial plus helping out with some nitty gritty
details.

Markus Schöpflin for suggesting the end_p parser and lots of other nifty things and his active
presence in the mailing list.

Doug Gregor for mentoring and his ability to see things that others don’t.

David Abrahams for giving me a job that allows me to still work on Spirit, plus countless advice and
help on C++ and specifically template metaprogramming.

Aleksey Gurtovoy for his MPL library from which I stole many metaprogramming tricks especially
for less conforming compilers such as Borland and VC6/7.

Gustavo Guerra for his last minute review of Spirit and constant feedback, plus patches here and
there (e.g. proposing the new dot behavior of the real numerics parsers).

Nicola Musatti, Paul Snively, Alisdair Meredith and Hugo Duncan for testing and sending in
various patches.

Steve Rowe for his splendid work on the TSTs that will soon be taken into Spirit.

Jonathan de Halleux for his work on actors.

Angus Leeming for last minute editing work on the 1.8.0 release documentation, his work on Phoenix
and his active presence in the Spirit mailing list.

Joao Abecasis for his active presence in the Spirit mailing list, providing user support, participating in
the discussions and so on.

Guillaume Melquiond for a last minute patch to multi_pass for 1.8.1.

Peder Holt for his porting work on Phoenix, Fusion and Spirit to VC6.

To my wife Mariel who did the graphics in this document.

My, there’s a lot in this list! And it’s a continuing list. I add people to this list everytime. I hope I did
not forget anyone. If I missed
someone you know who has helped in any way, please inform me.

Special thanks also to people who gave feedback and valuable comments, particularly members of
Boost and Spirit mailing lists. This includes all those who participated in the review:
John Maddock, our review manager
Aleksey Gurtovoy
Andre Hentz
Beman Dawes
Carl Daniel
Christopher Currie
Dan Gohman

Dan Nuffer
Daryle Walker
David Abrahams
David B. Held
Dirk Gerrits
Douglas Gregor
Hartmut Kaiser
Iain K.Hanson
Juan Carlos Arevalo-Baeza
Larry Evans
Martin Wille
Mattias Flodin
Noah Stein
Nuno Lucas
Peter Dimov
Peter Simons
Petr Kocmid
Ross Smith
Scott Kirkwood
Steve Cleary
Thorsten Ottosen
Tom Wenisch
Vladimir Prus

Finally thanks to SourceForge for hosting the Spirit project and Boost: a C++ community comprised
of extremely talented library authors who participate in the discussion and peer review of well crafted
C++ libraries.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://sourceforge.net/
http://www.boost.org/

References

1.

Todd Veldhuizen
"Expression Templates".
C++ Report, June 1995.

2.

Peter Naur (ed.)
"Report on the Algorithmic Language ALGOL 60".
CACM, May 1960.

3.

ISO/IEC
"ISO-EBNF",
ISO/IEC 14977: 1996(E).

4. Richard J. Botting,
Ph.D.

"XBNF" (citing Leu-Weiner, 1973).
California State University, San Bernardino, 1998.

5.

James Coplien.
"Curiously Recurring Template Pattern".
C++ Report, Feb. 1995.

6. Thierry Géraud and
Alexandre Duret-Lutz

Generic Programming Redesign of Patterns
Proceedings of the 5th European Conference on Pattern
Languages of Programs
(EuroPLoP’2000) Irsee, Germany, July 2000.

7.

Geoffrey Furnish
"Disambiguated Glommable Expression Templates
Reintroduced"
C++ Report, May 2000

8.

Erich Gamma,
Richard Helm,
Ralph Jhonson,
and John Vlissides

Design Patterns, Elements of Reusable
Object-Oriented Software.
Addison-Wesley, 1995.

9.

Alfred V. Aho
Revi Sethi
Feffrey D. Ulman

Compilers, Principles, Techniques and Tools
Addison-Wesley, June 1987.

10. Dick Grune and
Ceriel Jacobs

Parsing Techniques: A Practical Guide.
Ellis Horwood Ltd.: West Sussex, England, 1990.
(electronic copy, 1998).

11.

T. J. Parr, H. G. Dietz,
and
W. E. Cohen

PCCTS Reference Manual (Version 1.00).
School of Electrical Engineering, Purdue University,
West Lafayette, August 1991.

12. Adrian Johnstone and
Elizabeth Scott.

RDP, A Recursive Descent Compiler Compiler.
Technical Report CSD TR 97 25, Dept. of Computer
Science, Egham, Surrey, England, Dec. 20, 1997.

http://spirit.sf.net/
http://www.extreme.indiana.edu/%7Etveldhui/papers/Expression-Templates/exprtmpl.html
http://www.masswerk.at/algol60/report.htm
http://www.cl.cam.ac.uk/%7Emgk25/iso-14977.pdf
http://www.csci.csusb.edu/dick/maths/intro_ebnf.html
http://www.coldewey.com/europlop2000/papers/geraud%2Bduret.zip
http://www.adtmag.com/joop/crarticle.asp?ID=627
http://www.adtmag.com/joop/crarticle.asp?ID=627
http://www.cs.vu.nl/%7Edick/PTAPG.html
http://www.antlr.org/papers/pcctsbk.pdf
ftp://ftp.cs.rhul.ac.uk/pub/rdp

13.

Adrian Johnstone

Languages and Architectures,
Parser generators with backtrack or extended lookahead
capability
Department of Computer Science, Royal Holloway,
University of London, Egham, Surrey, England

14.

Damian Conway
Parsing with C++ Classes.
ACM SIGPLAN Notices, 29:1, 1994.

15.

Joel de Guzman
"Spirit Version 1.3".
http://spirit.sourceforge.net/, November 2001.

16.

S. Doaitse Swierstra
and
Luc Duponcheel

Deterministic, Error-Correcting Combinator Parsers
Dept. of Computer Science, Utrecht University P.O.Box
80.089, 3508 TB Utrecht, The Netherland

17.

Bjarne Stroustrup
Generalizing Overloading for C++2000
Overload, Issue 25. April 1, 1998.

18.

Dr. John Maddock
Regex++ Documentation
http://www.boost.org/libs/regex/index.htm

19.

Anonymous
Edited by Graham
Hutton

Frequently Asked Questions for comp.lang.functional.
Edited by Graham Hutton, University of Nottingham.
http://www.cs.nott.ac.uk/~gmh//faq.html

20.

Hewlett-Packard
Standard Template Library Programmer’s Guide.
http://www.sgi.com/tech/stl/, Hewlett-Packard
Company, 1994

21.

boost.org Boost Libraries Documentation. http://www.boost.org/

22. Brian McNamara and
Yannis Smaragdakis

FC++: Functional Programming in C++.
http://www.cc.gatech.edu/~yannis/fc++/

23.

Todd Veldhuizen Techniques for Scientic C++.

Copyright © 1998-2003 Joel de Guzman
Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://www.cs.rhul.ac.uk/research/languages/projects/lookahead_backtrack.shtml
http://www.cs.rhul.ac.uk/research/languages/projects/lookahead_backtrack.shtml
http://www.cs.rhul.ac.uk/research/languages/projects/lookahead_backtrack.shtml
http://www.csse.monash.edu.au/%7Edamian/papers/#Embedded_Input_Parsing_for_C
http://spirit.sourceforge.net/index.php?doc=docs/v1_3/index.html
http://www.cs.uu.nl/groups/ST/Publications/AFP2.pdf
http://www.research.att.com/%7Ebs/whitespace98.pdf
http://www.boost.org/libs/regex/index.html
http://www.cs.nott.ac.uk/%7Egmh//faq.html/
http://www.sgi.com/tech/stl/
http://www.boost.org/
http://www.cc.gatech.edu/%7Eyannis/fc%2B%2B/
ftp://ftp.cs.indiana.edu/pub/techreports/TR542.pdf

	
	Why would you want to use Spirit?
	Trivial Example #1
	Trivial Example #2
	Trivial Example #3
	 Example #4 [A Just Slightly Less Trivial Example]
	 Step 1. Create the parser
	Step 2. Using a Parser (now that it's created)
	 Step 3. Semantic Actions

	
	The Parser
	Primitives and Composites
	The Scanner
	The Match
	Semantic Actions

	
	Spirit Change Log
	1.8.5
	1.8.4
	1.8.3
	1.8.2
	1.6.2
	1.8.1 (Released with Boost 1.32.0)
	1.8.0 (Released with Boost 1.31.0; Includes unreleased 1.7.1)
	1.7.1 (Unreleased; becomes 1.8.0)
	1.7.0
	Bug fixes (1.7.0 and 1.6.0)

	
	chlit and ch_p
	range and range_p
	strlit and str_p
	chseq and chseq_p
	More character parsers
	negation ~
	eol_p
	nothing_p
	end_p

	
	
	Set Operators
	Sequencing Operators
	Optional and Loops

	
	uint_parser
	int_parser
	real_parser
	Strict Reals

	Advanced: real_parser policies
	sign_parser and sign_p
	ureal_parser_policies
	real_parser_policies
	strict_ureal_parser_policies and strict_real_parser_policies

	
	
	Order of parameters
	Multiple scanners
	Rule Declarations
	Copying Rules
	Forward declarations
	Recursion
	Undefined rules
	Redeclarations
	Dynamic Parsers
	No start rule
	Parser Tags
	parser_address_tag
	parser_tag
	dynamic_parser_tag

	
	
	Simple Form
	Semantic Predicate
	Syntactic Predicate
	 Inhibiting Semantic Actions
	Negation

	
	lexeme_d
	as_lower_d
	no_actions_d
	Tweaking the Scanner Type

	longest_d
	shortest_d
	limit_d
	min_limit_d
	max_limit_d

	
	The Free Parse Functions
	 The phrase_scanner_t and wide_phrase_scanner_t
	 Direct parsing with Iterators
	lexeme_scanner
	as_lower_scanner
	no_actions_scanner

	
	Grammar definition
	Grammar skeleton
	Instantiating and using my_grammar
	Full Grammar Example
	Grammar Capsules
	Reentrancy and multithreading
	Using more than one grammar start rule

	
	Static rules: subrules
	The subrule definition
	Separators [,]
	The start subrule
	IDs
	Aliases
	Groups: scope and nesting

	
	Generic Semantic Actions (Transduction Interface)
	Example:
	Const-ness:
	Full Example:

	Specialized Actions
	Numeric Actions
	Character Actions

	Cascading Actions
	Directives and Actions

	
	parser_category_t
	embed_t
	The match
	The match class:

	match_result
	The parse member function
	The parser result
	parser_result
	parser class declaration

	
	Basic Scanner API
	iteration_policy
	match_policy
	action_policy
	scanner_policies mixer
	Rebinding Policies
	Rebinding Iterators

	
	Overview
	Class declaration
	Non-default Attribute Type
	An Example

	
	Actors
	Quick example: assign_a actor
	Actors summary
	Include Files
	Examples
	Increment a value
	Append values to a vector (or other container)
	insert key-value pairs into a map

	Policy holder actors and policy actions
	Policy holder actors
	Include Files
	Holder naming convention
	Holder example: ref_actor class
	Actor example: assign_actor
	Helper function example: assign_a function

	
	A Little Secret
	Functional Parametric Primitives
	f_chlit and f_ch_p
	f_range and f_range_p
	f_chseq and f_chseq_p
	f_strlit and f_str_p

	
	Semantic Actions in the FP Perspective
	STL style FP
	Boost style FP
	Lambda and Phoenix

	
	Influences and Related Work
	How to use this manual
	Support

	The Phoenix Framework v1.2
	
	
	Preliminary Draft

	
	Lazy functions

	
	Lazy operators

	
	Lazy statements

	
	Lazy C++ Casts
	Lazy object construction

	
	Special operators and extensibility
	Operator tags
	unary_operator
	binary_operator

	rank

	
	Extra arguments

	
	var
	argN
	val
	Functions
	Construct
	Lambda expressions
	Wrapping up

	
	Overview
	Example
	Closures and Dynamic parsing
	 Closures in-depth

	
	Conditions
	if_p
	while_p, do_p
	for_p

	
	lazy_p
	lazy_p example

	
	Example

	
	
	Refactoring unary parsers
	Refactoring action parsers
	Attach action refactoring
	Nested refactoring

	
	scoped_lock_d

	
	
	Distinct Parsers
	distinct_parser
	distinct_directive
	dynamic_distinct_parser and dynamic_distinct_directive
	How it works

	
	Symbol table utilities
	symbol_inserter

	
	Why use parse trees
	Usage
	pt_parse
	ast_parse
	tree_parse_info
	tree_match
	tree_node
	node_val_data
	parser_id, checking and setting

	structure/layout of a parse tree
	parse tree layout

	ast layout
	switching: gen_pt_node_d[] & gen_ast_node_d[]
	Directives
	no_node_d
	discard_node_d
	leaf_node_d/token_node_d
	infix_node_d
	discard_first_node_d
	discard_last_node_d
	inner_node_d

	root_node_d and ast generation
	parse_tree_iterator
	advanced tree generation
	node value
	access_node_d
	Tree node factories
	node_val_data_factory
	node_all_val_data_factory
	node_iter_data_factory
	custom

	
	flush_multi_pass
	multi_pass Policies
	Predefined policies
	Predefined InputPolicy classes
	input_iterator
	lex_input
	functor_input

	Predefined OwnershipPolicy classes
	ref_counted
	first_owner

	Predefined CheckingPolicy classes
	no_check
	buf_id_check
	full_check

	Predefined StoragePolicy classes
	std_deque
	fixed_size_queue<N>

	Combinations: How to specify your own custom multi_pass
	How to write a functor for use with the functor_input InputPolicy
	How to write policies for use with multi_pass
	InputPolicy
	OwnershipPolicy
	CheckingPolicy
	StoragePolicy

	
	Operations
	file_position

	
	Debugging Macros
	BOOST_SPIRIT_ASSERT_EXCEPTION
	BOOST_SPIRIT_DEBUG
	BOOST_SPIRIT_DEBUG_OUT
	BOOST_SPIRIT_DEBUG_TOKEN_PRINTER
	BOOST_SPIRIT_DEBUG_PRINT_SOME
	BOOST_SPIRIT_DEBUG_TRACENODE
	BOOST_SPIRIT_DEBUG_NODE(p)
	BOOST_SPIRIT_DEBUG_TRACE_NODE(p, flag)
	BOOST_SPIRIT_DEBUG_TRACE_NODE_NAME(p, name, flag)

	
	Parser Errors
	Parser Assertions
	Examples

	The Guard
	error_status<T>

	
	Modules
	Sub-Modules
	actor
	attribute
	debug
	dynamic
	error_handling
	iterator
	meta
	tree
	utility

	
	
	 Templatized Functors
	 Rule With Multiple Scanners
	 Look Ma' No Rules
	 typeof
	 Nabialek trick

