From 7ffa9547f0e86fcd80f385fe68df32503a2fdde4 Mon Sep 17 00:00:00 2001 From: salman Date: Mon, 9 Jan 2023 11:42:55 +0100 Subject: [PATCH] Add ToDo.txt and meaning-of-params.txt --- ToDo.txt | 1 + fortran/meaning-of-params.txt | 1031 +++++++++++++++++++++++++++++++++ 2 files changed, 1032 insertions(+) create mode 100644 ToDo.txt create mode 100644 fortran/meaning-of-params.txt diff --git a/ToDo.txt b/ToDo.txt new file mode 100644 index 0000000..4ce1135 --- /dev/null +++ b/ToDo.txt @@ -0,0 +1 @@ +- Include chemical fomula in input file and use it for output files diff --git a/fortran/meaning-of-params.txt b/fortran/meaning-of-params.txt new file mode 100644 index 0000000..62a1de4 --- /dev/null +++ b/fortran/meaning-of-params.txt @@ -0,0 +1,1031 @@ + +c see w.eckstein , computer simulation of ion-solid interactions, +c springer series in material science, vol.10, +c springer, heidelberg, berlin 1991 +c +c +c input data (see table 6.1 in book above) +c +c 1. record [100 format(2F7.2,1F12.2,7F9.2)] +c z1 atomic number of projectile +c m1 mass (in amu) of projectile +c e0 energy of projectile (in ev) +c if e0.gt.0. the projectile has the fixed +c energy e0 +c if e0.lt.0. a maxwellian velocity distribution for +c the projectile is assumed with an ion +c temperature ti=-e0 +c if e0.lt.0.and alpha.lt.0. a maxwellian energy +c distribution for the projectile is assumed with an ion +c temperature ti=-e0 +c esig sigma of a gaussian energy distribution (in eV) +c if esig.eq.0. then the particle energy is e0 +c if not then a gaussian energy distribution is used +c alpha angle of incidence (in degree) with respect to the +c surface normal +c if alpha.ge.0. the projectile impinges at the fixed +c angle of incidence alpha +c if alpha.gt.90. the projectile starts inside the solid +c with an angle alpha (x0 should be larger than 0.) +c if alpha.eq.-1. a random distribution of the projectile +c is assumed +c if alpha.lt.-2. a cosine distribution for the projectile +c is assumed +c alphasig sigma of a gaussian distribution for alpha. If alpha >= 0. and +c alphasig > 0. then a gaussian distribution for the angle of +c incidence is used. +c ef cutoff energy of projectiles (in ev) +c ef must be larger than zero +c esb surface binding energies for projectiles (in ev) +c sheath sheath potential (in ev) +c typically 3kT : sheath = 3 |e0| +c erc recoil cutoff energy; it is usually equal to the +c surface binding energy (sbe); it can be applied to +c cases, where erc.gt.sbe +c +c 2. record [101 format(I9,3F8.0,1F7.2,1F7.0,2F7.2,6I4,I3)] +c nh number of projectiles +c ri initial random number +c necessary for an exact repetition of a calculation +c ri2 initial random number for a gaussion energy distribution +c ri3 initial random number for a gaussion distribution of alpha +c x0 starting depth of projectile (in a) +c if x0 is zero or negative the projectile starts at +c x=-su=-2.*pmax. the uppermost target atoms are at +c x=0. they do not form a complete layer, they are +c distributed randomly +c rd depth to which recoils are followed +c rd = 50 usually sufficient for sputtering if the +c projectile energy is not too high +c rd = 100 cw for following the full cascade +c cw depth interval for calculated depth distributions (in A) +c ca correction factor to the firsov screening length +c for collisions between projectile and target atom +c (only for application of moliere-potential) +c usually ca = 1.00 +c kk0 maximum order of weak (simultaneous) collisions +c between projectiles and target atoms. kk0 must be +c between 0 and 4 (0 means no weak collisions included) +c kk0r maximum order of weak (simultaneous) collisions bet- +c ween target atoms. kk0r must be between 0 and 4 +c kdee1 inelastic energy loss model for projectiles +c =1 nonlocal, lindhard-scharff +c =2 local, oen-robinson +c =3 equipartition of 1 and 2 +c =4 nonlocal, andersen-ziegler tables for hydrogen +c =5 nonlocal, ziegler tables for helium +c kdee2 inelastic energy loss for target atoms +c =1 nonlocal, lindhard-scharff +c =2 local, oen-robinson +c =3 equipartition of 1 and 2 +c ipot interaction potential between projectile and target atom +c =1 krypton-carbon potential +c =2 moliere potential +c =3 ziegler-biersack-littmark potential +c ipotr interaction potential between target atoms +c =1 krypton-carbon potential +c =2 moliere potential +c =3 ziegler-biersack-littmark potential +c irl =0 no recoils are generated (no sputtering); to speed +c up the calculation if only ranges are of interest +c +c 3. record(for each of three layers) [102 format(3F9.2,6F7.2)] +c dx(i) layer thickness (in A) +c rho(i) layer density (in g cm{-3}) +c ck(i) correction factor to the lindhard-scharff nonlocal +c inelastic energy loss of the projectile +c +c records 4 - 14 appear three times for each of the three +c possible layers +c +c 4. record [103 format(5F9.4)] +c z(i,j) atomic number of target atoms (j<=5) in layer i +c +c 5. record [103 format(5F9.4)] +c m(i,j) mass (in amu) of target atoms (j<=5) in layer i +c +c 6. record [103 format(5F9.4)] +c c(i,j) concentration of target atoms (j<=5) in layer i +c +c 7. record [103 format(5F9.4)] +c sbe(i,j) surface binding energy of target atoms (j<=5) +c in layer i +c +c 8. record [103 format(5F9.4)] +c ed(i,j) displacement energy of target atoms (j<=5) in layer i +c +c 9. record [103 format(5F9.4)] +c be(i,j) bulk binding energy of target atoms (j<=5) in layer i +c usually always zero +c +c 10.-14.record constants for the nonlocal inelastic energy +c loss given by the andersen ziegler tables for +c hydrogen or by the ziegler tables for helium +c 10. record [107 format(5F12.6)] +c ch1(i,j) value A-1 of the ziegler tables +c 11. record [107 format(5F12.6)] +c ch2(i,j) value A-2 of the ziegler tables +c 12. record [107 format(5F12.6)] +c ch3(i,j) value A-3 of the ziegler tables +c 13. record [107 format(5F12.6)] +c ch4(i,j) value A-4 of the ziegler tables +c 14. record [107 format(5F12.6)] +c ch5(i,j) value A-5 of the ziegler tables +c +c +c +c additional remarks +c +c tt target thickness should be chosen larger than the +c range of projectiles if transmission is not of +c interest +c +c ed for sputtering and backscattering calculations ed is +c not of importance, only in determination of damage +c profiles. ed is of the order of 30 ev +c +c sheath a sheath potential is only used for a maxwellian +c distribution of projectiles (e0.lt.0.) +c +c ef for low projectile energies (lt 1000 ev) and esb=0. +c ef should be of the order of 0.2 ev. with increasing +c energy ef can be increased to save computing time, +c but not above sbe (for sputtering data) +c +c ca the use of ca.ne.1 is only reasonable for the +c application of the moliere potential +c +c ri with the same initial random number ri the calculation +c will be exactly reproduced if nothing has been changed +c +c esb this value is zero for the noble gases but esb should +c be larger than zero if the projectile is an active +c chemically species. esb=sbe for selfsputtering cal- +c culations +c +c be this value should be taken as zero (see j.p.biersack, +c w.eckstein appl.phys.34(1984)73) +c +c sbe the heat of sublimation should be used +c +c kk0 usually kk0=2 is used. only for very heavy particles +c kk0 may be increased to 3 or even 4 but on the ex- +c pense of increasing computing time +c +c kk0r the same applies as for kk0 +c +c kdee1 usually kdee1=3 is used. kdee1=1,2,or 3 can only be +c used at energies below the stopping power maximum. +c for hydrogen kdee1=4 must be used for projectile +c energies above 10 kev, for helium kdee1=5 must be +c used for energies above 50 kev +c +c kdee2 usually kdee2=3 is used. the stopping power maximum +c for heavy atoms is well above 100 kev, so that only +c kdee2=1,2,and 3 is available +c +c +c +c output data +c +c calculated constants +c in the case of a maxwellian distribution three values +c are given +c ti ion temperature +c zarg adjustment factor for the projectile mass +c velc adjustment factor for the sheath potential +c +c hlm distance above the surface (x=0.) , where an inelastic +c energy loss can be taken into account. usually +c hlm=0., but if inel.ne.0 then hlm=-.5*lm +c hlmt distance above the surface (x=tt) , where an inelastic +c energy loss can be taken into account. usually +c hlmt=tt, but if inel.ne.0 then hlmt=tt+0.5*lm +c su1 su=2.*pmax(1) +c su2 su=pmax(1)*(1.kk0) +c sur su=pmax(1)*(1.kk0r) +c su su=max(su1,su2,sur) , distance above the front surface, where +c collisions are taken into account +c sut sut=tt+su , su calculated with pmax(l) +c distance outside the backsurface, where +c collisions are taken into account +c xc xc=-su , starting point above the surface +c rt rt=tt-rd , see rd +c inel inel=0 : no electronic energy loss outside the bulk +c inel=1 : electronic energy loss outside the bulk for a +c distance 0.5*lm , see hlm and hlmt +c l number of layers +c lj number of target species +c +c values for each layer +c eps0(i) reduced projectile energy +c z2(i) mean atomic number of layer i +c m2(i) mean atomic mass of layer i +c arho(i) density (atoms/A**3}) +c lm(i) mean distance between collisions (A) +c pmax(i) maximum impact parameter (A) +c asig(i) constant for inelastic energy loss (atoms/A**2) +c sb(i) mean surface binding energy of layer i +c xx(i)target thickness (A) of layer i +c n(i) number of target species in layer i +c a1(i) screening length for projectiles +c kor1(i) constant in the local oen-robinson inelastic energy +c loss for projectiles +c a(i) screening length for target atoms +c kor(i) constant in the local oen-robinson inelastic energy +c loss for target atoms +c +cc f1 constant to transfer the energy of a projectile into +cc a reduced energy (eps) +cc f(i,j) constant to transfer the energy of a target atom into +cc a reduced energy (epsr) +cc ec maximum transferable energy between projectile and +cc target atom +c sfe minimum of the mean surface binding energies of +c first and last layer (l=3); for one layer (l=1) +c sfe=sb(1). sb(l) is the mean binding energy of layer (l) +c +c values giving information about some loops in the calculation +c nproj number how often the projectile loop is entered +c kib number of backscattered projectiles which cannot overcome +c the surface barrier (esb) +c kit number of transmitted projectiles which cannot overcome +c the surface barrier (esb) +c maxa maximum number of simultaneously processed target atoms +c in the vectorized target collision loop +c nall number of times the target atom collision loop has to +c be passed +c npa number of primary knockon atoms +c nsa number of secondary knockon atoms +c kis number of sputtered target atoms which cannot overcome +c the surface barrier (sbe) +c kist number of transmission sputtered target atoms which +c cannot overcome the surface barrier (sbe) +c +c +c calculated results +c +c iim number of transmitted projectiles +c eim energy of all transmitted projectiles +c ib number of reflected projectiles +c eb energy of all reflected projectiles +c it number of transmitted projectiles +c et energy of all transmitted projectiles +c ibsp number of backsputtered target atoms +c ebsp energy of all backsputtered target atoms +c itsp number of transmission sputtered target atoms +c etsp energy of all transmission sputtered target atoms +c +c projectiles +c avcsum mean number of collisions +c avcdis mean number of collisions +c (transferred energy > displacement energy) +c avcsms mean number of collisions +c (transferred energy > mean surface binding energy) +c +c penetration of projectiles +c +c fix0 mean penetration depth , 1. moment +c sex variance of the depth distribution +c thx skewness of the depth distribution +c fox kurtosis of the depth distribution +c sigmax square root of the variance +c dfix0 error of mean depth +c dsex error of the variance +c dthx error of the skewness +c +c fir0 mean lateral spread of the penetration +c ser variance of the spread distribution +c thr skewness of the spread distribution +c for kurtosis of the spread distribution +c sigmar square root of the variance +c dfir0 error of mean spread +c dser error of the variance +c dthr error of the skewness +c +c fip0 mean pathlength +c sep variance of the pathlength distribution +c thp skewness of the pathlength distribution +c fop kurtosis of the pathlength distribution +c sigmap square root of the variance +c dfip0 error of mean pathlength +c dsep error of the variance +c dthp error of the skewness +c +c avnli mean elastic loss +c vanli variance of the elastic loss distribution +c signli square root of the variance +c dfinli error in the mean elastic loss +c +c avili mean electronic loss +c vaili variance of the electronic loss distribution +c sigili square root of the variance +c dfiili error in the mean electronic loss +c +c fie0 mean nuclear energy loss +c see variance of the nuclear energy loss distribution +c the skewness of the nuclear energy loss distribution +c foe kurtosis of the nuclear energy loss distribution +c sigmae square root of the variance +c dfie0 error of mean nuclear energy loss +c dsee error of the variance +c dthe error of the skewness +c +c fiw0 mean nuclear energy loss in weak collisions +c sew variance +c thw skewness +c fow kurtosis +c sigmaw square root of the variance +c dfiw0 error of mean +c dsew error of the variance +c dthw error of the skewness +c +c fii0 mean electronic energy loss +c sei variance +c thi skewness +c foi kurtosis +c sigmai square root of the variance +c dfii0 error of mean +c dsei error of the variance +c dthi error of the skewness +c +c fis0 mean nuclear energy loss in subthreshold collisions +c ses variance +c ths skewness +c fos kurtosis +c sigmas square root of the variance +c dfis0 error of mean +c dses error of the variance +c dths error of the skewness +c +c x1sd 1.moment of the penetration depth distribution +c x2sd 2.moment of the penetration depth distribution +c x3sd 3.moment of the penetration depth distribution +c x4sd 4.moment of the penetration depth distribution +c x5sd 5.moment of the penetration depth distribution +c x6sd 6.moment of the penetration depth distribution +c +c recoiles created by recoils normalized to the number of +c projectiles (hn) +c acsumr mean number of collisions +c acdisr mean number of collisions +c (transferred energy > displacement energy) +c acsber mean number of collisions +c (transferred energy > mean surface binding energy) +c +c recoiles created by recoils normalized to the number of +c knockons (npa+nsa) +c acsur mean number of collisions +c acdir mean number of collisions +c (transferred energy > displacement energy) +c acsbr mean number of collisions +c (transferred energy > mean surface binding energy) +c acdr11 mean number of collisions between species 1 and 1 in +c layer 1 (transferred energy > displacement energy) +c acdr12 mean number of collisions between species 1 and 2 in +c layer 1 (transferred energy > displacement energy) +c acdr21 mean number of collisions between species 2 and 1 in +c layer 1 (transferred energy > displacement energy) +c acdr22 mean number of collisions between species 2 and 2 in +c layer 1 (transferred energy > displacement energy) +c +c depth distributions (projectiles) +c d1,d2 lower and upper limit of depth interval +c 100 intervals, in steps of cw (in A) +c irp(i) number of implanted projectiles in interval i +c , 'particles' +c rirp(i) implantation profile normalized to all implanted +c projectiles (norm.distr) , 'norm.depth' +c ipl(i) number of projectiles with pathlength in interval i +c , 'pathlength' +c ion(i) electronic energy loss (ev) , 'inloss' +c dent(i) total nuclear energy loss (ev), (central collision + +c weak collisions) , 'teloss' +c dmgn(i) nuclear energy loss (ev), (central collision only) +c , 'elloss' +c elgd(i) nuclear energy loss (ev) larger than the displacement +c energy ed (central collision only) , 'damage' +c phon(i) nuclear energy loss smaller than the displacement +c energy (ev), energy into phonons , 'phonon' +c casmot(i) defect producing energy (ev) (see biersack and +c haggmark nim 174 (1980) 257) , 'cascad' +c icdt(i) number of displacements (collisions gt ed) , 'dpa' +c ele(i,j) nuclear energy loss of projectile to species j +c (central collision only) +c eli(i,j) electronic energy loss of species j +c eld(i,j) nuclear energy loss larger than the displacement +c energy for projectiles to species j +c (central collision only) +c elp(i,j) nuclear energy loss lower than the displacement +c energy for species j (central collision only) +c icd(i,j) number of displacements of species j +c +c depth distributions (recoils) +c ionr(i) inelastic energy loss (ev) by target atoms , 'inloss' +c dentr(i) total nuclear energy loss (ev) , (central collision + +c weak collisions) , 'teloss' +c dmgnr(i) elastic energy loss (ev) by target atoms (central +c collisions only) , 'elloss' +c eler(i,j) nuclear energy loss of recoils to species j +c (central collision only) +c elir(i,j) electronic energy loss of species j +c eldr(i,j) nuclear energy loss larger than the displacement +c energy for species j (central collision only) +c elpr(i,j) nuclear energy loss lower than the displacement +c energy for species j (central collision only) +c icdr(i,j) number of displacements of species j +c icdiri(i,j,k) number of displacements of species k by species j +c +c the last line gives the sum over the distributions +c +c +c backscattered projectiles +c +c rn particle reflection coefficient +c emean mean energy of backscattered projectiles +c emeanr relative mean energy of backscattered projectiles +c re energy reflection coefficient +c +c fib0 mean energy of backscattered projectiles +c seb variance +c thb skewness +c fob kurtosis +c sigmab square root of the variance +c dfib0 error of mean +c dseb error of the variance +c dthb error of the skewness +c +c fipb0 mean pathlength of backscattered projectiles +c sepb variance +c tphb skewness +c fpob kurtosis +c sigmpb square root of the variance +c dfipb0 error of mean +c dsepb error of the variance +c dthpb error of the skewness +c +c avnlb mean elastic loss +c vanlb variance of the elastic loss distribution +c signlb square root of the variance +c dfinlb error in the mean elastic loss +c +c avilb mean electronic loss +c vailb variance of the electronic loss distribution +c sigilb square root of the variance +c dfiilb error in the mean electronic loss +c +c eb1b 1.moment of the energy distr. of backsc. proj. +c eb2b 2.moment of the energy distr. of backsc. proj. +c eb3b 3.moment of the energy distr. of backsc. proj. +c eb4b 4.moment of the energy distr. of backsc. proj. +c eb5b 5.moment of the energy distr. of backsc. proj. +c eb6b 6.moment of the energy distr. of backsc. proj. +c +c eb1bl 1.logarithmic moment of the energy distr. +c eb2bl 2.logarithmic moment of the energy distr. +c eb3bl 3.logarithmic moment of the energy distr. +c eb4bl 4.logarithmic moment of the energy distr. +c eb5bl 5.logarithmic moment of the energy distr. +c eb6bl 6.logarithmic moment of the energy distr. +c +c pl1s 1.moment of the pathlength distribution +c pl2s 2.moment of the pathlength distribution +c pl3s 3.moment of the pathlength distribution +c pl4s 4.moment of the pathlength distribution +c pl5s 5.moment of the pathlength distribution +c pl6s 6.moment of the pathlength distribution +c +c +c transmitted projectiles +c +c tn particle transmission coefficient +c emeant mean energy of transmitted projectiles +c tmeanr relative mean energy of transmitted projectiles +c te energy transmission coefficient +c +c fit0 mean energy of transmitted projectiles +c set variance +c tht skewness +c fot kurtosis +c sigmat square root of the variance +c dfit0 error of mean +c dset error of the variance +c dtht error of the skewness +c +c fipt0 mean pathlength of transmitted projectiles +c sept variance +c tpht skewness +c fpot kurtosis +c sigmpt square root of the variance +c dfipt0 error of mean +c dsept error of the variance +c dthpt error of the skewness +c +c avnlt mean elastic loss +c vanlt variance of the elastic loss distribution +c signlt square root of the variance +c dfinlt error in the mean elastic loss +c +c avilt mean electronic loss +c vailt variance of the electronic loss distribution +c sigilt square root of the variance +c dfiilt error in the mean electronic loss +c +c +c backsputtered target atoms (for each species j) +c +c ispa total sputtering yield +c espa total sputtered energy +c ispal(i) sputtering yield of layer i +c espal(i) sputtered energy of layer i +c spy(j) sputtering yield of species j +c spe(j) sputtered energy of species j +c rey(j) relative mean energy of sputtered target atoms +c emsp(j) mean energy of sputtered target atoms +c +c 4 different processes for sputtering +c ispip(j) number of primary knock-on atoms, ion in +c rip(j) fraction of primary knock-on atoms, ion in +c normalized to all sputtered atoms +c ripj(j) fraction of primary knock-on +c normalized to sputtered atoms of species j +c espip(j) energy of primary knock-on atoms, ion in +c reip(j) fraction of energy of primary knock-on atoms, ion in +c normalized to energy of all sputtered atoms +c reipj(j) fraction of energy of primary knock-on atoms, ion in +c normalized to energy of sputtered atom species j +c espmip(j) mean energy of process (pka, ion in) +c ispis(j) number of secondary knock-on atoms, ion in +c ris(j) fraction of secondary knock-on atoms, ion in +c normalized to all sputtered atoms +c risj(j) fraction of secondary knock-on atoms, ion in +c normalized to sputtered atoms of species j +c espis(j) energy of secondary knock-on atoms,ion in +c reis(j) fraction of energy of secondary knock-on atoms, ion in +c normalized to energy of all sputtered atoms +c reisj(j) fraction of energy of secondary knock-on atoms, ion in +c normalized to energy of sputtered atom species j +c espmis(j) mean energy of process (ska, ion in) +c ispop(j) number of primary knock-on atoms, ion out +c rop(j) fraction of primary knock-on atoms, ion out +c normalized to all sputtered atoms +c ropj(j) fraction of primary knock-on atoms, ion out +c normalized to sputtered atoms of species j +c espop(i) energy of primary knock-on atoms, ion out +c reop(j) fraction of energy of primary knock-on atoms, ion out +c normalized to energy of all sputtered atoms +c reopj(j) fraction of energy of primary knock-on atoms, ion out +c normalized to energy of sputtered atom species j +c espmop(j) mean energy of process (pka, ion out) +c ispos(j) number of secondary knock-on atoms, ion out +c ros(j) fraction of secondary knock-on atoms, ion out +c normalized to all sputtered atoms +c rosj(j) fraction of secondary knock-on atoms, ion out +c normalized to sputtered atoms of species j +c espos(j) energy of secondary knock-on atoms, ion out +c reos(j) fraction of energy of secondary knock-on atoms, ion out +c normalized to energy of all sputtered atoms +c reosj(j) fraction of energy of secondary knock-on atoms, ion out +c normalized to energy of sputtered atom species j +c espmos(j) mean energy of process (ska, ion out) +c +c fies0 mean energy of backsputtered target atoms +c sees variance +c thes skewness +c foes kurtosis +c sigmes square root of the variance +c dfies0 error of mean +c dsees error of the variance +c dthes error of the skewness +c +c ebsp1 1.moment of the energy distribution +c ebsp2 2.moment of the energy distribution +c ebsp3 3.moment of the energy distribution +c ebsp4 4.moment of the energy distribution +c ebsp5 5.moment of the energy distribution +c ebsp6 6.moment of the energy distribution +c +c ebsp1l 1.logarithmic moment of the energy distribution +c ebsp2l 2.logarithmic moment of the energy distribution +c ebsp3l 3.logarithmic moment of the energy distribution +c ebsp4l 4.logarithmic moment of the energy distribution +c ebsp5l 5.logarithmic moment of the energy distribution +c ebsp6l 6.logarithmic moment of the energy distribution +c +c +c transmission sputtered target atoms (for each species j) +c +c ispat total sputtering yield +c espat total sputtered energy +c ispalt(i) sputtering yield of layer i +c espalt(i) sputtered energy of layer i +c spyt(j) sputtering yield of species j +c spet(j) sputtered energy of species j +c reyt(j) relative mean energy of sputtered target atoms +c emspt(j) mean energy of sputtered target atoms +c +c 4 different processes for sputtering +c ispipt(j) number of primary knock-on atoms, ion in +c ript(j) fraction of primary knock-on atoms, ion in +c normalized to all sputtered atoms +c espipt(j) energy of primary knock-on atoms, ion in +c reipt(j) fraction of energy of primary knock-on atoms, ion in +c normalized to energy of all sputtered atoms +c espmipt(j) mean energy of process (pka, ion in) +c ispist(j) number of secondary knock-on atoms, ion in +c rist(j) fraction of secondary knock-on atoms, ion in +c normalized to all sputtered atoms +c espist(j) energy of secondary knock-on atoms,ion in +c reist(j) fraction of energy of secondary knock-on atoms, ion in +c normalized to energy of all sputtered atoms +c espmist(j) mean energy of process (ska, ion in) +c ispopt(j) number of primary knock-on atoms, ion out +c ropt(j) fraction of primary knock-on atoms, ion out +c normalized to all sputtered atoms +c espopt(i) energy of primary knock-on atoms, ion out +c reopt(j) fraction of energy of primary knock-on atoms, ion out +c normalized to energy of all sputtered atoms +c espmopt(j) mean energy of process (pka, ion out) +c ispost(j) number of secondary knock-on atoms, ion out +c rost(j) fraction of secondary knock-on atoms, ion out +c normalized to all sputtered atoms +c espost(j) energy of secondary knock-on atoms, ion out +c reost(j) fraction of energy of secondary knock-on atoms, ion out +c normalized to energy of all sputtered atoms +c espmost(j) mean energy of process (ska, ion out) +c +c +c angular distributions +c +c a(i) 20 equal cosine intervals of the polar exit angle +c kadb(i) number of reflected projectiles in interval i +c rkadb(i) fraction of reflected projectiles in interval i +c kadt(i) number of transmitted projectiles in interval i +c rkadt(i) fraction of transmitted projectiles in interval i +c kads(i) number of all sputtered target atoms in interval i +c rkads(i) fraction of all sputtered target atoms in interval i +c kadsl(i,j) number of sputtered atoms from layer j in interval i +c rkadsl(i,j) fraction of sputtered atoms from layer j in interval i +c kadsj(i,j) number of sputtered species j in interval i +c rkadsj(i,j) fraction of sputtered species j in interval i +c kadst(i) number of all transmission sputtered atoms in interval i +c rkadst(i) fraction of all transm. sputtered atoms in interval i +c kdstl(i,j) number of transm. sputtered atoms from layer j in interval i +c rkdslt(i,j) fraction of transm. sputtered atoms from layer j in interval i +c kdstj(i,j) number of transm. sputtered species j in interval i +c rkdstj(i,j) fraction of transm. sputtered species j in interval i +cc kadrip(i) number of sputtered primary knock-on atoms, ion in +cc rkdrip(i) fraction of sputtered primary knock-on atoms, ion in +cc kadris(i) number of sputtered secondary knock-on atoms, ion in +cc rkdris(i) fraction of sputtered secondary knock-on atoms, ion in +cc kadrop(i) number of sputtered primary knock-on atoms, ion out +cc rkdrop(i) fraction of sputtered primary knock-on atoms, ion out +cc kadros(i) number of sputtered secondary knock-on atoms, ion out +cc rkdros(i) fraction of sputtered secondary knock-on atoms, ion out +c +c +c 2- and 3-dimensional distributions +c +c the first row and the first column give the upper limit of +c the interval +c the last row gives the sum over the columns and +c the last column gives the sum over the rows +c the matrix-output is only given , if more than 10000 particles +c are sputtered, reflected or transmitted +c +c backsputtered target atoms +c +c meas(i,j,k) number of sputtered target atoms versus energy +c (column) and polar emission angle (row) +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c polar angle interval j: cosine interval of 0.05, +c 20 intervals +c 10 target species k (2 layers) +c in the last interval (99-100 ev) all sputtered +c target atoms with energies above 100 ev are +c included +c dimension : meas(102,22,10) +c +c mease(i,j,k) number of sputtered target atoms versus energy +c (column) and polar emission angle (row) +c energy interval i: 1 ev , 100 intervals +c polar angle interval j: cosine interval of 0.05, +c 20 intervals +c 10 target species k (2 layers) +c in the last interval (99-100 ev) all sputtered +c target atoms with energies above 100 ev are +c included +c dimension : meas(102,22,10) +c +c magsa(i,j,k) number of sputtered target atoms versus azimuthal +c (column) and polar (row) emission angles +c azimuthal angle interval i: 3 deg, 60 intervals +c polar angle interval j: 3 deg, 30 intervals +c 10 target species k (2 layers) +c dimension : magsa(62,32,10) +c +c measl(i,j,k) number of sputtered target atoms versus energy +c (column) and polar emission angle (row) +c energy interval i: a decade is divided into 12 +c equal logarithmic intervals from 0.1 to 10**5 ev +c polar angle interval j: cosine intervals of 0.05, +c 20 intervals +c 10 target species k (2 layers) +c the last column gives the number of sputtered +c atoms per ev, solid angle, and projectile +c dimension : measl(75,21,10) +c +c easl(i,j) logarithmic energy distribution (intensity per +c logarithmic energy interval) +c energy interval i: a decade is divided into 12 +c equal logarithmic intervals from 0.1 to 10**5 ev +c 10 target species j (2 layers) +c dimension : easl(75,10) +c +c meags(i,j,k,l) number of sputtered target atoms versus energy +c (column), polar (row) and azimuthal (matrix) +c emission angles +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c polar angle interval k: cosine interval of 0.05, +c 20 intervals +c azimuthal angle interval j: 15 deg, 12 matrices +c 10 target species l (2 layers) +c these matrices are not calculated, if the angle +c of incidence, alpha, is smaller than 1 deg +c dimension : meags(102,12,22,10) +c +c mags(i,j,k) number of sputtered target atoms versus azimu- +c thal (column) and polar (row) emission angles +c dimension : mags(62,22,10) +c +c transmission sputtered target atoms +c +c meast(i,j,k) number of sputtered target atoms versus energy +c (column) and polar emission angle (row) +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c polar angle interval j: cosine interval of 0.05, +c 20 intervals +c 10 target species k (2 layers) +c in the last interval (99-100 ev) all sputtered +c target atoms with energies above 100 ev are +c included +c dimension : meast(102,22,10) +c +c meastl(i,j,k) number of sputtered target atoms versus energy +c (column) and polar emission angle (row) +c energy interval i: a decade is divided into 12 +c equal logarithmic intervals from 0.1 to 10**5 ev +c polar angle interval j: cosine intervals of 0.05, +c 20 intervals +c 10 target species k (2 layers) +c the last column gives the number of sputtered +c atoms per ev, solid angle, and projectile +c dimension : meastl(75,21,10) +c +c eastl(i,j) logarithmic energy distribution (intensity per +c logarithmic energy interval) +c energy interval i: a decade is divided into 12 +c equal logarithmic intervals from 0.1 to 10**5 ev +c 10 target species j (2 layers) +c dimension : eastl(75,10) +c +c magst(i,j,k) number of sputtered target atoms versus azimu- +c thal (column) and polar (row) emission angles +c dimension : magst(62,22,10) +c +c backscattered projectiles +c +c meab(i,j) number of backscattered projectiles versus +c energy (column) and polar emission angle (row) +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c polar angle interval j: cosine interval of 0.05, +c 20 intervals +c dimension : meab(102,22) +c +c meabl(i,k) number of backscattered projectiles versus +c energy (column) and polar emission angle (row) +c energy interval i: a decade is divided into 12 +c equal logarithmic intervals from 0.1 to 10**5 ev +c polar angle interval j: cosine intervals of 0.05, +c 20 intervals +c dimension : meabl(75,21) +c +c meagb(i,j,k) number of backscattered projectiles versus +c energy (column), polar (row) and azimuthal +c (matrix) emission angles +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c polar angle interval k: cosine interval of 0.05, +c 20 intervals +c azimuthal angle interval j: 15 deg, 12 matrices +c 10 target species l (2 layers) +c these matrices are not calculated, if the angle +c of incidence, alpha, is smaller than 1 deg +c dimension : meagb(102,12,22) +c +c magb(i,j) number of backscattered projectiles versus +c azimuthal (column) and polar (row) emission +c angles +c azimuthal angle interval i: 3 deg, 60 intervals +c polar angle interval j: cosine intervals of 0.05, +c 20 intervals +c dimension : magb(62,22) +c +c ema(i,j) backscattered energy versus azimuthal (column) +c and polar (row) emission angles +c azimuthal angle interval i: 3 deg, 60 intervals +c polar angle interval j: cosine intervals of 0.05, +c 20 intervals +c dimension : ema(62,22) +c +c mepb(i,j) number of backscattered projectiles versus +c energy (column) and pathlength (row) +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c pathlength interval j: cw , 100 intervals +c dimension : mepb(102,102) +c +c transmitted projectiles +c +c meat(i,j) number of transmitted projectiles versus +c energy (column) and polar emission angle (row) +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c polar angle interval j: cosine interval of 0.05, +c 20 intervals +c dimension : meat(102,22) +c +c meatl(i,k) number of transmitted projectiles versus +c energy (column) and polar emission angle (row) +c energy interval i: a decade is divided into 12 +c equal logarithmic intervals from 0.1 to 10**5 ev +c polar angle interval j: cosine intervals of 0.05, +c 20 intervals +c dimension : meatl(75,21) +c +c meatb(i,j,k) number of transmitted projectiles versus +c energy (column), polar (row) and azimuthal +c (matrix) emission angles +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c polar angle interval k: cosine interval of 0.05, +c 20 intervals +c azimuthal angle interval j: 15 deg, 12 matrices +c 10 target species l (2 layers) +c these matrices are not calculated, if the angle +c of incidence, alpha, is smaller than 1 deg +c dimension : meatb(102,12,22) +c +c magt(i,j) number of transmitted projectiles versus +c azimuthal (column) and polar (row) emission +c angles +c azimuthal angle interval i: 3 deg, 60 intervals +c polar angle interval j: cosine intervals of 0.05, +c 20 intervals +c dimension : magt(62,22) +c +c emat(i,j) transmitted energy versus azimuthal (column) +c and polar (row) emission angles +c azimuthal angle interval i: 3 deg, 60 intervals +c polar angle interval j: cosine intervals of 0.05, +c 20 intervals +c dimension : emat(62,22) +c +c mept(i,j) number of transmitted projectiles versus +c energy (column) and pathlength (row) +c energy interval i: 1% of the projectile energy e0, +c 100 intervals +c pathlength interval j: cw , 100 intervals +c dimension : mept(102,102) +c +c +c remarks +c the matrix output is in most cases only reasonable for a large +c number of histories (nh.gt.10**5) +c +c +c data on disc (fort.17) , unformatted +c +c z1,m1,e0,alpha,ef,esb,sheath +c ,nh,ri,x0,rd,cw,ca,kk0,kk0r,kdee1,kdee2 +c (dx(i),i=1,3),(rho(i),i=1,3),(ck(i),i=1,3) +c ,((zt(i,j),j=1,5),i=1,3),((mt(i,j),j=1,5),i=1,3) +c ,((co(i,j),j=1,5),i=1,3),((sbe(i,j),j=1,5),i=1,3) +c ,((ed(i,j),j=1,5),i=1,3),((be(i,j),j=1,5),i=1,3) +c ti,zarg,velc +c ,hlm,hlmt,su,sut,xc,rt,inel,l,lj +c ,nproj,kib,kit,maxa,nall,npa,nsa,kis,kist +c ,iim,eim,ib,eb,it,et,ispa,espa,ispat,espat +c ,fix0,sex,thx,fox,sigmax,dfix0,dsex,dthx +c ,fir0,ser,thr,for,sigmar,dfir0,dser,dthr +c ,fip0,sep,thp,fop,sigmap,dfip0,dsep,dthp +c ,avnli,vanli,signli,dfinli +c ,avili,vaili,sigili,dfiili +c avcsum,avcdis +c ,fie0,see,the,foe,sigmae,dfie0,dsee,dthe +c ,fiw0,sew,thw,fow,sigmaw,dfiw0,dsew,dthw +c ,fii0,sei,thi,foi,sigmai,dfii0,dsei,dthi +c ,fis0,ses,ths,fos,sigmas,dfis0,dses,dths +c ,iirp,trirp,iipl,tion,tdmgn,tcasmo,tphon,tdent +c rn,re,emeanr,emean,tn,te,tmeanr,emeant +c ,fib0,seb,thb,fob,sigmab,dfib0,dseb,dthb +c ,fipb0,sepb,thpb,fopb,sigmpb,dfipb0,dsepb,dthpb +c ,avnlb,vanlb,signlb,dfinlb +c ,avilb,vailb,sigilb,dfiilb +c fit0,set,tht,fot,sigmat,dfit0,dset,dtht +c ,fipt0,sept,thpt,fopt,sigmpt,dfipt0,dsept,dthpt +c ,avnlt,vanlt,signlt,dfinlt +c ,avilt,vailt,sigilt,dfiilt +c (irp(i),i=0,100),(rirp(i),i=0,100) +c ,(ipl(i),i=1,100),(ion(i),i=1,100),(dmgn(i),i=1,100) +c ,(casmot(i),i=1,100),(phon(i),i=1,100),(dent(i),i=1,100) +c (fiesb(j),j=1,10),(seesb(j),j=1,10),(thesb(j),j=1,10) +c ,(foesb(j),j=1,10),(sgmesb(j),j=1,10) +c ,(dfiesb(j),j=1,10),(dseesb(j),j=1,10) +c ,(dthesb(j),j=1,10) +c ((ele(i,j),j=1,15),i=1,100),((eli(i,j),j=1,15),i=1,100) +c ,((elp(i,j),j=1,15),i=1,100) +c ,(elet(j),j=1,15),(elit(j),j=1,15),(elpt(j),j=1,15) +c (ai(i),i=1,20),(kadb(i),i=1,20),(kadt(i),i=1,20) +c ,(rkadb(i),i=1,20),(rkadt(i),i=1,20) +c (kads(i),i=1,20),(kadst(i),i=1,20) +c ,(rkads(i),i=1,20),(rkadst(i),i=1,20) +c ((kadrip(i,j),j=1,10),i=1,20) +c ,((kadris(i,j),j=1,10),i=1,20) +c ,((kadrop(i,j),j=1,10),i=1,20) +c ,((kadros(i,j),j=1,10),i=1,20) +c ((KAdsj(i,j),j=1,10),i=1,20) +c ,((rkadsj(i,j),j=1,10),i=1,20) +c ,((kadsl(i,j),j=1,2),i=1,20) +c ,((kkadsl(i,j),j=1,2),i=1,20) +c ((kdstj(i,j),j=1,10),i=1,20) +c ,((rkdstj(i,j),j=1,10),i=1,20) +c ,((kdstl(i,j),j=1,2),i=1,20) +c ,((rkdstl(i,j),j=1,2),i=1,20) +c (ibsp(i),i=1,15),(ebsp(i),i=1,15) +c ,(spy(i),i=1,15),(spe(i),i=1,15) +c ,(rey(i),i=1,15),(emsp(i),i=1,15) +c ,(ispal(i),i=1,3),(espal(i),i=1,3) +c (ispip(i),i=1,15),(ispis(i),i=1,15) +c ,(ispop(i),i=1,15),(ispos(i),i=1,15) +c ,(espip(i),i=1,15),(espis(i),i=1,15) +c ,(espop(i),i=1,15),(espos(i),i=1,15) +c ,(rip(i),i=1,15),(ris(i),i=1,15) +c ,(rop(i),i=1,15),(ros(i),i=1,15) +c ,(reip(i),i=1,15),(reis(i),i=1,15) +c ,(reop(i),i=1,15),(reos(i),i=1,15) +c (itsp(i),i=1,15),(etsp(i),i=1,15) +c ,(spyt(i),i=1,15),(spet(i),i=1,15) +c ,(reyt(i),i=1,15),(emspt(i),i=1,15) +c ,(ispalt(i),i=1,3),(espalt(i),i=1,3) +c (ispipt(i),i=1,15),(ispist(i),i=1,15) +c ,(ispopt(i),i=1,15),(ispost(i),i=1,15) +c ,(espipt(i),i=1,15),(espist(i),i=1,15) +c ,(espopt(i),i=1,15),(espost(i),i=1,15) +c ,(ript(i),i=1,15),(rist(i),i=1,15) +c ,(ropt(i),i=1,15),(rost(i),i=1,15) +c ,(reipt(i),i=1,15),(reist(i),i=1,15) +c ,(reopt(i),i=1,15),(reost(i),i=1,15) +c ((meab(i,j),j=1,22),i=1,102) +c ,((magb(i,j),j=1,22),i=1,62) +c ,(((meagb(i,j,k),k=1,22),j=1,36),i=1,102) +c ,((ema(i,j),j=1,22),i=1,62),(elog(i),i=1,75) +c ,(eabl(i),i=1,75),((meabl(i,j),j=1,21),i=1,75) +c ,((mepb(i,j),j=1,102),i=1,102) +c ((meat(i,j),j=1,22),i=1,102) +c ,((magt(i,j),j=1,22),i=1,62) +c ,(((meagt(i,j,k),k=1,22),j=1,36),i=1,102) +c ,((emat(i,j),j=1,22),i=1,62) +c ,(eatl(i),i=1,75),((meatl(i,j),j=1,21),i=1,75) +c ,((mept(i,j),j=1,102),i=1,102) +c (((meas(i,j,k),k=1,10),j=1,22),i=1,102) +c ,(((mags(i,j,k),k=1,10),j=1,22),i=1,62) +c ,((easl(i,j),j=1,10),i=1,75) +c ,(((measl(i,j,k),k=1,10),j=1,21),i=1,75) +c (((meast(i,j,k),k=1,10),j=1,22),i=1,102) +c ,(((magst(i,j,k),k=1,10),j=1,22),i=1,62) +c ,((eastl(i,j),j=1,10),i=1,75) +c ,(((meastl(i,j,k),k=1,10),j=1,21),i=1,75) +c ((((meags(i,j,k,mn),mn=1,10),k=1,22),j=1,12),i=1,102) +c ,(((magsa(i,j,k),k=1,10),j=1,32),i=1,62) +CC ,((((MEAGST(I,J,K,L),L=1,10),K=1,22),J=1,36),I=1,102) +c ((eld(i,j),i=1,100),j=1,15) +c xsum,x2sum,x3sum,x4sum,x5sum,x6sum +c eb,eb2sum,eb3sum,eb4sum,eb5sum,eb6sum +c ,eb1sul,eb2sul,eb3sul,eb4sul,eb5sul,eb6sul +c (ebsp(j),j=1,15),(spe2s(j),j=1,15),(spe3s(j),j=1,15) +c ,(spe4s(j),j=1,15),(spe5s(j),j=1,15),(spe6s(j),j=1,15) +c (spe1sl(j),j=1,15),(spe2sl(j),j=1,15),(spe3sl(j),j=1,15) +c ,(spe4sl(j),j=1,15),(spe5sl(j),j=1,15) +c ,(spe6sl(j),j=1,15) +c ((icd(i,j),j=1,15),i=1,100),((icdr(i,j),j=1,15),i=1,100) +c (((icdiri(i,j,k),k=1,15),j=1,15),i=1,100) +c ,((icdirn(i,j),j=1,15),i=1,100) +c exi1s,exi2s,exi3s,exi4s,exi5s,exi6s +c ,coss1s,coss2s,coss3s,coss4s,coss5s,coss6s +c ibl,(ibsp(i),i=1,15) +