Files
DKS/auto-tuning/testFFT.cpp

215 lines
5.7 KiB
C++

#include <iostream>
#include <cstdlib>
#include <complex>
#include "Utility/TimeStamp.h"
#include "DKSFFT.h"
using namespace std;
void compareData(complex<double>* data1, complex<double>* data2, int N, int dim);
void compareData(double* data1, double *data2, int N, int dim);
void initData(complex<double> *data, int dimsize[3], int dim);
void initData(double *data, int dimsize[3], int dim);
bool readParams(int argc, char *argv[], int &N1, int &N2, int &N3, int &dim,
char *api_name, char *device_name);
void printHelp();
int main(int argc, char *argv[]) {
int ierr;
int N1 = 8;
int N2 = 8;
int N3 = 8;
int dim = 3;
char *api_name = new char[10];
char *device_name = new char[10];
if ( readParams(argc, argv, N1, N2, N3, dim, api_name, device_name) )
return 0;
cout << "Use api: " << api_name << ", " << device_name << endl;
int dimsize[3] = {N1, N2, N3};
int sizereal = dimsize[0] * dimsize[1] * dimsize[2];
int sizecomp = (dimsize[0]/2+1) * dimsize[1] *dimsize[2];
double *rdata = new double[sizereal];
double *ordata = new double[sizereal];
complex<double> *cdata = new complex<double>[sizereal];
complex<double> *codata = new complex<double>[sizereal];
initData(rdata, dimsize, 3);
initData(cdata, dimsize, 3);
/* init DKSBase */
cout << "Init device and set function" << endl;
DKSFFT base;
base.setAPI(api_name, strlen(api_name));
base.setDevice(device_name, strlen(device_name));
cout << "init device" << endl;
base.initDevice();
cout << "setup fft" << endl;
base.setupFFT(dim, dimsize);
//Test RC FFT -> CR FFT
void *real_ptr, *comp_ptr, *res_ptr;
cout << "allocate memory" << endl;
real_ptr = base.allocateMemory<double>(sizereal, ierr);
res_ptr = base.allocateMemory<double>(sizereal, ierr);
comp_ptr = base.allocateMemory< complex<double> >(sizecomp, ierr);
cout << "write data" << endl;
base.writeData<double>(real_ptr, rdata, sizereal);
cout << "perform fft" << endl;
base.callR2CFFT(real_ptr, comp_ptr, dim, dimsize);
base.callC2RFFT(res_ptr, comp_ptr, dim, dimsize);
base.callNormalizeC2RFFT(res_ptr, dim, dimsize);
cout << "read data" << endl;
base.readData<double>(res_ptr, ordata, sizereal);
compareData(rdata, ordata, N1, 3);
base.freeMemory<double>(real_ptr, sizereal);
base.freeMemory<double>(res_ptr, sizereal);
base.freeMemory< complex<double> >(comp_ptr, sizecomp);
//Test CC FFT
void *mem_ptr;
mem_ptr = base.allocateMemory< complex<double> >(sizereal, ierr);
base.writeData< complex<double> >(mem_ptr, cdata, sizereal);
base.callFFT(mem_ptr, 3, dimsize);
base.callIFFT(mem_ptr, 3, dimsize);
base.callNormalizeFFT(mem_ptr, 3, dimsize);
base.readData< complex<double> >(mem_ptr, codata, sizereal);
compareData(cdata, codata, N1, 3);
base.freeMemory< complex<double> > (mem_ptr, sizereal);
delete[] rdata;
delete[] ordata;
delete[] cdata;
delete[] codata;
}
void compareData(complex<double>* data1, complex<double>* data2, int N, int dim) {
int ni, nj, nk, id;
ni = (dim > 2) ? N : 1;
nj = (dim > 1) ? N : 1;
nk = N;
double sum = 0;
for (int i = 0; i < ni; i++) {
for (int j = 0; j < nj; j++) {
for (int k = 0; k < nk; k++) {
id = i*ni*ni + j*nj + k;
sum += fabs(data1[id].real() - data2[id].real());
sum += fabs(data1[id].imag() - data2[id].imag());
}
}
}
cout << "Size " << N << " CC <--> CC diff: " << sum << endl;
}
void compareData(double* data1, double* data2, int N, int dim) {
int ni, nj, nk, id;
ni = (dim > 2) ? N : 1;
nj = (dim > 1) ? N : 1;
nk = N;
double sum = 0;
for (int i = 0; i < ni; i++) {
for (int j = 0; j < nj; j++) {
for (int k = 0; k < nk; k++) {
id = i*ni*ni + j*nj + k;
sum += fabs(data1[id] - data2[id]);
}
}
}
cout << "Size " << N << " RC <--> CR diff: " << sum << endl;
}
void initData(complex<double> *data, int dimsize[3], int dim) {
if (dim == 3) {
for (int i = 0; i < dimsize[2]; i++)
for (int j = 0; j < dimsize[1]; j++)
for (int k = 0; k < dimsize[0]; k++)
data[i*dimsize[1]*dimsize[0] + j*dimsize[0] + k] = complex<double>(sin(k), 0.0);
} else if (dim == 2) {
for (int j = 0; j < dimsize[1]; j++) {
for (int k = 0; k < dimsize[0]; k++) {
data[j*dimsize[0] + k] = complex<double>(sin(k), 0.0);
}
}
} else {
for (int k = 0; k < dimsize[0]; k++)
data[k] = complex<double>(sin(k), 0.0);
}
}
void initData(double *data, int dimsize[3], int dim) {
if (dim == 3) {
for (int i = 0; i < dimsize[2]; i++)
for (int j = 0; j < dimsize[1]; j++)
for (int k = 0; k < dimsize[0]; k++)
data[i*dimsize[1]*dimsize[0] + j*dimsize[0] + k] = sin(k);
} else if (dim == 2) {
for (int j = 0; j < dimsize[1]; j++) {
for (int k = 0; k < dimsize[0]; k++) {
data[j*dimsize[0] + k] = sin(k);
}
}
} else {
for (int k = 0; k < dimsize[0]; k++)
data[k] = sin(k);
}
}
bool readParams(int argc, char *argv[], int &N1, int &N2, int &N3, int &dim,
char *api_name, char *device_name)
{
for (int i = 1; i < argc; i++) {
if ( argv[i] == std::string("-dim")) {
dim = atoi(argv[i + 1]);
i++;
}
if ( argv[i] == std::string("-grid") ) {
N1 = atoi(argv[i + 1]);
N2 = atoi(argv[i + 2]);
N3 = atoi(argv[i + 3]);
i += 3;
}
if (argv[i] == string("-cuda")) {
strcpy(api_name, "Cuda");
strcpy(device_name, "-gpu");
}
if (argv[i] == string("-opencl")) {
strcpy(api_name, "OpenCL");
strcpy(device_name, "-gpu");
}
if (argv[i] == string("-mic")) {
strcpy(api_name, "OpenMP");
strcpy(device_name, "-mic");
}
if (argv[i] == string("-cpu")) {
strcpy(api_name, "OpenCL");
strcpy(device_name, "-cpu");
}
}
return false;
}