Compare commits
18 Commits
dks-1.0.0-
...
DKS-1.1.0
Author | SHA1 | Date | |
---|---|---|---|
432d2f5e4e | |||
6e57cf5580 | |||
9e9a20c4af | |||
9b9910e9f9 | |||
244ad0b230 | |||
9734157ad8 | |||
24f9c9dbf4 | |||
47fe8e8e52 | |||
eee9dfd89e | |||
7c7c2e240b | |||
e9d411235c | |||
b5c5da29b2 | |||
3a74d6cdee | |||
b3a12e02a8 | |||
4432d32480 | |||
63a008d111 | |||
87cdf52f07 | |||
027bdc01f5 |
@ -1,10 +1,8 @@
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.2)
|
||||
PROJECT (DKS)
|
||||
SET (DKS_VERSION_MAJOR 1)
|
||||
SET (DKS_VERSION_MINOR 0)
|
||||
SET (DKS_VERSION_PATCH 2)
|
||||
SET (PACKAGE \"dks\")
|
||||
|
||||
SET (DKS_VERSION_MINOR 1)
|
||||
SET (DKS_VERSION_PATCH 0)
|
||||
set (DKS_VERSION ${DKS_VERSION_MAJOR}.${DKS_VERSION_MINOR}.${DKS_VERSION_PATCH})
|
||||
SET (PACKAGE \"dks\")
|
||||
SET (PACKAGE_BUGREPORT \"locans.uldis@psi.ch\")
|
||||
@ -39,10 +37,44 @@ IF (Boost_FOUND)
|
||||
LINK_DIRECTORIES(${Boost_LIBRARY_DIRS})
|
||||
ENDIF (Boost_FOUND)
|
||||
|
||||
#include OPAL, musrfit or pet kernels
|
||||
OPTION(DKS_FULL "Compile DKS with full library" OFF)
|
||||
OPTION(ENABLE_OPAL "Compile DKS with OPAL kernels" OFF)
|
||||
OPTION(ENABLE_MUSR "Compile DKS with musrfit kernels" OFF)
|
||||
OPTION(ENABLE_PET "Compile DKS with PET reconstruction kernels" OFF)
|
||||
|
||||
IF (DKS_FULL)
|
||||
SET(ENABLE_OPAL ON)
|
||||
SET(ENABLE_MUSR ON)
|
||||
SET(ENABLE_PET ON)
|
||||
ENDIF(DKS_FULL)
|
||||
|
||||
#find clFFT
|
||||
OPTION (ENABLE_AMD "Enable AMD libraries" OFF)
|
||||
IF (ENABLE_AMD)
|
||||
SET (clFFT_USE_STATIC_LIBS OFF)
|
||||
FIND_PACKAGE(clFFT REQUIRED HINTS $ENV{CLFFT_PREFIX} $ENV{CLFFT_DIR} $ENV{CLFFT})
|
||||
MESSAGE (STATUS "Found clFFT library: ${CLFFT_LIBRARIES}")
|
||||
MESSAGE (STATUS "Found clFFT include dir: ${CLFFT_INCLUDE_DIRS}")
|
||||
INCLUDE_DIRECTORIES (${CLFFT_INCLUDE_DIRS})
|
||||
LINK_DIRECTORIES (${CLFFT_LIBRARIES})
|
||||
|
||||
#find clRNG
|
||||
#SET (clRNG_USE_STATIC_LIBS OFF)
|
||||
#FIND_PACKAGE(clRng REQUIRED HINTS &ENV{CLRNG_PREFIX} $ENV{CLRNG_DIR} $ENV{CLRNG})
|
||||
#MESSAGE (STATUS "Found clRNG library: ${CLRNG_LIBRARIES}")
|
||||
#MESSAGE (STATUS "Found clRNG include dir: ${CLRNG_INCLUDE_DIRS}")
|
||||
#INCLUDE_DIRECTORIES (${CLFFT_INCLUDE_DIRS})
|
||||
#LINK_DIRECTORIES (${CLRNG_LIBRARIES})
|
||||
#find_package(PkgConfig)
|
||||
#pkg_check_modules(clRng REQUIRED)
|
||||
|
||||
SET (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DDKS_AMD")
|
||||
ENDIF (ENABLE_AMD)
|
||||
|
||||
#enable UQTK
|
||||
OPTION (USE_UQTK "Use UQTK" OFF)
|
||||
|
||||
|
||||
#intel icpc compiler specific flags
|
||||
IF (${CMAKE_C_COMPILER_ID} STREQUAL "Intel" OR USE_INTEL)
|
||||
|
||||
@ -185,4 +217,3 @@ INSTALL (
|
||||
DESTINATION "${CMAKE_INSTALL_PREFIX}/lib/cmake/${PROJECT_NAME}"
|
||||
RENAME ${PROJECT_NAME}ConfigVersion.cmake
|
||||
)
|
||||
|
||||
|
@ -2,18 +2,30 @@ INCLUDE_DIRECTORIES( ${CMAKE_SOURCE_DIR}/src )
|
||||
LINK_DIRECTORIES( ${CMAKE_SOURCE_DIR}/src )
|
||||
|
||||
#chi square kernel tests
|
||||
IF (ENABLE_MUSR)
|
||||
ADD_EXECUTABLE(testChiSquareRT testChiSquareRT.cpp)
|
||||
TARGET_LINK_LIBRARIES(testChiSquareRT dks ${Boost_LIBRARIES})
|
||||
TARGET_LINK_LIBRARIES(testChiSquareRT dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
|
||||
ADD_EXECUTABLE(testChiSquareRTRandom testChiSquareRTRandom.cpp)
|
||||
TARGET_LINK_LIBRARIES(testChiSquareRTRandom dks ${Boost_LIBRARIES})
|
||||
TARGET_LINK_LIBRARIES(testChiSquareRTRandom dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
|
||||
IF (USE_UQTK)
|
||||
ADD_EXECUTABLE(testChiSquareRTUQTK testChiSquareRTUQTK.cpp)
|
||||
TARGET_LINK_LIBRARIES(testChiSquareRTUQTK dks ${Boost_LIBRARIES} lreg UQTk quad bcs uqtktools cvode-2.6.0 dsfmt lbfgs uqtklapack uqtkslatec uqtkblas gfortran)
|
||||
TARGET_LINK_LIBRARIES(testChiSquareRTUQTK dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES} lreg UQTk quad bcs uqtktools cvode-2.6.0 dsfmt lbfgs uqtklapack uqtkslatec uqtkblas gfortran)
|
||||
ENDIF (USE_UQTK)
|
||||
#TARGET_LINK_LIBRARIES(testChiSquareRTUQTK dks ${Boost_LIBRARIES})
|
||||
|
||||
#test to verify search functions
|
||||
ADD_EXECUTABLE(testSearch testSearch.cpp)
|
||||
TARGET_LINK_LIBRARIES(testSearch dks ${Boost_LIBRARIES})
|
||||
TARGET_LINK_LIBRARIES(testSearch dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
ENDIF (ENABLE_MUSR)
|
||||
|
||||
IF (ENABLE_OPAL)
|
||||
ADD_EXECUTABLE(testCollimatorPhysics testCollimatorPhysics.cpp)
|
||||
TARGET_LINK_LIBRARIES(testCollimatorPhysics dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
|
||||
ADD_EXECUTABLE(testPushKick testPushKick.cpp)
|
||||
TARGET_LINK_LIBRARIES(testPushKick dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
ENDIF(ENABLE_OPAL)
|
||||
|
||||
|
||||
|
161
auto-tuning/testCollimatorPhysics.cpp
Normal file
161
auto-tuning/testCollimatorPhysics.cpp
Normal file
@ -0,0 +1,161 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include "DKSOPAL.h"
|
||||
|
||||
typedef struct {
|
||||
int label;
|
||||
unsigned localID;
|
||||
double Rincol[3];
|
||||
double Pincol[3];
|
||||
} PART;
|
||||
|
||||
PART initPartSmall(int d) {
|
||||
|
||||
PART p;
|
||||
p.label = 0;
|
||||
p.localID = d;
|
||||
|
||||
p.Rincol[0] = 0.0;
|
||||
p.Rincol[1] = 0.0;
|
||||
p.Rincol[2] = 0.02;
|
||||
|
||||
p.Pincol[0] = 0.0;
|
||||
p.Pincol[1] = 0.0;
|
||||
p.Pincol[2] = 3.9920183237269791e-01;
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
void printPart(PART p) {
|
||||
std::cout << "label: " << p.label << ", ";
|
||||
std::cout << "localid: " << p.localID << ",";
|
||||
std::cout << "Rincol: " << p.Rincol[0] << ", " << p.Rincol[1] << ", " << p.Rincol[2] << ", ";
|
||||
std::cout << "Pincol: " << p.Pincol[0] << ", " << p.Pincol[1] << ", " << p.Pincol[2];
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void initParts(PART *p, int N) {
|
||||
for (int i = 0; i < N; i++)
|
||||
p[i] = initPartSmall(i);
|
||||
}
|
||||
|
||||
void printParts(PART *p, int N) {
|
||||
for (int i = 0; i < N; i++)
|
||||
printPart(p[i]);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void initParams(double *data) {
|
||||
data[0] = 0.0;//2.0000000000000000e-02;
|
||||
data[1] = 1.0;//1.0000000000000000e-02;
|
||||
data[2] = 2.2100000000000000e+00;
|
||||
data[3] = 6.0000000000000000e+00;
|
||||
data[4] = 1.2010700000000000e+01;
|
||||
data[5] = 2.6010000000000000e+00;
|
||||
data[6] = 1.7010000000000000e+03;
|
||||
data[7] = 1.2790000000000000e+03;
|
||||
data[8] = 1.6379999999999999e-02;
|
||||
data[9] = 1.9321266968325795e-01;
|
||||
data[10] = 7.9000000000000000e+01;
|
||||
data[11] = 1.0000000000000002e-12;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
int loop = 10;
|
||||
int numpart = 1e5;
|
||||
char *api_name = new char[10];
|
||||
char *device_name = new char[10];
|
||||
strcpy(api_name, "Cuda");
|
||||
strcpy(device_name, "-gpu");
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
|
||||
if (argv[i] == std::string("-mic")) {
|
||||
strcpy(api_name, "OpenMP");
|
||||
strcpy(device_name, "-mic");
|
||||
}
|
||||
|
||||
if (argv[i] == std::string("-npart")) {
|
||||
numpart = atoi(argv[i+1]);
|
||||
i++;
|
||||
}
|
||||
|
||||
if (argv[i] == std::string("-loop")) {
|
||||
loop = atoi(argv[i+1]);
|
||||
i++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
std::cout << "=========================BEGIN TEST=========================" << std::endl;
|
||||
std::cout << "Use api: " << api_name << "\t" << device_name << std::endl;
|
||||
std::cout << "Number of particles: " << numpart << std::endl;
|
||||
std::cout << "Number of loops: " << loop << std::endl;
|
||||
std::cout << "------------------------------------------------------------" << std::endl;
|
||||
|
||||
//init part vector to test mc
|
||||
PART *parts = new PART[numpart];
|
||||
initParts(parts, numpart);
|
||||
|
||||
double *params = new double[12];
|
||||
initParams(params);
|
||||
|
||||
//init dks
|
||||
int ierr;
|
||||
DKSOPAL base;
|
||||
base.setAPI(api_name, strlen(api_name));
|
||||
base.setDevice(device_name, strlen(api_name));
|
||||
ierr = base.initDevice();
|
||||
if (ierr != DKS_SUCCESS)
|
||||
std::cout << "Error with init device!" << std::endl;
|
||||
|
||||
//init random
|
||||
base.callInitRandoms(numpart);
|
||||
|
||||
//**test collimator physics and sort***//
|
||||
void *part_ptr, *param_ptr;
|
||||
|
||||
//allocate memory for particles
|
||||
part_ptr = base.allocateMemory<PART>(numpart, ierr);
|
||||
param_ptr = base.allocateMemory<double>(12, ierr);
|
||||
|
||||
//transfer data to device
|
||||
base.writeData<PART>(part_ptr, parts, numpart);
|
||||
base.writeData<double>(param_ptr, params, 12);
|
||||
|
||||
int numaddback;
|
||||
base.callCollimatorPhysics2(part_ptr, param_ptr, numpart);
|
||||
base.callCollimatorPhysicsSort(part_ptr, numpart, numaddback);
|
||||
base.syncDevice();
|
||||
|
||||
//read data from device
|
||||
base.readData<PART>(part_ptr, parts, numpart);
|
||||
|
||||
//free memory
|
||||
base.freeMemory<PART>(part_ptr, numpart);
|
||||
base.freeMemory<double>(param_ptr, 12);
|
||||
|
||||
std::cout << std::fixed << std::setprecision(4);
|
||||
for (int i = 0; i < 10; i++) {
|
||||
std::cout << parts[i].label << "\t"
|
||||
<< parts[i].Rincol[0] << "\t" << parts[i].Rincol[1] << "\t"
|
||||
<< parts[i].Rincol[2] << "\t" << parts[i].Pincol[0] << "\t"
|
||||
<< parts[i].Pincol[1] << "\t" << parts[i].Pincol[2] << "\t"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
std:: cout << "..." << std::endl;
|
||||
|
||||
for (int i = numpart - 10; i < numpart; i++) {
|
||||
std::cout << parts[i].label << "\t"
|
||||
<< parts[i].Rincol[0] << "\t" << parts[i].Rincol[1] << "\t"
|
||||
<< parts[i].Rincol[2] << "\t" << parts[i].Pincol[0] << "\t"
|
||||
<< parts[i].Pincol[1] << "\t" << parts[i].Pincol[2] << "\t"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
132
auto-tuning/testPushKick.cpp
Normal file
132
auto-tuning/testPushKick.cpp
Normal file
@ -0,0 +1,132 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include "DKSOPAL.h"
|
||||
|
||||
#include <vector_types.h>
|
||||
#include "cuda_runtime.h"
|
||||
|
||||
void initData(double3 *data, int N) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
data[i].x = (double)rand() / RAND_MAX;
|
||||
data[i].y = (double)rand() / RAND_MAX;
|
||||
data[i].z = (double)rand() / RAND_MAX;
|
||||
}
|
||||
}
|
||||
|
||||
void initDt(double *data, int N) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
data[i] = 0.00001;
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
int loop = 10;
|
||||
int numpart = 1e5;
|
||||
char *api_name = new char[10];
|
||||
char *device_name = new char[10];
|
||||
strcpy(api_name, "Cuda");
|
||||
strcpy(device_name, "-gpu");
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
|
||||
if (argv[i] == std::string("-mic")) {
|
||||
strcpy(api_name, "OpenMP");
|
||||
strcpy(device_name, "-mic");
|
||||
}
|
||||
|
||||
if (argv[i] == std::string("-npart")) {
|
||||
numpart = atoi(argv[i+1]);
|
||||
i++;
|
||||
}
|
||||
|
||||
if (argv[i] == std::string("-loop")) {
|
||||
loop = atoi(argv[i+1]);
|
||||
i++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
std::cout << "=========================BEGIN TEST=========================" << std::endl;
|
||||
std::cout << "Use api: " << api_name << "\t" << device_name << std::endl;
|
||||
std::cout << "Number of particles: " << numpart << std::endl;
|
||||
std::cout << "Number of loops: " << loop << std::endl;
|
||||
std::cout << "------------------------------------------------------------" << std::endl;
|
||||
|
||||
int ierr;
|
||||
DKSOPAL dksbase;
|
||||
dksbase.setAPI(api_name, strlen(api_name));
|
||||
dksbase.setDevice(device_name, strlen(api_name));
|
||||
ierr = dksbase.initDevice();
|
||||
if (ierr != DKS_SUCCESS)
|
||||
std::cout << "Error with init device!" << std::endl;
|
||||
|
||||
double3 *R = new double3[numpart];
|
||||
double3 *P = new double3[numpart];
|
||||
double3 *Ef = new double3[numpart];
|
||||
double3 *Bf = new double3[numpart];
|
||||
double *dt = new double[numpart];
|
||||
|
||||
initData(R, numpart);
|
||||
initData(P, numpart);
|
||||
initData(Ef, numpart);
|
||||
initData(Bf, numpart);
|
||||
initDt(dt, numpart);
|
||||
|
||||
void *r_ptr, *p_ptr, *ef_ptr, *bf_ptr, *dt_ptr;
|
||||
|
||||
r_ptr = dksbase.allocateMemory<double3>(numpart, ierr);
|
||||
p_ptr = dksbase.allocateMemory<double3>(numpart, ierr);
|
||||
ef_ptr = dksbase.allocateMemory<double3>(numpart, ierr);
|
||||
bf_ptr = dksbase.allocateMemory<double3>(numpart, ierr);
|
||||
dt_ptr = dksbase.allocateMemory<double>(numpart, ierr);
|
||||
|
||||
|
||||
dksbase.writeData<double3>(r_ptr, R, numpart);
|
||||
dksbase.writeData<double3>(p_ptr, P, numpart);
|
||||
dksbase.writeData<double3>(ef_ptr, Ef, numpart);
|
||||
dksbase.writeData<double3>(bf_ptr, Bf, numpart);
|
||||
dksbase.writeData<double>(dt_ptr, dt, numpart);
|
||||
|
||||
for (int i = 0; i < loop; ++i)
|
||||
dksbase.callParallelTTrackerPush(r_ptr, p_ptr, dt_ptr, numpart, 1.0);
|
||||
|
||||
|
||||
std::cout << std::fixed << std::setprecision(4);
|
||||
for (int i = 0; i < 10; i++)
|
||||
std::cout << R[i].x << "\t" << R[i].y << "\t" << R[i].z << std::endl;
|
||||
|
||||
std:: cout << "..." << std::endl;
|
||||
|
||||
for (int i = numpart - 10; i < numpart; i++)
|
||||
std::cout << R[i].x << "\t" << R[i].y << "\t" << R[i].z << std::endl;
|
||||
|
||||
std::cout << "============" << std::endl;
|
||||
|
||||
dksbase.readData<double3>(r_ptr, R, numpart);
|
||||
|
||||
std::cout << std::fixed << std::setprecision(4);
|
||||
for (int i = 0; i < 10; i++)
|
||||
std::cout << R[i].x << "\t" << R[i].y << "\t" << R[i].z << std::endl;
|
||||
|
||||
std:: cout << "..." << std::endl;
|
||||
|
||||
for (int i = numpart - 10; i < numpart; i++)
|
||||
std::cout << R[i].x << "\t" << R[i].y << "\t" << R[i].z << std::endl;
|
||||
|
||||
dksbase.freeMemory<double3>(r_ptr, numpart);
|
||||
dksbase.freeMemory<double3>(p_ptr, numpart);
|
||||
dksbase.freeMemory<double3>(ef_ptr, numpart);
|
||||
dksbase.freeMemory<double3>(bf_ptr, numpart);
|
||||
dksbase.freeMemory<double>(dt_ptr, numpart);
|
||||
|
||||
delete[] R;
|
||||
delete[] P;
|
||||
delete[] Ef;
|
||||
delete[] Bf;
|
||||
delete[] dt;
|
||||
|
||||
|
||||
}
|
@ -6,6 +6,7 @@ SET (_HDRS
|
||||
ImageReconstruction.h
|
||||
CollimatorPhysics.h
|
||||
FFT.h
|
||||
GreensFunction.h
|
||||
)
|
||||
|
||||
ADD_SOURCES (${_SRCS})
|
||||
|
@ -5,10 +5,7 @@
|
||||
#include <string>
|
||||
#include "../DKSDefinitions.h"
|
||||
|
||||
class DKSBaseMuSR;
|
||||
|
||||
class DKSCollimatorPhysics {
|
||||
friend class DKSBaseMuSR;
|
||||
|
||||
protected:
|
||||
|
||||
@ -19,8 +16,7 @@ public:
|
||||
|
||||
virtual ~DKSCollimatorPhysics() { }
|
||||
|
||||
virtual int CollimatorPhysics(void *mem_ptr, void *par_ptr, int numpartices,
|
||||
bool enableRutherfordScattering = true) = 0;
|
||||
virtual int CollimatorPhysics(void *mem_ptr, void *par_ptr, int numpartices) = 0;
|
||||
|
||||
virtual int CollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
@ -37,6 +33,10 @@ public:
|
||||
virtual int ParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart, void *dt_ptr,
|
||||
double dt, double c, bool usedt = false, int streamId = -1) = 0;
|
||||
|
||||
virtual int ParallelTTrackerKick(void *r_ptr, void *p_ptr, void *ef_ptr,
|
||||
void *bf_ptr, void *dt_ptr, double charge,
|
||||
double mass, int npart, double c, int streamId = -1) = 0;
|
||||
|
||||
virtual int ParallelTTrackerPushTransform(void *x_ptr, void *p_ptr, void *lastSec_ptr,
|
||||
void *orient_ptr, int npart, int nsec, void *dt_ptr,
|
||||
double dt, double c, bool usedt = false,
|
||||
|
29
src/Algorithms/GreensFunction.h
Normal file
29
src/Algorithms/GreensFunction.h
Normal file
@ -0,0 +1,29 @@
|
||||
#ifndef H_GREENSFUNCTION
|
||||
#define H_GREENSFUNCTION
|
||||
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
|
||||
class GreensFunction {
|
||||
|
||||
public:
|
||||
|
||||
virtual ~GreensFunction() { }
|
||||
|
||||
/** calc greens integral, as defined in OPAL */
|
||||
virtual int greensIntegral(void *tmpgreen, int I, int J, int K, int NI, int NJ,
|
||||
double hr_m0, double hr_m1, double hr_m2, int streamId = -1) = 0;
|
||||
|
||||
/** integration if rho2_m, see OPAL for more details */
|
||||
virtual int integrationGreensFunction(void * rho2_m, void *tmpgreen, int I, int J, int K,
|
||||
int streamId = -1) = 0;
|
||||
|
||||
/** mirror rho2_m field */
|
||||
virtual int mirrorRhoField(void *rho2_m, int I, int J, int K, int streamId = -1) = 0;
|
||||
|
||||
/** multiply two complex fields from device memory */
|
||||
virtual int multiplyCompelxFields(void *ptr1, void *ptr2, int size, int streamId = -1) = 0;
|
||||
|
||||
};
|
||||
|
||||
#endif
|
@ -35,13 +35,29 @@ ENDMACRO ()
|
||||
SET (DKS_BASEDIR_HDRS
|
||||
DKSBase.h
|
||||
DKSDefinitions.h
|
||||
DKSOPAL.h
|
||||
)
|
||||
|
||||
SET (DKS_BASEDIR_SRCS
|
||||
DKSBase.cpp
|
||||
DKSOPAL.cpp
|
||||
)
|
||||
|
||||
IF (USE_CUDA OR USE_OPENCL)
|
||||
#add opal to DKS if enable_opal is set
|
||||
IF (ENABLE_OPAL)
|
||||
SET (DKS_BASEDIR_HDRS
|
||||
${DKS_BASEDIR_HDRS}
|
||||
DKSOPAL.h
|
||||
)
|
||||
|
||||
SET (DKS_BASEDIR_SRCS
|
||||
${DKS_BASEDIR_SRCS}
|
||||
DKSOPAL.cpp
|
||||
)
|
||||
ENDIF (ENABLE_OPAL)
|
||||
|
||||
#and musrt to DKS if cuda or opencl is used and enable_musr is set
|
||||
IF ( (USE_CUDA OR USE_OPENCL) AND ENABLE_MUSR)
|
||||
SET (DKS_BASEDIR_HDRS
|
||||
${DKS_BASEDIR_HDRS}
|
||||
DKSBaseMuSR.h
|
||||
@ -51,9 +67,10 @@ IF (USE_CUDA OR USE_OPENCL)
|
||||
${DKS_BASEDIR_SRCS}
|
||||
DKSBaseMuSR.cpp
|
||||
)
|
||||
ENDIF (USE_CUDA OR USE_OPENCL)
|
||||
ENDIF ( (USE_CUDA OR USE_OPENCL) AND ENABLE_MUSR)
|
||||
|
||||
IF (USE_CUDA)
|
||||
#add image reconstruction to DKS if cuda is used and enable_pet is set
|
||||
IF (USE_CUDA AND ENABLE_PET)
|
||||
SET (DKS_BASEDIR_HDRS
|
||||
${DKS_BASEDIR_HDRS}
|
||||
DKSImageReconstruction.h
|
||||
@ -63,7 +80,7 @@ IF (USE_CUDA)
|
||||
${DKS_BASEDIR_SRCS}
|
||||
DKSImageReconstruction.cpp
|
||||
)
|
||||
ENDIF (USE_CUDA)
|
||||
ENDIF (USE_CUDA AND ENABLE_PET)
|
||||
|
||||
ADD_HEADERS (${DKS_BASEDIR_HDRS})
|
||||
ADD_SOURCES (${DKS_BASEDIR_SRCS})
|
||||
|
@ -1,35 +1,27 @@
|
||||
SET (_HDRS
|
||||
CudaBase.cuh
|
||||
CudaFFT.cuh
|
||||
CudaGreensFunction.cuh
|
||||
CudaChiSquare.cuh
|
||||
CudaCollimatorPhysics.cuh
|
||||
CudaImageReconstruction.cuh
|
||||
CudaChiSquareRuntime.cuh
|
||||
)
|
||||
SET (_HDRS CudaBase.cuh)
|
||||
SET (_SRCS CudaBase.cu)
|
||||
|
||||
SET (_SRCS
|
||||
CudaBase.cu
|
||||
CudaFFT.cu
|
||||
CudaGreensFunction.cu
|
||||
CudaChiSquare.cu
|
||||
CudaCollimatorPhysics.cu
|
||||
CudaImageReconstruction.cu
|
||||
CudaChiSquareRuntime.cu
|
||||
)
|
||||
IF (ENABLE_OPAL)
|
||||
SET (_HDRS ${_HDRS} CudaFFT.cuh CudaGreensFunction.cuh CudaCollimatorPhysics.cuh)
|
||||
SET (_SRCS ${_SRCS} CudaFFT.cu CudaGreensFunction.cu CudaCollimatorPhysics.cu)
|
||||
ENDIF (ENABLE_OPAL)
|
||||
|
||||
#INCLUDE_DIRECTORIES (
|
||||
# ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
#)
|
||||
IF (ENABLE_MUSR)
|
||||
SET (_HDRS ${_HDRS} CudaChiSquareRuntime.cuh)
|
||||
SET (_SRCS ${_SRCS} CudaChiSquareRuntime.cu)
|
||||
SET (_KERNELS NVRTCKernels/CudaChiSquareKernel.cu)
|
||||
ENDIF (ENABLE_MUSR)
|
||||
|
||||
IF (ENABLE_PET)
|
||||
SET (_HDRS ${_HDRS} CudaImageReconstruction.cuh)
|
||||
SET (_SRCS ${_SRCS} CudaImageReconstruction.cu)
|
||||
ENDIF (ENABLE_PET)
|
||||
|
||||
MESSAGE (STATUS "CUDA headers: ${_HDRS}")
|
||||
|
||||
ADD_SOURCES(${_SRCS})
|
||||
ADD_HEADERS(${_HDRS})
|
||||
|
||||
INSTALL(FILES ${_HDRS} DESTINATION include/CUDA)
|
||||
|
||||
SET (_KERNELS
|
||||
NVRTCKernels/CudaChiSquareKernel.cu
|
||||
)
|
||||
|
||||
INSTALL(FILES ${_KERNELS} DESTINATION include/CUDA/NVRTCKernels)
|
||||
|
||||
|
@ -13,6 +13,13 @@ __global__ void initcuRandState(curandState *state, int size, int seed = 0) {
|
||||
|
||||
}
|
||||
|
||||
__global__ void kernelCreateRandNumbers(curandState *state, double *data, int size) {
|
||||
|
||||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (idx < size)
|
||||
data[idx] = curand_uniform_double(&state[idx]);
|
||||
}
|
||||
|
||||
|
||||
//=====================================//
|
||||
//==========Private functions==========//
|
||||
@ -69,6 +76,15 @@ int CudaBase::cuda_deleteCurandStates() {
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
int CudaBase::cuda_createRandomNumbers(void *mem_ptr, int size) {
|
||||
int threads = BLOCK_SIZE;
|
||||
int blocks = size / threads + 1;
|
||||
|
||||
kernelCreateRandNumbers<<<blocks, threads>>>(defaultRndState, (double *)mem_ptr, size);
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
curandState* CudaBase::cuda_getCurandStates() {
|
||||
return defaultRndState;
|
||||
}
|
||||
|
@ -15,6 +15,8 @@
|
||||
#include <nvToolsExt.h>
|
||||
#include <time.h>
|
||||
|
||||
#define BLOCK_SIZE 128
|
||||
|
||||
class CudaBase {
|
||||
|
||||
private:
|
||||
@ -39,6 +41,7 @@ public:
|
||||
* Init cuda random number (cuRand) states.
|
||||
* Create an array of type curandState with "size" elements on the GPU
|
||||
* and create a curandState with different seed for each array entry.
|
||||
* If no seed is given create a seed based on current time.
|
||||
* Return success or error code
|
||||
*/
|
||||
int cuda_createCurandStates(int size, int seed = -1);
|
||||
@ -50,6 +53,11 @@ public:
|
||||
*/
|
||||
int cuda_deleteCurandStates();
|
||||
|
||||
/** Create 'size' random numbers on the device and save in mem_ptr array
|
||||
*
|
||||
*/
|
||||
int cuda_createRandomNumbers(void *mem_ptr, int size);
|
||||
|
||||
/** Get a pointer to curand states
|
||||
*
|
||||
*/
|
||||
@ -167,6 +175,40 @@ public:
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
/** Zero CUDA memory.
|
||||
* Set all the elements of the array on the device to zero.
|
||||
*/
|
||||
template<typename T>
|
||||
int cuda_zeroMemory(T *mem_ptr, size_t size, int offset = 0) {
|
||||
cudaError cerror;
|
||||
cerror = cudaMemset(mem_ptr + offset, 0, sizeof(T) * size);
|
||||
if (cerror != cudaSuccess) {
|
||||
DEBUG_MSG("Error zeroing cuda memory!\n");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
/** Zero CUDA memory.
|
||||
* Set all the elements of the array on the device to zero.
|
||||
*/
|
||||
template<typename T>
|
||||
int cuda_zeroMemoryAsync(T *mem_ptr, size_t size, int offset = 0, int streamId = -1) {
|
||||
int dkserror = DKS_SUCCESS;
|
||||
cudaError cerror;
|
||||
if (streamId < cuda_numberOfStreams()) {
|
||||
cerror = cudaMemsetAsync(mem_ptr + offset, 0, sizeof(T) * size,
|
||||
cuda_getStream(streamId));
|
||||
|
||||
if (cerror != cudaSuccess)
|
||||
dkserror = DKS_ERROR;
|
||||
} else
|
||||
dkserror = DKS_ERROR;
|
||||
|
||||
return dkserror;
|
||||
}
|
||||
|
||||
/**
|
||||
* Info: write data to memory
|
||||
* Retrun: success or error code
|
||||
|
@ -23,7 +23,6 @@
|
||||
#define X0_M 9
|
||||
#define I_M 10
|
||||
#define DT_M 11
|
||||
#define LOWENERGY_THR 12
|
||||
|
||||
#define BLOCK_SIZE 128
|
||||
#define NUMPAR 12
|
||||
@ -34,6 +33,14 @@ __device__ inline double dot(double3 &d1, double3 &d2) {
|
||||
|
||||
}
|
||||
|
||||
__device__ inline double3 cross(double3 &lhs, double3 &rhs) {
|
||||
double3 tmp;
|
||||
tmp.x = lhs.y * rhs.z - lhs.z * rhs.y;
|
||||
tmp.y = lhs.z * rhs.x - lhs.x * rhs.z;
|
||||
tmp.z = lhs.x * rhs.y - lhs.y * rhs.x;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
__device__ inline bool checkHit(double &z, double *par) {
|
||||
|
||||
/* check if particle is in the degrader material */
|
||||
@ -82,7 +89,7 @@ __device__ inline void energyLoss(double &Eng, bool &pdead, curandState &state,
|
||||
Eng = Eng + delta_E / 1E3;
|
||||
}
|
||||
|
||||
pdead = ( (Eng < par[LOWENERGY_THR]) || (dEdx > 0) );
|
||||
pdead = ((Eng<1E-4) || (dEdx>0));
|
||||
|
||||
}
|
||||
|
||||
@ -118,9 +125,7 @@ __device__ inline void Rot(double &px, double &pz, double &x, double &z, double
|
||||
pz = -pxz*sin(Psixz)*sin(thetacou) + pxz*cos(Psixz)*cos(thetacou);
|
||||
}
|
||||
|
||||
__device__ inline void coulombScat(double3 &R, double3 &P, curandState &state,
|
||||
double* par, bool enableRutherfordScattering)
|
||||
{
|
||||
__device__ inline void coulombScat(double3 &R, double3 &P, curandState &state, double* par) {
|
||||
|
||||
double Eng = sqrt(dot(P, P) + 1.0) * M_P - M_P;
|
||||
double gamma = (Eng + M_P) / M_P;
|
||||
@ -148,7 +153,7 @@ __device__ inline void coulombScat(double3 &R, double3 &P, curandState &state,
|
||||
Rot(P.x, P.z, R.x, R.z, xplane, normP, thetacou, deltas, 1, par);
|
||||
|
||||
double P2 = curand_uniform_double(&state);//gsl_rng_uniform(rGen_m);
|
||||
if( (P2 < 0.0047) && enableRutherfordScattering) {
|
||||
if(P2 < 0.0047) {
|
||||
double P3 = curand_uniform_double(&state);//gsl_rng_uniform(rGen_m);
|
||||
double thetaru = 2.5 * sqrt(1 / P3) * sqrt(2.0) * theta0;
|
||||
double P4 = curand_uniform_double(&state);//gsl_rng_uniform(rGen_m);
|
||||
@ -174,7 +179,7 @@ __device__ inline void coulombScat(double3 &R, double3 &P, curandState &state,
|
||||
Rot(P.y,P.z,R.y,R.z, yplane, normP, thetacou, deltas, 2, par);
|
||||
|
||||
P2 = curand_uniform_double(&state);//gsl_rng_uniform(rGen_m);
|
||||
if( (P2 < 0.0047) && enableRutherfordScattering) {
|
||||
if(P2 < 0.0047) {
|
||||
double P3 = curand_uniform_double(&state);//gsl_rng_uniform(rGen_m);
|
||||
double thetaru = 2.5 * sqrt(1 / P3) * sqrt(2.0) * theta0;
|
||||
double P4 = curand_uniform_double(&state);//gsl_rng_uniform(rGen_m);
|
||||
@ -188,7 +193,7 @@ __device__ inline void coulombScat(double3 &R, double3 &P, curandState &state,
|
||||
|
||||
template <typename T>
|
||||
__global__ void kernelCollimatorPhysics(T *data, double *par, curandState *state,
|
||||
int numparticles, bool enableRutherfordScattering)
|
||||
int numparticles)
|
||||
{
|
||||
|
||||
//get global id and thread id
|
||||
@ -230,7 +235,7 @@ __global__ void kernelCollimatorPhysics(T *data, double *par, curandState *state
|
||||
P.x = P.x * ptot / sq;
|
||||
P.y = P.y * ptot / sq;
|
||||
P.z = P.z * ptot / sq;
|
||||
coulombScat(R[tid], P, s, p, enableRutherfordScattering);
|
||||
coulombScat(R[tid], P, s, p);
|
||||
|
||||
data[idx].Pincol = P;
|
||||
} else {
|
||||
@ -253,8 +258,7 @@ __global__ void kernelCollimatorPhysics(T *data, double *par, curandState *state
|
||||
}
|
||||
|
||||
__global__ void kernelCollimatorPhysics2(CUDA_PART2_SMALL data, double *par,
|
||||
curandState *state, int numparticles,
|
||||
bool enableRutherfordScattering)
|
||||
curandState *state, int numparticles)
|
||||
{
|
||||
|
||||
//get global id and thread id
|
||||
@ -292,7 +296,7 @@ __global__ void kernelCollimatorPhysics2(CUDA_PART2_SMALL data, double *par,
|
||||
P.x = P.x * ptot / sq;
|
||||
P.y = P.y * ptot / sq;
|
||||
P.z = P.z * ptot / sq;
|
||||
coulombScat(R[tid], P, s, p, enableRutherfordScattering);
|
||||
coulombScat(R[tid], P, s, p);
|
||||
|
||||
data.Pincol[idx] = P;
|
||||
} else {
|
||||
@ -427,7 +431,7 @@ __global__ void kernelPush(double3 *gR, double3 *gP, int npart, double dtc) {
|
||||
}
|
||||
|
||||
|
||||
__global__ void kernelPush(double3 *gR, double3 *gP, int npart, double *gdt, double c) {
|
||||
__global__ void kernelPush(double3 *gR, double3 *gP, double *gdt, int npart, double c) {
|
||||
|
||||
//get global id and thread id
|
||||
volatile int tid = threadIdx.x;
|
||||
@ -453,7 +457,51 @@ __global__ void kernelPush(double3 *gR, double3 *gP, int npart, double *gdt, dou
|
||||
}
|
||||
}
|
||||
|
||||
//TODO: kernel for push with switch off unitless positions with dt[i]*c
|
||||
__global__ void kernelKick(double3 *gR, double3 *gP, double3 *gEf,
|
||||
double3 *gBf, double *gdt, double charge,
|
||||
double mass, int npart, double c)
|
||||
{
|
||||
volatile int tid = threadIdx.x;
|
||||
volatile int idx = blockIdx.x * blockDim.x + tid;
|
||||
|
||||
if (idx < npart) {
|
||||
double3 R = gR[idx];
|
||||
double3 P = gP[idx];
|
||||
double3 Ef = gEf[idx];
|
||||
double3 Bf = gBf[idx];
|
||||
double dt = gdt[idx];
|
||||
|
||||
P.x += 0.5 * dt * charge * c / mass * Ef.x;
|
||||
P.y += 0.5 * dt * charge * c / mass * Ef.y;
|
||||
P.z += 0.5 * dt * charge * c / mass * Ef.z;
|
||||
|
||||
double gamma = sqrt(1.0 + dot(P, P));
|
||||
double3 t, w, s;
|
||||
t.x = 0.5 * dt * charge * c * c / (gamma * mass) * Bf.x;
|
||||
t.y = 0.5 * dt * charge * c * c / (gamma * mass) * Bf.y;
|
||||
t.z = 0.5 * dt * charge * c * c / (gamma * mass) * Bf.z;
|
||||
|
||||
double3 crossPt = cross(P, t);
|
||||
w.x = P.x + crossPt.x;
|
||||
w.y = P.y + crossPt.y;
|
||||
w.z = P.z + crossPt.z;
|
||||
|
||||
s.x = 2.0 / (1.0 + dot(t, t)) * t.x;
|
||||
s.y = 2.0 / (1.0 + dot(t, t)) * t.y;
|
||||
s.z = 2.0 / (1.0 + dot(t, t)) * t.z;
|
||||
|
||||
double3 crossws = cross(w, s);
|
||||
P.x += crossws.x;
|
||||
P.y += crossws.y;
|
||||
P.z += crossws.z;
|
||||
|
||||
P.x += 0.5 * dt * charge * c / mass * Ef.x;
|
||||
P.y += 0.5 * dt * charge * c / mass * Ef.y;
|
||||
P.z += 0.5 * dt * charge * c / mass * Ef.z;
|
||||
|
||||
gP[idx] = P;
|
||||
}
|
||||
}
|
||||
|
||||
__device__ double3 deviceTransformTo(const double3 &vec, const double3 &ori) {
|
||||
|
||||
@ -615,8 +663,7 @@ struct less_then
|
||||
}
|
||||
};
|
||||
|
||||
int CudaCollimatorPhysics::CollimatorPhysics(void *mem_ptr, void *par_ptr, int numparticles,
|
||||
bool enableRutherfordScattering)
|
||||
int CudaCollimatorPhysics::CollimatorPhysics(void *mem_ptr, void *par_ptr, int numparticles)
|
||||
{
|
||||
|
||||
int threads = BLOCK_SIZE;
|
||||
@ -629,8 +676,7 @@ int CudaCollimatorPhysics::CollimatorPhysics(void *mem_ptr, void *par_ptr, int n
|
||||
kernelCollimatorPhysics<<<blocks, threads, smem_size>>>((CUDA_PART_SMALL*)mem_ptr,
|
||||
(double*)par_ptr,
|
||||
m_base->cuda_getCurandStates(),
|
||||
numparticles,
|
||||
enableRutherfordScattering);
|
||||
numparticles);
|
||||
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
@ -677,12 +723,12 @@ int CudaCollimatorPhysics::ParallelTTrackerPush(void *r_ptr, void *p_ptr, int np
|
||||
}
|
||||
} else {
|
||||
if (streamId == -1) {
|
||||
kernelPush<<<blocks, threads>>>((double3*)r_ptr, (double3*)p_ptr, npart,
|
||||
(double*)dt_ptr, c);
|
||||
kernelPush<<<blocks, threads>>>((double3*)r_ptr, (double3*)p_ptr,
|
||||
(double*)dt_ptr, npart, c);
|
||||
} else {
|
||||
cudaStream_t cs = m_base->cuda_getStream(streamId);
|
||||
kernelPush<<<blocks, threads, 0, cs >>>((double3*)r_ptr, (double3*)p_ptr, npart,
|
||||
(double*)dt_ptr, c);
|
||||
kernelPush<<<blocks, threads, 0, cs >>>((double3*)r_ptr, (double3*)p_ptr,
|
||||
(double*)dt_ptr, npart, c);
|
||||
}
|
||||
}
|
||||
|
||||
@ -690,6 +736,29 @@ int CudaCollimatorPhysics::ParallelTTrackerPush(void *r_ptr, void *p_ptr, int np
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
int CudaCollimatorPhysics::ParallelTTrackerKick(void *r_ptr, void *p_ptr, void *ef_ptr,
|
||||
void *bf_ptr, void *dt_ptr, double charge,
|
||||
double mass, int npart,
|
||||
double c, int streamId)
|
||||
{
|
||||
|
||||
int threads = BLOCK_SIZE;
|
||||
int blocks = npart / threads + 1;
|
||||
|
||||
//call kernel
|
||||
if (streamId == -1) {
|
||||
kernelKick<<<blocks, threads>>>((double3*)r_ptr, (double3*)p_ptr, (double3*)ef_ptr,
|
||||
(double3*)bf_ptr, (double*)dt_ptr, charge, mass, npart, c);
|
||||
} else {
|
||||
cudaStream_t cs = m_base->cuda_getStream(streamId);
|
||||
kernelKick<<<blocks, threads, 0, cs >>>((double3*)r_ptr, (double3*)p_ptr,
|
||||
(double3*)ef_ptr, (double3*)bf_ptr,
|
||||
(double*)dt_ptr, charge, mass, npart, c);
|
||||
}
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
int CudaCollimatorPhysics::ParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
|
||||
void *lastSec_ptr, void *orient_ptr,
|
||||
int npart, int nsec,
|
||||
|
@ -110,7 +110,7 @@ public:
|
||||
*
|
||||
*/
|
||||
int CollimatorPhysics(void *mem_ptr, void *par_ptr,
|
||||
int numpartices, bool enableRutherfordScattering = true);
|
||||
int numpartices);
|
||||
|
||||
int CollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
@ -141,6 +141,10 @@ public:
|
||||
int ParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart, void *dt_ptr,
|
||||
double dt, double c, bool usedt = false, int streamId = -1);
|
||||
|
||||
int ParallelTTrackerKick(void *r_ptr, void *p_ptr, void *ef_ptr,
|
||||
void *bf_ptr, void *dt_ptr, double charge, double mass,
|
||||
int npart, double c, int streamId = -1);
|
||||
|
||||
/** BorisPusher push function with transformto function form OPAL
|
||||
* ParallelTTracker integration from OPAL implemented in cuda.
|
||||
* For more details see ParallelTTracler docomentation in opal
|
||||
|
@ -194,7 +194,6 @@ __global__ void kernelIngration_2(double *rho2_m, double *tmpgreen,
|
||||
|
||||
rho2_m[i + j*ni + k*ni*nj] = tmp_rho;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@ -273,28 +272,20 @@ __global__ void mirroredRhoField(double *rho2_m,
|
||||
id7 = rk * NI * NJ + rj * NI + i;
|
||||
id8 = rk * NI * NJ + rj * NI + ri;
|
||||
|
||||
|
||||
double data = rho2_m[id1];
|
||||
if (i != 0)
|
||||
rho2_m[id2] = data;
|
||||
if (i != 0) rho2_m[id2] = data;
|
||||
|
||||
if (j != 0)
|
||||
rho2_m[id3] = data;
|
||||
if (j != 0) rho2_m[id3] = data;
|
||||
|
||||
if (i != 0 && j != 0)
|
||||
rho2_m[id4] = data;
|
||||
if (i != 0 && j != 0) rho2_m[id4] = data;
|
||||
|
||||
if (k != 0)
|
||||
rho2_m[id5] = data;
|
||||
if (k != 0) rho2_m[id5] = data;
|
||||
|
||||
if (k != 0 && i != 0)
|
||||
rho2_m[id6] = data;
|
||||
if (k != 0 && i != 0) rho2_m[id6] = data;
|
||||
|
||||
if (k!= 0 && j != 0)
|
||||
rho2_m[id7] = data;
|
||||
if (k!= 0 && j != 0) rho2_m[id7] = data;
|
||||
|
||||
if (k != 0 && j != 0 & i != 0)
|
||||
rho2_m[id8] = data;
|
||||
if (k != 0 && j != 0 & i != 0) rho2_m[id8] = data;
|
||||
|
||||
}
|
||||
|
||||
@ -363,7 +354,7 @@ CudaGreensFunction::~CudaGreensFunction() {
|
||||
delete m_base;
|
||||
}
|
||||
|
||||
int CudaGreensFunction::cuda_GreensIntegral(void *tmpptr, int I, int J, int K, int NI, int NJ,
|
||||
int CudaGreensFunction::greensIntegral(void *tmpgreen, int I, int J, int K, int NI, int NJ,
|
||||
double hr_m0, double hr_m1, double hr_m2,
|
||||
int streamId)
|
||||
{
|
||||
@ -373,7 +364,7 @@ int CudaGreensFunction::cuda_GreensIntegral(void *tmpptr, int I, int J, int K, i
|
||||
|
||||
//if no stream specified use default stream
|
||||
if (streamId == -1) {
|
||||
kernelTmpgreen_2<<< block, thread >>>((double*)tmpptr, hr_m0, hr_m1, hr_m2, I, J, K);
|
||||
kernelTmpgreen_2<<< block, thread >>>((double*)tmpgreen, hr_m0, hr_m1, hr_m2, I, J, K);
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
@ -381,7 +372,7 @@ int CudaGreensFunction::cuda_GreensIntegral(void *tmpptr, int I, int J, int K, i
|
||||
|
||||
if (streamId < m_base->cuda_numberOfStreams()) {
|
||||
cudaStream_t cs = m_base->cuda_getStream(streamId);
|
||||
kernelTmpgreen_2<<< block, thread, 0, cs>>>((double*)tmpptr, hr_m0, hr_m1, hr_m2, I, J, K);
|
||||
kernelTmpgreen_2<<< block, thread, 0, cs>>>((double*)tmpgreen, hr_m0, hr_m1, hr_m2, I, J, K);
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
@ -389,15 +380,17 @@ int CudaGreensFunction::cuda_GreensIntegral(void *tmpptr, int I, int J, int K, i
|
||||
|
||||
}
|
||||
|
||||
int CudaGreensFunction::cuda_IntegrationGreensFunction(void *rho2_m, void *tmpgreen,
|
||||
int CudaGreensFunction::integrationGreensFunction(void *rho2_m, void *tmpgreen,
|
||||
int I, int J, int K,
|
||||
int streamId)
|
||||
{
|
||||
|
||||
int thread = 128;
|
||||
int block = (I * J * K / thread) + 1;
|
||||
int sizerho = 2*(I - 1) * 2*(J - 1) * 2*(K - 1);
|
||||
|
||||
if (streamId == -1) {
|
||||
m_base->cuda_zeroMemory( (double*)rho2_m, sizerho, 0 );
|
||||
kernelIngration_2<<< block, thread >>>( (double*)rho2_m, (double*)tmpgreen,
|
||||
2*(I - 1), 2*(J - 1), I, J, K);
|
||||
return DKS_SUCCESS;
|
||||
@ -406,6 +399,7 @@ int CudaGreensFunction::cuda_IntegrationGreensFunction(void *rho2_m, void *tmpgr
|
||||
|
||||
if (streamId < m_base->cuda_numberOfStreams()) {
|
||||
cudaStream_t cs = m_base->cuda_getStream(streamId);
|
||||
m_base->cuda_zeroMemoryAsync( (double*)rho2_m, sizerho, 0, streamId);
|
||||
kernelIngration_2<<< block, thread, 0, cs>>>( (double*)rho2_m, (double*)tmpgreen,
|
||||
2*(I - 1), 2*(J - 1), I, J, K);
|
||||
return DKS_SUCCESS;
|
||||
@ -415,22 +409,22 @@ int CudaGreensFunction::cuda_IntegrationGreensFunction(void *rho2_m, void *tmpgr
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int CudaGreensFunction::cuda_MirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId) {
|
||||
int CudaGreensFunction::mirrorRhoField(void *rho2_m, int I, int J, int K, int streamId) {
|
||||
|
||||
int thread = 128;
|
||||
int block = ( (I + 1) * (J + 1) * (K + 1) / thread) + 1;
|
||||
|
||||
if (streamId == -1) {
|
||||
mirroredRhoField0<<< 1, 1>>>( (double *)mem_ptr, 2*I, 2*J);
|
||||
mirroredRhoField<<< block, thread >>>( (double *) mem_ptr, 2*I, 2*J, 2*K, I + 1, J + 1, K + 1);
|
||||
mirroredRhoField0<<< 1, 1>>>( (double *)rho2_m, 2*I, 2*J);
|
||||
mirroredRhoField<<< block, thread >>>( (double *) rho2_m, 2*I, 2*J, 2*K, I + 1, J + 1, K + 1);
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
if (streamId < m_base->cuda_numberOfStreams()) {
|
||||
cudaStream_t cs = m_base->cuda_getStream(streamId);
|
||||
mirroredRhoField0<<< 1, 1, 0, cs>>>( (double *)mem_ptr, 2*I, 2*J);
|
||||
mirroredRhoField<<< block, thread, 0, cs>>>( (double *) mem_ptr, 2*I, 2*J, 2*K, I+1, J+1, K+1);
|
||||
mirroredRhoField0<<< 1, 1, 0, cs>>>( (double *)rho2_m, 2*I, 2*J);
|
||||
mirroredRhoField<<< block, thread, 0, cs>>>( (double *) rho2_m, 2*I, 2*J, 2*K, I+1, J+1, K+1);
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
@ -440,7 +434,7 @@ int CudaGreensFunction::cuda_MirrorRhoField(void *mem_ptr, int I, int J, int K,
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int CudaGreensFunction::cuda_MultiplyCompelxFields(void *ptr1, void *ptr2,
|
||||
int CudaGreensFunction::multiplyCompelxFields(void *ptr1, void *ptr2,
|
||||
int size, int streamId) {
|
||||
|
||||
int threads = 128;
|
||||
|
@ -2,17 +2,17 @@
|
||||
#define H_CUDA_GREENSFUNCTION
|
||||
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include <cmath>
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuComplex.h>
|
||||
#include "cublas_v2.h"
|
||||
|
||||
|
||||
#include "../Algorithms/GreensFunction.h"
|
||||
#include "CudaBase.cuh"
|
||||
|
||||
class CudaGreensFunction {
|
||||
class CudaGreensFunction : public GreensFunction{
|
||||
|
||||
private:
|
||||
|
||||
@ -30,32 +30,32 @@ public:
|
||||
/* destructor */
|
||||
~CudaGreensFunction();
|
||||
|
||||
/*
|
||||
/**
|
||||
Info: calc itegral on device memory (taken from OPAL src code)
|
||||
Return: success or error code
|
||||
*/
|
||||
int cuda_GreensIntegral(void *tmpptr, int I, int J, int K, int NI, int NJ,
|
||||
int greensIntegral(void *tmpgreen, int I, int J, int K, int NI, int NJ,
|
||||
double hr_m0, double hr_m1, double hr_m2,
|
||||
int streamId = -1);
|
||||
|
||||
/*
|
||||
/**
|
||||
Info: integration of rho2_m field (taken from OPAL src code)
|
||||
Return: success or error code
|
||||
*/
|
||||
int cuda_IntegrationGreensFunction(void *rho2_m, void *tmpgreen, int I, int J, int K,
|
||||
int integrationGreensFunction(void *rho2_m, void *tmpgreen, int I, int J, int K,
|
||||
int streamId = -1);
|
||||
|
||||
/*
|
||||
/**
|
||||
Info: mirror rho field (taken from OPAL src code)
|
||||
Return: succes or error code
|
||||
*/
|
||||
int cuda_MirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId = -1);
|
||||
int mirrorRhoField(void *rho2_m, int I, int J, int K, int streamId = -1);
|
||||
|
||||
/*
|
||||
/**
|
||||
Info: multiply complex fields already on the GPU memory, result will be put in ptr1
|
||||
Return: success or error code
|
||||
*/
|
||||
int cuda_MultiplyCompelxFields(void *ptr1, void *ptr2, int size, int streamId = -1);
|
||||
int multiplyCompelxFields(void *ptr1, void *ptr2, int size, int streamId = -1);
|
||||
|
||||
|
||||
};
|
||||
|
453
src/DKSBase.cpp
453
src/DKSBase.cpp
@ -103,25 +103,14 @@ DKSBase::DKSBase() {
|
||||
|
||||
#ifdef DKS_CUDA
|
||||
cbase = new CudaBase();
|
||||
cfft = new CudaFFT(cbase);
|
||||
cgreens = new CudaGreensFunction(cbase);
|
||||
cchi = new CudaChiSquare(cbase);
|
||||
ccol = new CudaCollimatorPhysics(cbase);
|
||||
#endif
|
||||
|
||||
#ifdef DKS_OPENCL
|
||||
oclbase = new OpenCLBase();
|
||||
oclfft = new OpenCLFFT(oclbase);
|
||||
oclchi = new OpenCLChiSquare(oclbase);
|
||||
oclcol = new OpenCLCollimatorPhysics(oclbase);
|
||||
#endif
|
||||
|
||||
#ifdef DKS_MIC
|
||||
micbase = new MICBase();
|
||||
micfft = new MICFFT(micbase);
|
||||
miccol = new MICCollimatorPhysics(micbase);
|
||||
micgreens = new MICGreensFunction(micbase);
|
||||
micchi = new MICChiSquare(micbase);
|
||||
#endif
|
||||
|
||||
}
|
||||
@ -138,25 +127,14 @@ DKSBase::DKSBase(const char* api_name, const char* device_name) {
|
||||
|
||||
#ifdef DKS_CUDA
|
||||
cbase = new CudaBase();
|
||||
cfft = new CudaFFT(cbase);
|
||||
cgreens = new CudaGreensFunction(cbase);
|
||||
cchi = new CudaChiSquare(cbase);
|
||||
ccol = new CudaCollimatorPhysics(cbase);
|
||||
#endif
|
||||
|
||||
#ifdef DKS_OPENCL
|
||||
oclbase = new OpenCLBase();
|
||||
oclfft = new OpenCLFFT(oclbase);
|
||||
oclchi = new OpenCLChiSquare(oclbase);
|
||||
oclcol = new OpenCLCollimatorPhysics(oclbase);
|
||||
#endif
|
||||
|
||||
#ifdef DKS_MIC
|
||||
micbase = new MICBase();
|
||||
micfft = new MICFFT(micbase);
|
||||
miccol = new MICCollimatorPhysics(micbase);
|
||||
micgreens = new MICGreensFunction(micbase);
|
||||
micchi = new MICChiSquare(micbase);
|
||||
#endif
|
||||
|
||||
}
|
||||
@ -173,27 +151,16 @@ DKSBase::~DKSBase() {
|
||||
if (m_function_name != NULL)
|
||||
delete[] m_function_name;
|
||||
|
||||
|
||||
#ifdef DKS_CUDA
|
||||
delete cfft;
|
||||
delete cgreens;
|
||||
delete cchi;
|
||||
delete ccol;
|
||||
delete cbase;
|
||||
#endif
|
||||
|
||||
#ifdef DKS_OPENCL
|
||||
delete oclfft;
|
||||
delete oclchi;
|
||||
delete oclcol;
|
||||
delete oclbase;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef DKS_MIC
|
||||
delete micfft;
|
||||
delete miccol;
|
||||
delete micgreens;
|
||||
delete micchi;
|
||||
delete micbase;
|
||||
#endif
|
||||
|
||||
@ -307,38 +274,45 @@ int DKSBase::getDeviceList(std::vector<int> &devices) {
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/*
|
||||
init device
|
||||
*/
|
||||
int DKSBase::initDevice() {
|
||||
int DKSBase::setupDevice() {
|
||||
|
||||
int ierr = DKS_ERROR;
|
||||
|
||||
//if api is not set default is OpenCL
|
||||
if (!m_api_set) {
|
||||
setDevice("-gpu", 4);
|
||||
setAPI(API_OPENCL, 6);
|
||||
return OPENCL_SAFECALL( oclbase->ocl_setUp("-gpu") );
|
||||
ierr = OPENCL_SAFECALL( oclbase->ocl_setUp("-gpu") );
|
||||
} else {
|
||||
if (apiOpenCL()) {
|
||||
if (!m_device_set) {
|
||||
setDevice("-gpu", 4);
|
||||
setAPI(API_OPENCL, 6);
|
||||
return OPENCL_SAFECALL( oclbase->ocl_setUp("-gpu") );
|
||||
ierr = OPENCL_SAFECALL( oclbase->ocl_setUp("-gpu") );
|
||||
} else {
|
||||
setAPI(API_OPENCL, 6);
|
||||
return OPENCL_SAFECALL( oclbase->ocl_setUp(m_device_name) );
|
||||
ierr = OPENCL_SAFECALL( oclbase->ocl_setUp(m_device_name) );
|
||||
}
|
||||
} else if (apiCuda()) {
|
||||
setDevice("-gpu", 4);
|
||||
setAPI(API_CUDA, 4);
|
||||
return CUDA_SAFECALL(DKS_SUCCESS);
|
||||
ierr = CUDA_SAFECALL(DKS_SUCCESS);
|
||||
} else if (apiOpenMP()) {
|
||||
setDevice("-mic", 4);
|
||||
setAPI(API_OPENMP, 6);
|
||||
return MIC_SAFECALL(DKS_SUCCESS);
|
||||
ierr = MIC_SAFECALL(DKS_SUCCESS);
|
||||
}
|
||||
}
|
||||
|
||||
return DKS_ERROR;
|
||||
return ierr;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
init device
|
||||
*/
|
||||
int DKSBase::initDevice() {
|
||||
return setupDevice();
|
||||
}
|
||||
|
||||
/*
|
||||
@ -456,359 +430,16 @@ int DKSBase::syncDevice() {
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* setup fft plans to reuse if multiple ffts of same size are needed */
|
||||
int DKSBase::setupFFT(int ndim, int N[3]) {
|
||||
|
||||
if (apiCuda()) {
|
||||
return CUDA_SAFECALL( cfft->setupFFT(ndim, N) );
|
||||
} else if (apiOpenMP()) {
|
||||
//micbase.mic_setupFFT(ndim, N);
|
||||
//BENI: setting up RC and CR transformations on MIC
|
||||
int ierr1 = MIC_SAFECALL( micfft->setupFFTRC(ndim, N, 1.) );
|
||||
int ierr2 = MIC_SAFECALL( micfft->setupFFTCR(ndim, N, 1./(N[0]*N[1]*N[2])) );
|
||||
if (ierr1 != DKS_SUCCESS)
|
||||
return ierr1;
|
||||
if (ierr2 != DKS_SUCCESS)
|
||||
return ierr2;
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
//BENI:
|
||||
int DKSBase::setupFFTRC(int ndim, int N[3], double scale) {
|
||||
|
||||
int DKSBase::callCreateRandomNumbers(void *mem_ptr, int size) {
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL(cfft->setupFFT(ndim, N));
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL(micfft->setupFFTRC(ndim, N, scale));
|
||||
return CUDA_SAFECALL(cbase->cuda_createRandomNumbers(mem_ptr, size));
|
||||
if (apiOpenCL())
|
||||
return OPENCL_SAFECALL(oclbase->ocl_createRandomNumbers(mem_ptr, size));
|
||||
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
//BENI:
|
||||
int DKSBase::setupFFTCR(int ndim, int N[3], double scale) {
|
||||
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL(cfft->setupFFT(ndim, N));
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL(micfft->setupFFTCR(ndim, N, scale));
|
||||
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
/* call OpenCL FFT function for selected platform */
|
||||
int DKSBase::callFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
|
||||
if (apiOpenCL()) {
|
||||
//load kernel and execute
|
||||
if ( loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLFFT.cl") == DKS_SUCCESS )
|
||||
return OPENCL_SAFECALL( oclfft->executeFFT(data_ptr, ndim, dimsize) );
|
||||
else
|
||||
return DKS_ERROR;
|
||||
} else if (apiCuda()) {
|
||||
return CUDA_SAFECALL(cfft->executeFFT(data_ptr, ndim, dimsize, streamId));
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL(micfft->executeFFT(data_ptr, ndim, dimsize));
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* call OpenCL IFFT function for selected platform */
|
||||
int DKSBase::callIFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
if (apiOpenCL()) {
|
||||
if ( loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLFFT.cl") == DKS_SUCCESS )
|
||||
return OPENCL_SAFECALL( oclfft->executeIFFT(data_ptr, ndim, dimsize) );
|
||||
else
|
||||
return DKS_ERROR;
|
||||
} else if (apiCuda()) {
|
||||
return CUDA_SAFECALL( cfft->executeIFFT(data_ptr, ndim, dimsize, streamId) );
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL( micfft->executeIFFT(data_ptr, ndim, dimsize) );
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* call normalize FFT function for selected platform */
|
||||
int DKSBase::callNormalizeFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
|
||||
if (apiOpenCL()) {
|
||||
if ( loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLFFT.cl") == DKS_SUCCESS )
|
||||
return OPENCL_SAFECALL( oclfft->normalizeFFT(data_ptr, ndim, dimsize) );
|
||||
else
|
||||
return DKS_ERROR;
|
||||
} else if (apiCuda()) {
|
||||
return CUDA_SAFECALL( cfft->normalizeFFT(data_ptr, ndim, dimsize, streamId) );
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL( micfft->normalizeFFT(data_ptr, ndim, dimsize) );
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* call real to complex FFT */
|
||||
int DKSBase::callR2CFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL( cfft->executeRCFFT(real_ptr, comp_ptr, ndim, dimsize, streamId) );
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL( micfft->executeRCFFT(real_ptr,comp_ptr, ndim, dimsize) );
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* call complex to real FFT */
|
||||
int DKSBase::callC2RFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL( cfft->executeCRFFT(real_ptr, comp_ptr, ndim, dimsize, streamId) );
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL( micfft->executeCRFFT(comp_ptr,real_ptr, ndim, dimsize) );
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* normalize complex to real iFFT */
|
||||
int DKSBase::callNormalizeC2RFFT(void * real_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL( cfft->normalizeCRFFT(real_ptr, ndim, dimsize, streamId) );
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
/* normalize complex to real iFFT */
|
||||
int DKSBase::callTranspose(void *mem_ptr, int N[3], int ndim, int dim) {
|
||||
if (apiOpenCL()) {
|
||||
if (loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLTranspose.cl") == DKS_SUCCESS)
|
||||
return OPENCL_SAFECALL(oclfft->ocl_executeTranspose(mem_ptr, N, ndim, dim));
|
||||
else
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
int DKSBase::callGreensIntegral(void *tmp_ptr, int I, int J, int K, int NI, int NJ,
|
||||
double hz_m0, double hz_m1, double hz_m2, int streamId) {
|
||||
|
||||
if (apiCuda()) {
|
||||
return CUDA_SAFECALL(cgreens->cuda_GreensIntegral(tmp_ptr, I, J, K, NI, NJ,
|
||||
hz_m0, hz_m1, hz_m2, streamId) );
|
||||
} else if (apiOpenMP()) {
|
||||
//BENI:
|
||||
return MIC_SAFECALL(micgreens->mic_GreensIntegral(tmp_ptr, I, J, K, hz_m0, hz_m1, hz_m2));
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int DKSBase::callGreensIntegration(void *mem_ptr, void *tmp_ptr,
|
||||
int I, int J, int K, int streamId) {
|
||||
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL(cgreens->cuda_IntegrationGreensFunction(mem_ptr, tmp_ptr, I, J, K, streamId));
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL(micgreens->mic_IntegrationGreensFunction(mem_ptr, tmp_ptr, I, J, K));
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int DKSBase::callMirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId) {
|
||||
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL(cgreens->cuda_MirrorRhoField(mem_ptr, I, J, K, streamId));
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL(micgreens->mic_MirrorRhoField(mem_ptr, I, J, K));
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int DKSBase::callMultiplyComplexFields(void *mem_ptr1, void *mem_ptr2, int size, int streamId) {
|
||||
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL(cgreens->cuda_MultiplyCompelxFields(mem_ptr1, mem_ptr2, size, streamId));
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL(micgreens->mic_MultiplyCompelxFields(mem_ptr1, mem_ptr2, size));
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
|
||||
int DKSBase::callPHistoTFFcn(void *mem_data, void *mem_par, void *mem_chisq,
|
||||
double fTimeResolution, double fRebin,
|
||||
int sensors, int length, int numpar, double &result)
|
||||
{
|
||||
|
||||
if (apiCuda()) {
|
||||
return CUDA_SAFECALL(cchi->cuda_PHistoTFFcn(mem_data, mem_par, mem_chisq,
|
||||
fTimeResolution, fRebin,
|
||||
sensors, length, numpar,
|
||||
result));
|
||||
} else if (apiOpenCL()) {
|
||||
|
||||
if (loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLChiSquare.cl") == DKS_SUCCESS)
|
||||
return OPENCL_SAFECALL(oclchi->ocl_PHistoTFFcn(mem_data, mem_par, mem_chisq,
|
||||
fTimeResolution, fRebin,
|
||||
sensors, length, numpar, result));
|
||||
else
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
int DKSBase::callSingleGaussTF(void *mem_data, void *mem_t0, void *mem_par, void *mem_result,
|
||||
double fTimeResolution, double fRebin, double fGoodBinOffset,
|
||||
int sensors, int length, int numpar,
|
||||
double &result)
|
||||
{
|
||||
if (apiCuda()) {
|
||||
return CUDA_SAFECALL(cchi->cuda_singleGaussTF(mem_data, mem_t0, mem_par, mem_result,
|
||||
fTimeResolution, fRebin, fGoodBinOffset,
|
||||
sensors, length, numpar,
|
||||
result));
|
||||
} else if (apiOpenCL()) {
|
||||
if (loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLChiSquare.cl") == DKS_SUCCESS)
|
||||
return OPENCL_SAFECALL(oclchi->ocl_singleGaussTF(mem_data, mem_t0, mem_par, mem_result,
|
||||
fTimeResolution, fRebin, fGoodBinOffset,
|
||||
sensors, length, numpar, result));
|
||||
else
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
int DKSBase::callDoubleLorentzTF(void *mem_data, void *mem_t0, void *mem_par, void *mem_result,
|
||||
double fTimeResolution, double fRebin, double fGoodBinOffset,
|
||||
int sensors, int length, int numpar,
|
||||
double &result)
|
||||
{
|
||||
if (apiCuda()) {
|
||||
return CUDA_SAFECALL(cchi->cuda_doubleLorentzTF(mem_data, mem_t0, mem_par, mem_result,
|
||||
fTimeResolution, fRebin, fGoodBinOffset,
|
||||
sensors, length, numpar,
|
||||
result));
|
||||
} else if (apiOpenCL()) {
|
||||
|
||||
if (loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLChiSquare.cl") == DKS_SUCCESS)
|
||||
return OPENCL_SAFECALL(oclchi->ocl_doubleLorentzTF(mem_data, mem_t0, mem_par, mem_result,
|
||||
fTimeResolution, fRebin, fGoodBinOffset,
|
||||
sensors, length, numpar, result));
|
||||
else
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
int DKSBase::callCollimatorPhysics(void *mem_ptr, void *par_ptr,
|
||||
int numparticles, int numparams,
|
||||
int &numaddback, int &numdead)
|
||||
{
|
||||
|
||||
if (apiCuda()) {
|
||||
return CUDA_SAFECALL(ccol->CollimatorPhysics(mem_ptr, par_ptr, numparticles));
|
||||
} else if (apiOpenCL()) {
|
||||
if (loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLCollimatorPhysics.cl") == DKS_SUCCESS)
|
||||
return OPENCL_SAFECALL(oclcol->CollimatorPhysics(mem_ptr, par_ptr, numparticles));
|
||||
else
|
||||
return DKS_ERROR;
|
||||
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL(miccol->CollimatorPhysics(mem_ptr, par_ptr, numparticles));
|
||||
}
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
|
||||
int DKSBase::callCollimatorPhysics2(void *mem_ptr, void *par_ptr, int numparticles,
|
||||
bool enableRutherfordScattering)
|
||||
{
|
||||
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL( ccol->CollimatorPhysics(mem_ptr, par_ptr, numparticles,
|
||||
enableRutherfordScattering) );
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL( miccol->CollimatorPhysics(mem_ptr, par_ptr, numparticles) );
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int DKSBase::callCollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
void *px_ptr, void *py_ptr, void *pz_ptr,
|
||||
void *par_ptr, int numparticles)
|
||||
{
|
||||
|
||||
if (apiOpenMP()) {
|
||||
return MIC_SAFECALL( miccol->CollimatorPhysicsSoA(label_ptr, localID_ptr,
|
||||
rx_ptr, ry_ptr, rz_ptr,
|
||||
px_ptr, py_ptr, pz_ptr,
|
||||
par_ptr, numparticles) );
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
|
||||
int DKSBase::callCollimatorPhysicsSort(void *mem_ptr, int numparticles, int &numaddback)
|
||||
{
|
||||
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL(ccol->CollimatorPhysicsSort(mem_ptr, numparticles, numaddback));
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL(miccol->CollimatorPhysicsSort(mem_ptr, numparticles, numaddback));
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int DKSBase::callCollimatorPhysicsSortSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
void *px_ptr, void *py_ptr, void *pz_ptr,
|
||||
void *par_ptr, int numparticles, int &numaddback)
|
||||
{
|
||||
|
||||
if (apiOpenMP()) {
|
||||
return MIC_SAFECALL(miccol->CollimatorPhysicsSortSoA(label_ptr, localID_ptr,
|
||||
rx_ptr, ry_ptr, rz_ptr,
|
||||
px_ptr, py_ptr, pz_ptr,
|
||||
par_ptr, numparticles, numaddback));
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
|
||||
int DKSBase::callInitRandoms(int size, int seed) {
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL(cbase->cuda_createCurandStates(size, seed));
|
||||
@ -821,43 +452,3 @@ int DKSBase::callInitRandoms(int size, int seed) {
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
int DKSBase::callParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart,
|
||||
void *dt_ptr, double dt, double c,
|
||||
bool usedt, int streamId)
|
||||
{
|
||||
|
||||
if (apiCuda())
|
||||
return CUDA_SAFECALL(ccol->ParallelTTrackerPush(r_ptr, p_ptr, npart, dt_ptr, dt, c,
|
||||
usedt, streamId));
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL(miccol->ParallelTTrackerPush(r_ptr, p_ptr, npart, dt_ptr, dt,
|
||||
c, usedt, streamId));
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
int DKSBase::callParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
|
||||
void *lastSec_ptr, void *orient_ptr,
|
||||
int npart, int nsec, void *dt_ptr, double dt,
|
||||
double c, bool usedt, int streamId)
|
||||
{
|
||||
|
||||
if (apiCuda()) {
|
||||
return CUDA_SAFECALL(ccol->ParallelTTrackerPushTransform(x_ptr, p_ptr,
|
||||
lastSec_ptr, orient_ptr,
|
||||
npart, nsec, dt_ptr, dt,
|
||||
c, usedt, streamId));
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL(miccol->ParallelTTrackerPushTransform(x_ptr, p_ptr,
|
||||
lastSec_ptr, orient_ptr,
|
||||
npart, nsec, dt_ptr, dt,
|
||||
c, usedt, streamId));
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selceted platform");
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
253
src/DKSBase.h
253
src/DKSBase.h
@ -29,31 +29,17 @@
|
||||
#endif
|
||||
|
||||
#include "OpenCL/OpenCLBase.h"
|
||||
#include "OpenCL/OpenCLFFT.h"
|
||||
#include "OpenCL/OpenCLChiSquare.h"
|
||||
#include "OpenCL/OpenCLCollimatorPhysics.h"
|
||||
#endif
|
||||
|
||||
#ifdef DKS_CUDA
|
||||
#include "CUDA/CudaBase.cuh"
|
||||
#include "CUDA/CudaFFT.cuh"
|
||||
#include "CUDA/CudaGreensFunction.cuh"
|
||||
#include "CUDA/CudaChiSquare.cuh"
|
||||
#include "CUDA/CudaCollimatorPhysics.cuh"
|
||||
#include "nvToolsExt.h"
|
||||
#endif
|
||||
|
||||
#ifdef DKS_MIC
|
||||
#include "MIC/MICBase.h"
|
||||
#include "MIC/MICChiSquare.h"
|
||||
#include "MIC/MICFFT.h"
|
||||
#include "MIC/MICCollimatorPhysics.h"
|
||||
#include "MIC/MICGreensFunction.hpp"
|
||||
#endif
|
||||
|
||||
#include "Algorithms/CollimatorPhysics.h"
|
||||
#include "Algorithms/FFT.h"
|
||||
|
||||
#include "AutoTuning/DKSConfig.h"
|
||||
|
||||
/** DKSBase class for handling function calls to DKS library */
|
||||
@ -73,25 +59,14 @@ private:
|
||||
|
||||
#ifdef DKS_OPENCL
|
||||
OpenCLBase *oclbase;
|
||||
OpenCLFFT *oclfft;
|
||||
OpenCLChiSquare *oclchi;
|
||||
OpenCLCollimatorPhysics *oclcol;
|
||||
#endif
|
||||
|
||||
#ifdef DKS_CUDA
|
||||
CudaBase *cbase;
|
||||
CudaFFT *cfft;
|
||||
CudaGreensFunction *cgreens;
|
||||
CudaChiSquare *cchi;
|
||||
CudaCollimatorPhysics *ccol;
|
||||
#endif
|
||||
|
||||
#ifdef DKS_MIC
|
||||
MICBase *micbase;
|
||||
MICFFT *micfft;
|
||||
MICCollimatorPhysics *miccol;
|
||||
MICGreensFunction *micgreens;
|
||||
MICChiSquare *micchi;
|
||||
#endif
|
||||
|
||||
protected:
|
||||
@ -139,6 +114,12 @@ protected:
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef DKS_MIC
|
||||
MICBase *getMICBase() {
|
||||
return micbase;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Call OpenCL base to load specified kenrel file.
|
||||
*
|
||||
*/
|
||||
@ -154,6 +135,7 @@ protected:
|
||||
return device_name;
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
@ -173,6 +155,11 @@ public:
|
||||
*/
|
||||
~DKSBase();
|
||||
|
||||
/** Function to initialize objects based on the device used.
|
||||
*
|
||||
*/
|
||||
int setupDevice();
|
||||
|
||||
/** Turn on auto tuning */
|
||||
void setAutoTuningOn() { m_auto_tuning = true; }
|
||||
|
||||
@ -405,7 +392,7 @@ public:
|
||||
} else if (apiOpenMP()) {
|
||||
#ifdef DKS_MIC
|
||||
void * mem_ptr = NULL;
|
||||
mem_ptr = micbase.mic_allocateMemory<T>(elements);
|
||||
mem_ptr = micbase->mic_allocateMemory<T>(elements);
|
||||
return mem_ptr;
|
||||
#endif
|
||||
}
|
||||
@ -498,7 +485,7 @@ public:
|
||||
return CUDA_SAFECALL(cbase->cuda_writeData((T*)mem_ptr, data, size, offset));
|
||||
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL(micbase.mic_writeData<T>(mem_ptr, data, elements, offset));
|
||||
return MIC_SAFECALL(micbase->mic_writeData<T>(mem_ptr, data, elements, offset));
|
||||
|
||||
}
|
||||
|
||||
@ -532,7 +519,7 @@ public:
|
||||
size_t size = sizeof(T)*elements;
|
||||
return CUDA_SAFECALL(cbase->cuda_writeDataAsync((T*)mem_ptr, data, size, streamId, offset));
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL(micbase.mic_writeDataAsync<T>(mem_ptr, data, elements, streamId, offset));
|
||||
return MIC_SAFECALL(micbase->mic_writeDataAsync<T>(mem_ptr, data, elements, streamId, offset));
|
||||
}
|
||||
|
||||
return DKS_ERROR;
|
||||
@ -832,7 +819,7 @@ public:
|
||||
size_t size = sizeof(T)*elements;
|
||||
return CUDA_SAFECALL(cbase->cuda_readData((T*)mem_ptr, out_data, size, offset));
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL(micbase.mic_readData<T>(mem_ptr, out_data, elements, offset));
|
||||
return MIC_SAFECALL(micbase->mic_readData<T>(mem_ptr, out_data, elements, offset));
|
||||
}
|
||||
|
||||
return DKS_ERROR;
|
||||
@ -860,7 +847,7 @@ public:
|
||||
size_t size = sizeof(T)*elements;
|
||||
return CUDA_SAFECALL(cbase->cuda_readDataAsync((T*)mem_ptr, out_data, size, streamId, offset));
|
||||
} else if (apiOpenMP()) {
|
||||
return MIC_SAFECALL(micbase.mic_readDataAsync<T>(mem_ptr, out_data, elements,
|
||||
return MIC_SAFECALL(micbase->mic_readDataAsync<T>(mem_ptr, out_data, elements,
|
||||
streamId, offset));
|
||||
}
|
||||
|
||||
@ -880,221 +867,23 @@ public:
|
||||
else if (apiCuda())
|
||||
return CUDA_SAFECALL(cbase->cuda_freeMemory(mem_ptr));
|
||||
else if (apiOpenMP())
|
||||
return MIC_SAFECALL(micbase.mic_freeMemory<T>(mem_ptr, elements));
|
||||
return MIC_SAFECALL(micbase->mic_freeMemory<T>(mem_ptr, elements));
|
||||
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////
|
||||
///////Function library part of dksbase////////
|
||||
///////////////////////////////////////////////
|
||||
|
||||
/**
|
||||
* Setup FFT function.
|
||||
* Initializes parameters for fft executuin. If ndim > 0 initializes handles for fft calls.
|
||||
* If ffts of various sizes are needed setupFFT should be called with ndim 0, in this case
|
||||
* each fft will do its own setup according to fft size and dimensions.
|
||||
* TODO: opencl and mic implementations
|
||||
* Create random numbers on the device and fille mem_data array
|
||||
*/
|
||||
int setupFFT(int ndim, int N[3]);
|
||||
//BENI:
|
||||
int setupFFTRC(int ndim, int N[3], double scale = 1.0);
|
||||
//BENI:
|
||||
int setupFFTCR(int ndim, int N[3], double scale = 1.0);
|
||||
|
||||
/**
|
||||
* Call complex-to-complex fft.
|
||||
* Executes in place complex to compelx fft on the device on data pointed by data_ptr.
|
||||
* stream id can be specified to use other streams than default.
|
||||
* TODO: mic implementation
|
||||
*/
|
||||
int callFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Call complex-to-complex ifft.
|
||||
* Executes in place complex to compelx ifft on the device on data pointed by data_ptr.
|
||||
* stream id can be specified to use other streams than default.
|
||||
* TODO: mic implementation.
|
||||
*/
|
||||
int callIFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Normalize complex to complex ifft.
|
||||
* Cuda, mic and OpenCL implementations return ifft unscaled, this function divides each element by
|
||||
* fft size
|
||||
* TODO: mic implementation.
|
||||
*/
|
||||
int callNormalizeFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Call real to complex FFT.
|
||||
* Executes out of place real to complex fft, real_ptr points to real data, comp_pt - points
|
||||
* to complex data, ndim - dimension of data, dimsize size of each dimension. real_ptr size
|
||||
* should be dimsize[0]*dimsize[1]*disize[2], comp_ptr size should be atleast
|
||||
* (dimsize[0]/2+1)*dimsize[1]*dimsize[2]
|
||||
* TODO: opencl and mic implementations
|
||||
*/
|
||||
int callR2CFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Call complex to real iFFT.
|
||||
* Executes out of place complex to real ifft, real_ptr points to real data, comp_pt - points
|
||||
* to complex data, ndim - dimension of data, dimsize size of each dimension. real_ptr size
|
||||
* should be dimsize[0]*dimsize[1]*disize[2], comp_ptr size should be atleast
|
||||
* (dimsize[0]/2+1)*dimsize[1]*dimsize[2]
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callC2RFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Normalize compelx to real ifft.
|
||||
* Cuda, mic and OpenCL implementations return ifft unscaled, this function divides each element by
|
||||
* fft size.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callNormalizeC2RFFT(void * real_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Transpose 2D and 3D arrays, OpenCL implementation
|
||||
* N - size of dimensions, ndim - number of dimensions, dim - dim to transpose
|
||||
*/
|
||||
int callTranspose(void *mem_ptr, int N[3], int ndim, int dim);
|
||||
|
||||
/**
|
||||
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
|
||||
* For specifics check OPAL docs.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callGreensIntegral(void *tmp_ptr, int I, int J, int K, int NI, int NJ,
|
||||
double hz_m0, double hz_m1, double hz_m2, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
|
||||
* For specifics check OPAL docs.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callGreensIntegration(void *mem_ptr, void *tmp_ptr,
|
||||
int I, int J, int K, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
|
||||
* For specifics check OPAL docs.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callMirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Element by element multiplication.
|
||||
* Multiplies each element of mem_ptr1 with corresponding element of mem_ptr2, size specifies
|
||||
* the number of elements in mem_ptr1 and mem_ptr2 to use. Results are put in mem_ptr1.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callMultiplyComplexFields(void *mem_ptr1, void *mem_ptr2, int size, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Chi square for parameter fitting on device.
|
||||
* mem_data - measurement data, mem_par - pointer to parameter set, mem_chisq - pointer for
|
||||
* intermediate results. Chi square results are put in &results
|
||||
*/
|
||||
int callPHistoTFFcn(void *mem_data, void *mem_par, void *mem_chisq,
|
||||
double fTimeResolution, double fRebin,
|
||||
int sensors, int length, int numpar, double &result);
|
||||
|
||||
/**
|
||||
* max-log-likelihood for parameter fitting on device.
|
||||
* mem_data - measurement data, mem_t0 - pointer to time 0 for each sensor,
|
||||
* mem_par - pointer to parameter set, mem_results - pointer for
|
||||
* intermediate results. Chi square results are put in &results.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callSingleGaussTF(void *mem_data, void *mem_t0, void *mem_par, void *mem_result,
|
||||
double fTimeResolution, double fRebin, double fGoodBinOffser,
|
||||
int sensors, int length, int numpar,
|
||||
double &result);
|
||||
|
||||
/**
|
||||
* max-log-likelihood for parameter fitting on device.
|
||||
* mem_data - measurement data, mem_t0 - pointer to time 0 for each sensor,
|
||||
* mem_par - pointer to parameter set, mem_results - pointer for
|
||||
* intermediate results. Chi square results are put in &results.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callDoubleLorentzTF(void *mem_data, void *mem_t0, void *mem_par, void *mem_result,
|
||||
double fTimeResolution, double fRebin, double fGoodBinOffser,
|
||||
int sensors, int length, int numpar,
|
||||
double &result);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callCollimatorPhysics(void *mem_ptr, void *par_ptr,
|
||||
int numparticles, int numparams,
|
||||
int &numaddback, int &numdead);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callCollimatorPhysics2(void *mem_ptr, void *par_ptr, int numparticles,
|
||||
bool enableRutherfordScattering = true);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* Test function for the MIC to test SoA layout vs AoS layout used in previous versions
|
||||
*/
|
||||
int callCollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
void *px_ptr, void *py_ptr, void *pz_ptr,
|
||||
void *par_ptr, int numparticles);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callCollimatorPhysicsSort(void *mem_ptr, int numparticles, int &numaddback);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callCollimatorPhysicsSortSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
void *px_ptr, void *py_ptr, void *pz_ptr,
|
||||
void *par_ptr, int numparticles, int &numaddback);
|
||||
int callCreateRandomNumbers(void *mem_ptr, int size);
|
||||
|
||||
/**
|
||||
* Init random number states and save for reuse on device.
|
||||
* If seed is -1, a random seed based on current time is taken.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callInitRandoms(int size, int seed = -1);
|
||||
|
||||
/**
|
||||
* Integration code from ParallelTTracker from OPAL.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
|
||||
*/
|
||||
int callParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart,
|
||||
void *dt_ptr, double dt, double c,
|
||||
bool usedt = false, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Integration code from ParallelTTracker from OPAL.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
|
||||
*/
|
||||
int callParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
|
||||
void *lastSec_ptr, void *orient_ptr,
|
||||
int npart, int nsec, void *dt_ptr,
|
||||
double dt, double c, bool usedt = false,
|
||||
int streamId = -1);
|
||||
|
||||
/**
|
||||
* Print memory information on device (total, used, available)
|
||||
* TODO: opencl and mic imlementation
|
||||
|
@ -62,6 +62,12 @@
|
||||
#define OPENCL_SAFEINIT(x) ( NULL )
|
||||
#endif
|
||||
|
||||
#ifdef DKS_AMD
|
||||
#define OPENCL_SAFEINIT_AMD(x) ( x )
|
||||
#else
|
||||
#define OPENCL_SAFEINIT_AMD(x) ( NULL )
|
||||
#endif
|
||||
|
||||
#ifdef DKS_MIC
|
||||
#define MIC_SAFEINIT(x) ( x )
|
||||
#else
|
||||
|
298
src/DKSOPAL.cpp
Normal file
298
src/DKSOPAL.cpp
Normal file
@ -0,0 +1,298 @@
|
||||
#include "DKSOPAL.h"
|
||||
|
||||
DKSOPAL::DKSOPAL() {
|
||||
dksfft = nullptr;
|
||||
dkscol = nullptr;
|
||||
dksgreens = nullptr;
|
||||
}
|
||||
|
||||
DKSOPAL::DKSOPAL(const char* api_name, const char* device_name) {
|
||||
setAPI(api_name, strlen(api_name));
|
||||
setDevice(device_name, strlen(device_name));
|
||||
}
|
||||
|
||||
DKSOPAL::~DKSOPAL() {
|
||||
delete dksfft;
|
||||
delete dkscol;
|
||||
delete dksgreens;
|
||||
}
|
||||
|
||||
int DKSOPAL::setupOPAL() {
|
||||
int ierr = DKS_ERROR;
|
||||
if (apiOpenCL()) {
|
||||
ierr = OPENCL_SAFECALL( DKS_SUCCESS );
|
||||
//TODO: only enable if AMD libraries are available
|
||||
dksfft = OPENCL_SAFEINIT_AMD( new OpenCLFFT(getOpenCLBase()) );
|
||||
dkscol = OPENCL_SAFEINIT_AMD( new OpenCLCollimatorPhysics(getOpenCLBase()) );
|
||||
dksgreens = OPENCL_SAFEINIT_AMD( new OpenCLGreensFunction(getOpenCLBase()) );
|
||||
} else if (apiCuda()) {
|
||||
ierr = CUDA_SAFECALL( DKS_SUCCESS );
|
||||
dksfft = CUDA_SAFEINIT( new CudaFFT(getCudaBase()) );
|
||||
dkscol = CUDA_SAFEINIT( new CudaCollimatorPhysics(getCudaBase()) );
|
||||
dksgreens = CUDA_SAFEINIT( new CudaGreensFunction(getCudaBase()) );
|
||||
} else if (apiOpenMP()) {
|
||||
ierr = MIC_SAFECALL( DKS_SUCCESS );
|
||||
dksfft = MIC_SAFEINIT( new MICFFT(getMICBase()) );
|
||||
dkscol = MIC_SAFEINIT( new MICCollimatorPhysics(getMICBase()) );
|
||||
dksgreens = MIC_SAFEINIT( new MICGreensFunction(getMICBase()) );
|
||||
} else {
|
||||
ierr = DKS_ERROR;
|
||||
}
|
||||
|
||||
return ierr;
|
||||
}
|
||||
|
||||
int DKSOPAL::initDevice() {
|
||||
int ierr = setupDevice();
|
||||
if (ierr == DKS_SUCCESS)
|
||||
ierr = setupOPAL();
|
||||
return ierr;
|
||||
|
||||
}
|
||||
|
||||
/* setup fft plans to reuse if multiple ffts of same size are needed */
|
||||
int DKSOPAL::setupFFT(int ndim, int N[3]) {
|
||||
|
||||
if (apiCuda()) {
|
||||
return dksfft->setupFFT(ndim, N);
|
||||
} else if (apiOpenCL()) {
|
||||
int ierr1 = dksfft->setupFFT(ndim, N);
|
||||
int ierr2 = dksfft->setupFFTRC(ndim, N);
|
||||
int ierr3 = dksfft->setupFFTCR(ndim, N);
|
||||
if (ierr1 != DKS_SUCCESS || ierr2 != DKS_SUCCESS || ierr3 != DKS_SUCCESS)
|
||||
return DKS_ERROR;
|
||||
|
||||
return DKS_SUCCESS;
|
||||
} else if (apiOpenMP()) {
|
||||
//micbase.mic_setupFFT(ndim, N);
|
||||
//BENI: setting up RC and CR transformations on MIC
|
||||
int ierr1 = dksfft->setupFFTRC(ndim, N, 1.);
|
||||
int ierr2 = dksfft->setupFFTCR(ndim, N, 1./(N[0]*N[1]*N[2]));
|
||||
if (ierr1 != DKS_SUCCESS)
|
||||
return ierr1;
|
||||
if (ierr2 != DKS_SUCCESS)
|
||||
return ierr2;
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
//BENI:
|
||||
int DKSOPAL::setupFFTRC(int ndim, int N[3], double scale) {
|
||||
|
||||
if (apiCuda())
|
||||
return dksfft->setupFFT(ndim, N);
|
||||
if (apiOpenCL())
|
||||
return dksfft->setupFFTRC(ndim, N);
|
||||
else if (apiOpenMP())
|
||||
return dksfft->setupFFTRC(ndim, N, scale);
|
||||
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
//BENI:
|
||||
int DKSOPAL::setupFFTCR(int ndim, int N[3], double scale) {
|
||||
|
||||
if (apiCuda())
|
||||
return dksfft->setupFFT(ndim, N);
|
||||
if (apiOpenCL())
|
||||
return dksfft->setupFFTCR(ndim, N);
|
||||
else if (apiOpenMP())
|
||||
return dksfft->setupFFTCR(ndim, N, scale);
|
||||
|
||||
return DKS_ERROR;
|
||||
|
||||
}
|
||||
|
||||
/* call OpenCL FFT function for selected platform */
|
||||
int DKSOPAL::callFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
|
||||
if (apiOpenCL() || apiOpenMP())
|
||||
return dksfft->executeFFT(data_ptr, ndim, dimsize);
|
||||
else if (apiCuda())
|
||||
return dksfft->executeFFT(data_ptr, ndim, dimsize, streamId);
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* call OpenCL IFFT function for selected platform */
|
||||
int DKSOPAL::callIFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
if (apiOpenCL() || apiOpenMP())
|
||||
return dksfft->executeIFFT(data_ptr, ndim, dimsize);
|
||||
else if (apiCuda())
|
||||
return dksfft->executeIFFT(data_ptr, ndim, dimsize, streamId);
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* call normalize FFT function for selected platform */
|
||||
int DKSOPAL::callNormalizeFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
|
||||
if (apiOpenCL()) {
|
||||
if ( loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLFFT.cl") == DKS_SUCCESS )
|
||||
return dksfft->normalizeFFT(data_ptr, ndim, dimsize);
|
||||
else
|
||||
return DKS_ERROR;
|
||||
} else if (apiCuda()) {
|
||||
return dksfft->normalizeFFT(data_ptr, ndim, dimsize, streamId);
|
||||
} else if (apiOpenMP()) {
|
||||
return dksfft->normalizeFFT(data_ptr, ndim, dimsize);
|
||||
}
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* call real to complex FFT */
|
||||
int DKSOPAL::callR2CFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
|
||||
if (apiCuda())
|
||||
return dksfft->executeRCFFT(real_ptr, comp_ptr, ndim, dimsize, streamId);
|
||||
else if (apiOpenCL() || apiOpenMP())
|
||||
return dksfft->executeRCFFT(real_ptr, comp_ptr, ndim, dimsize);
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* call complex to real FFT */
|
||||
int DKSOPAL::callC2RFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
if (apiCuda())
|
||||
return dksfft->executeCRFFT(real_ptr, comp_ptr, ndim, dimsize, streamId);
|
||||
else if (apiOpenCL() || apiOpenMP())
|
||||
return dksfft->executeCRFFT(real_ptr, comp_ptr, ndim, dimsize);
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
/* normalize complex to real iFFT */
|
||||
int DKSOPAL::callNormalizeC2RFFT(void * real_ptr, int ndim, int dimsize[3], int streamId) {
|
||||
if (apiCuda())
|
||||
return dksfft->normalizeCRFFT(real_ptr, ndim, dimsize, streamId);
|
||||
else if (apiOpenCL())
|
||||
return DKS_ERROR;
|
||||
else if (apiOpenMP())
|
||||
return DKS_ERROR;
|
||||
|
||||
DEBUG_MSG("No implementation for selected platform");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int DKSOPAL::callGreensIntegral(void *tmp_ptr, int I, int J, int K, int NI, int NJ,
|
||||
double hz_m0, double hz_m1, double hz_m2, int streamId) {
|
||||
|
||||
return dksgreens->greensIntegral(tmp_ptr, I, J, K, NI, NJ,
|
||||
hz_m0, hz_m1, hz_m2, streamId);
|
||||
|
||||
}
|
||||
|
||||
int DKSOPAL::callGreensIntegration(void *mem_ptr, void *tmp_ptr,
|
||||
int I, int J, int K, int streamId) {
|
||||
|
||||
return dksgreens->integrationGreensFunction(mem_ptr, tmp_ptr, I, J, K, streamId);
|
||||
}
|
||||
|
||||
int DKSOPAL::callMirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId) {
|
||||
|
||||
return dksgreens->mirrorRhoField(mem_ptr, I, J, K, streamId);
|
||||
}
|
||||
|
||||
int DKSOPAL::callMultiplyComplexFields(void *mem_ptr1, void *mem_ptr2, int size, int streamId) {
|
||||
|
||||
return dksgreens->multiplyCompelxFields(mem_ptr1, mem_ptr2, size, streamId);
|
||||
}
|
||||
|
||||
int DKSOPAL::callCollimatorPhysics(void *mem_ptr, void *par_ptr,
|
||||
int numparticles, int numparams,
|
||||
int &numaddback, int &numdead)
|
||||
{
|
||||
|
||||
return dkscol->CollimatorPhysics(mem_ptr, par_ptr, numparticles);
|
||||
|
||||
}
|
||||
|
||||
|
||||
int DKSOPAL::callCollimatorPhysics2(void *mem_ptr, void *par_ptr, int numparticles)
|
||||
{
|
||||
|
||||
return dkscol->CollimatorPhysics(mem_ptr, par_ptr, numparticles);
|
||||
|
||||
}
|
||||
|
||||
int DKSOPAL::callCollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
void *px_ptr, void *py_ptr, void *pz_ptr,
|
||||
void *par_ptr, int numparticles)
|
||||
{
|
||||
|
||||
|
||||
return dkscol->CollimatorPhysicsSoA(label_ptr, localID_ptr,
|
||||
rx_ptr, ry_ptr, rz_ptr,
|
||||
px_ptr, py_ptr, pz_ptr,
|
||||
par_ptr, numparticles);
|
||||
|
||||
}
|
||||
|
||||
|
||||
int DKSOPAL::callCollimatorPhysicsSort(void *mem_ptr, int numparticles, int &numaddback)
|
||||
{
|
||||
|
||||
return dkscol->CollimatorPhysicsSort(mem_ptr, numparticles, numaddback);
|
||||
|
||||
}
|
||||
|
||||
int DKSOPAL::callCollimatorPhysicsSortSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
void *px_ptr, void *py_ptr, void *pz_ptr,
|
||||
void *par_ptr, int numparticles, int &numaddback)
|
||||
{
|
||||
|
||||
return MIC_SAFECALL(dkscol->CollimatorPhysicsSortSoA(label_ptr, localID_ptr,
|
||||
rx_ptr, ry_ptr, rz_ptr,
|
||||
px_ptr, py_ptr, pz_ptr,
|
||||
par_ptr, numparticles, numaddback));
|
||||
|
||||
}
|
||||
|
||||
|
||||
int DKSOPAL::callParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart,
|
||||
void *dt_ptr, double dt, double c,
|
||||
bool usedt, int streamId)
|
||||
{
|
||||
|
||||
return dkscol->ParallelTTrackerPush(r_ptr, p_ptr, npart, dt_ptr, dt, c, usedt, streamId);
|
||||
|
||||
}
|
||||
|
||||
int DKSOPAL::callParallelTTrackerPush(void *r_ptr, void *p_ptr, void *dt_ptr,
|
||||
int npart, double c, int streamId) {
|
||||
|
||||
return dkscol->ParallelTTrackerPush(r_ptr, p_ptr, npart, dt_ptr, 0, c, true, streamId);
|
||||
|
||||
}
|
||||
|
||||
int DKSOPAL::callParallelTTrackerKick(void *r_ptr, void *p_ptr, void *ef_ptr,
|
||||
void *bf_ptr, void *dt_ptr, double charge, double mass,
|
||||
int npart, double c, int streamId)
|
||||
{
|
||||
|
||||
return dkscol->ParallelTTrackerKick(r_ptr, p_ptr, ef_ptr, bf_ptr, dt_ptr,
|
||||
charge, mass, npart, c, streamId);
|
||||
|
||||
}
|
||||
|
||||
int DKSOPAL::callParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
|
||||
void *lastSec_ptr, void *orient_ptr,
|
||||
int npart, int nsec, void *dt_ptr, double dt,
|
||||
double c, bool usedt, int streamId)
|
||||
{
|
||||
|
||||
return dkscol->ParallelTTrackerPushTransform(x_ptr, p_ptr, lastSec_ptr, orient_ptr,
|
||||
npart, nsec, dt_ptr, dt, c, usedt, streamId);
|
||||
|
||||
}
|
233
src/DKSOPAL.h
Normal file
233
src/DKSOPAL.h
Normal file
@ -0,0 +1,233 @@
|
||||
#ifndef H_DKS_OPAL
|
||||
#define H_DKS_OPAL
|
||||
|
||||
#include <iostream>
|
||||
#include "AutoTuning/DKSAutoTuning.h"
|
||||
|
||||
#include "DKSBase.h"
|
||||
|
||||
#include "DKSDefinitions.h"
|
||||
|
||||
#include "Algorithms/GreensFunction.h"
|
||||
#include "Algorithms/CollimatorPhysics.h"
|
||||
#include "Algorithms/FFT.h"
|
||||
|
||||
|
||||
#ifdef DKS_AMD
|
||||
#include "OpenCL/OpenCLFFT.h"
|
||||
#include "OpenCL/OpenCLGreensFunction.h"
|
||||
#include "OpenCL/OpenCLCollimatorPhysics.h"
|
||||
#endif
|
||||
|
||||
#ifdef DKS_CUDA
|
||||
#include "CUDA/CudaFFT.cuh"
|
||||
#include "CUDA/CudaGreensFunction.cuh"
|
||||
#include "CUDA/CudaCollimatorPhysics.cuh"
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef DKS_MIC
|
||||
#include "MIC/MICFFT.h"
|
||||
#include "MIC/MICGreensFunction.hpp"
|
||||
#include "MIC/MICCollimatorPhysics.h"
|
||||
#endif
|
||||
|
||||
class DKSOPAL : public DKSBase {
|
||||
|
||||
private:
|
||||
|
||||
DKSFFT *dksfft;
|
||||
DKSCollimatorPhysics *dkscol;
|
||||
GreensFunction *dksgreens;
|
||||
|
||||
int setupOPAL();
|
||||
|
||||
public:
|
||||
|
||||
DKSOPAL();
|
||||
|
||||
DKSOPAL(const char* api_name, const char* device_name);
|
||||
|
||||
~DKSOPAL();
|
||||
|
||||
int initDevice();
|
||||
|
||||
///////////////////////////////////////////////
|
||||
///////Function library part of dksbase////////
|
||||
///////////////////////////////////////////////
|
||||
|
||||
/**
|
||||
* Setup FFT function.
|
||||
* Initializes parameters for fft executuin. If ndim > 0 initializes handles for fft calls.
|
||||
* If ffts of various sizes are needed setupFFT should be called with ndim 0, in this case
|
||||
* each fft will do its own setup according to fft size and dimensions.
|
||||
* TODO: opencl and mic implementations
|
||||
*/
|
||||
int setupFFT(int ndim, int N[3]);
|
||||
//BENI:
|
||||
int setupFFTRC(int ndim, int N[3], double scale = 1.0);
|
||||
//BENI:
|
||||
int setupFFTCR(int ndim, int N[3], double scale = 1.0);
|
||||
|
||||
/**
|
||||
* Call complex-to-complex fft.
|
||||
* Executes in place complex to compelx fft on the device on data pointed by data_ptr.
|
||||
* stream id can be specified to use other streams than default.
|
||||
* TODO: mic implementation
|
||||
*/
|
||||
int callFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Call complex-to-complex ifft.
|
||||
* Executes in place complex to compelx ifft on the device on data pointed by data_ptr.
|
||||
* stream id can be specified to use other streams than default.
|
||||
* TODO: mic implementation.
|
||||
*/
|
||||
int callIFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Normalize complex to complex ifft.
|
||||
* Cuda, mic and OpenCL implementations return ifft unscaled, this function divides each element by
|
||||
* fft size
|
||||
* TODO: mic implementation.
|
||||
*/
|
||||
int callNormalizeFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Call real to complex FFT.
|
||||
* Executes out of place real to complex fft, real_ptr points to real data, comp_pt - points
|
||||
* to complex data, ndim - dimension of data, dimsize size of each dimension. real_ptr size
|
||||
* should be dimsize[0]*dimsize[1]*disize[2], comp_ptr size should be atleast
|
||||
* (dimsize[0]/2+1)*dimsize[1]*dimsize[2]
|
||||
* TODO: opencl and mic implementations
|
||||
*/
|
||||
int callR2CFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Call complex to real iFFT.
|
||||
* Executes out of place complex to real ifft, real_ptr points to real data, comp_pt - points
|
||||
* to complex data, ndim - dimension of data, dimsize size of each dimension. real_ptr size
|
||||
* should be dimsize[0]*dimsize[1]*disize[2], comp_ptr size should be atleast
|
||||
* (dimsize[0]/2+1)*dimsize[1]*dimsize[2]
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callC2RFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Normalize compelx to real ifft.
|
||||
* Cuda, mic and OpenCL implementations return ifft unscaled, this function divides each element by
|
||||
* fft size.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callNormalizeC2RFFT(void * real_ptr, int ndim, int dimsize[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
|
||||
* For specifics check OPAL docs.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callGreensIntegral(void *tmp_ptr, int I, int J, int K, int NI, int NJ,
|
||||
double hz_m0, double hz_m1, double hz_m2, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
|
||||
* For specifics check OPAL docs.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callGreensIntegration(void *mem_ptr, void *tmp_ptr,
|
||||
int I, int J, int K, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
|
||||
* For specifics check OPAL docs.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callMirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Element by element multiplication.
|
||||
* Multiplies each element of mem_ptr1 with corresponding element of mem_ptr2, size specifies
|
||||
* the number of elements in mem_ptr1 and mem_ptr2 to use. Results are put in mem_ptr1.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callMultiplyComplexFields(void *mem_ptr1, void *mem_ptr2, int size, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callCollimatorPhysics(void *mem_ptr, void *par_ptr,
|
||||
int numparticles, int numparams,
|
||||
int &numaddback, int &numdead);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callCollimatorPhysics2(void *mem_ptr, void *par_ptr, int numparticles);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* Test function for the MIC to test SoA layout vs AoS layout used in previous versions
|
||||
*/
|
||||
int callCollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
void *px_ptr, void *py_ptr, void *pz_ptr,
|
||||
void *par_ptr, int numparticles);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callCollimatorPhysicsSort(void *mem_ptr, int numparticles, int &numaddback);
|
||||
|
||||
/**
|
||||
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
|
||||
* TODO: opencl and mic implementations.
|
||||
*/
|
||||
int callCollimatorPhysicsSortSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
void *px_ptr, void *py_ptr, void *pz_ptr,
|
||||
void *par_ptr, int numparticles, int &numaddback);
|
||||
|
||||
/**
|
||||
* Integration code from ParallelTTracker from OPAL.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
|
||||
*/
|
||||
int callParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart,
|
||||
void *dt_ptr, double dt, double c,
|
||||
bool usedt = false, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Integration code from ParallelTTracker from OPAL.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
|
||||
*/
|
||||
int callParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
|
||||
void *lastSec_ptr, void *orient_ptr,
|
||||
int npart, int nsec, void *dt_ptr,
|
||||
double dt, double c, bool usedt = false,
|
||||
int streamId = -1);
|
||||
/**
|
||||
* Integration code from ParallelTTracker from OPAL.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
|
||||
*/
|
||||
int callParallelTTrackerPush(void *r_ptr, void *p_ptr, void *dt_ptr,
|
||||
int npart, double c, int streamId = -1);
|
||||
|
||||
/**
|
||||
* Integration code from ParallelTTracker from OPAL.
|
||||
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
|
||||
*/
|
||||
int callParallelTTrackerKick(void *r_ptr, void *p_ptr, void *ef_ptr,
|
||||
void *bf_ptr, void *dt_ptr, double charge,
|
||||
double mass, int npart, double c, int streamId = -1);
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif
|
@ -1,5 +1,9 @@
|
||||
SET (_SRCS MICBase.cpp)
|
||||
SET (_HDRS MICBase.h)
|
||||
|
||||
IF (ENABLE_OPAL)
|
||||
SET (_SRCS
|
||||
MICBase.cpp
|
||||
${_SRCS}
|
||||
MICChiSquare.cpp
|
||||
MICFFT.cpp
|
||||
MICGreensFunction.cpp
|
||||
@ -7,13 +11,14 @@ SET (_SRCS
|
||||
)
|
||||
|
||||
SET (_HDRS
|
||||
MICBase.h
|
||||
${_HDRS}
|
||||
MICChiSquare.h
|
||||
MICFFT.h
|
||||
MICCollimatorPhysics.h
|
||||
MICGreensFunction.hpp
|
||||
MICMergeSort.h
|
||||
)
|
||||
ENDIF (ENABLE_OPAL)
|
||||
|
||||
#INCLUDE_DIRECTORIES (
|
||||
# ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
|
@ -18,30 +18,28 @@ int MICBase::mic_createRandStreams(int size) {
|
||||
|
||||
int seed = time(NULL);
|
||||
|
||||
#pragma offload target(mic:m_device_id) inout(defaultRndSet) in(seed)
|
||||
int numThreads = 0;
|
||||
#pragma offload target(mic:m_device_id) inout(numThreads)
|
||||
{
|
||||
|
||||
//get the number of threads
|
||||
int numThreads;
|
||||
|
||||
#pragma omp parallel
|
||||
numThreads = omp_get_num_threads();
|
||||
}
|
||||
|
||||
//if default rnd stream already allocated delete the array
|
||||
if (defaultRndSet == 1)
|
||||
delete[] defaultRndStream;
|
||||
|
||||
//allocate defaultRndStream array
|
||||
defaultRndStream = new VSLStreamStatePtr[numThreads];
|
||||
defaultRndStream = mic_allocateMemory<VSLStreamStatePtr>(numThreads);
|
||||
VSLStreamStatePtr *tmpRndStream = (VSLStreamStatePtr*) defaultRndStream;
|
||||
maxThreads = numThreads;
|
||||
|
||||
#pragma offload target(mic:m_device_id) \
|
||||
in(tmpRndStream:length(0) DKS_REUSE DKS_RETAIN) \
|
||||
in(seed)
|
||||
{
|
||||
//create stream states for each thread
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < omp_get_num_threads(); i++)
|
||||
vslNewStream(&defaultRndStream[i], VSL_BRNG_MT2203, seed + i);
|
||||
|
||||
defaultRndSet = 1;
|
||||
vslNewStream(&tmpRndStream[i], VSL_BRNG_MT2203, seed + i);
|
||||
}
|
||||
|
||||
defaultRndSet = 1;
|
||||
return DKS_SUCCESS;
|
||||
|
||||
}
|
||||
@ -49,15 +47,8 @@ int MICBase::mic_createRandStreams(int size) {
|
||||
//delete default rand streams
|
||||
int MICBase::mic_deleteRandStreams() {
|
||||
|
||||
#pragma offload target(mic:m_device_id) inout(defaultRndSet)
|
||||
{
|
||||
if (defaultRndSet == 1) {
|
||||
delete[] defaultRndStream;
|
||||
defaultRndSet = -1;
|
||||
}
|
||||
}
|
||||
|
||||
return DKS_ERROR;
|
||||
//mic_freeMemory<VSLStreamStatePtr>(defaultRndStream, 236);
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
//create a new signal for the mic
|
||||
|
@ -30,14 +30,19 @@ class MICBase {
|
||||
|
||||
private:
|
||||
std::vector<int> micStreams;
|
||||
int maxThreads;
|
||||
|
||||
protected:
|
||||
|
||||
|
||||
int defaultRndSet;
|
||||
|
||||
public:
|
||||
VSLStreamStatePtr *defaultRndStream;
|
||||
|
||||
//#pragma offload_attribute(push,target(mic))
|
||||
void *defaultRndStream; //VSLSStreamStatePtr
|
||||
void *testPtr;
|
||||
|
||||
//#pragma offload_attribute(pop)
|
||||
|
||||
int m_device_id;
|
||||
|
||||
/* constructor */
|
||||
@ -202,7 +207,6 @@ public:
|
||||
#pragma offload_transfer target(mic:m_device_id) nocopy(tmp_ptr:length(totalsize) DKS_REUSE DKS_FREE)
|
||||
{
|
||||
}
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
|
@ -292,7 +292,7 @@ void energyLoss(double &Eng, int &pdead, double *par, VSLStreamStatePtr &stream)
|
||||
|
||||
const double deltas = par[DT_M] * beta * C;
|
||||
const double deltasrho = deltas * 100 * par[RHO_M];
|
||||
const double sigma_E = sqrt(K * eM_E * par[RHO_M] * (Z_M / par[A_M]) * deltas * 1E5);
|
||||
const double sigma_E = sqrt(K * eM_E * par[RHO_M] * (par[Z_M] / par[A_M]) * deltas * 1E5);
|
||||
|
||||
if ( (Eng > 0.00001) && (Eng < 0.0006) ) {
|
||||
const double Ts = (Eng * 1E6) / 1.0073;
|
||||
@ -338,7 +338,7 @@ void energyLoss(double &Eng, double &dEdx, double *par, double *randv, int ri) {
|
||||
|
||||
const double deltas = par[DT_M] * beta * C;
|
||||
const double deltasrho = deltas * 100 * par[RHO_M];
|
||||
const double sigma_E = sqrt(K * eM_E * par[RHO_M] * (Z_M / par[A_M]) * deltas * 1E5);
|
||||
const double sigma_E = sqrt(K * eM_E * par[RHO_M] * (par[Z_M] / par[A_M]) * deltas * 1E5);
|
||||
|
||||
if ( (Eng > 0.00001) && (Eng < 0.0006) ) {
|
||||
const double Ts = (Eng * 1E6) / 1.0073;
|
||||
@ -368,23 +368,23 @@ void energyLoss(double &Eng, double &dEdx, double *par, double *randv, int ri) {
|
||||
|
||||
}
|
||||
|
||||
int MICCollimatorPhysics::CollimatorPhysics(void *mem_ptr, void *par_ptr,
|
||||
int numparticles, boll enableRutherfordScattering)
|
||||
{
|
||||
int MICCollimatorPhysics::CollimatorPhysics(void *mem_ptr, void *par_ptr, int numparticles) {
|
||||
|
||||
//cast device memory pointers to appropriate types
|
||||
MIC_PART_SMALL *data = (MIC_PART_SMALL*) mem_ptr;
|
||||
double *par = (double*) par_ptr;
|
||||
VSLStreamStatePtr *streamArr = (VSLStreamStatePtr*) m_micbase->defaultRndStream;
|
||||
|
||||
#pragma offload target(mic:m_micbase->m_device_id) \
|
||||
inout(data:length(0) DKS_RETAIN DKS_REUSE) \
|
||||
in(par:length(0) DKS_RETAIN DKS_REUSE) \
|
||||
in(streamArr:length(0) DKS_RETAIN DKS_REUSE) \
|
||||
in(numparticles)
|
||||
{
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
VSLStreamStatePtr stream = m_micbase->defaultRndStream[omp_get_thread_num()];
|
||||
VSLStreamStatePtr stream = streamArr[omp_get_thread_num()];
|
||||
|
||||
//for loop trough particles if not checkhit set label to -2 and update R.x
|
||||
|
||||
@ -461,6 +461,8 @@ int MICCollimatorPhysics::CollimatorPhysicsSoA(void *label_ptr, void *localID_pt
|
||||
int padding = numparticles % MIC_WIDTH;
|
||||
int totalpart = numparticles + padding;
|
||||
|
||||
VSLStreamStatePtr *streamArr = (VSLStreamStatePtr*) m_micbase->defaultRndStream;
|
||||
|
||||
#pragma offload target (mic:0) \
|
||||
in(label:length(0) DKS_REUSE DKS_RETAIN) \
|
||||
in(localID:length(0) DKS_REUSE DKS_RETAIN) \
|
||||
@ -471,14 +473,16 @@ int MICCollimatorPhysics::CollimatorPhysicsSoA(void *label_ptr, void *localID_pt
|
||||
in(py:length(0) DKS_REUSE DKS_RETAIN) \
|
||||
in(pz:length(0) DKS_REUSE DKS_RETAIN) \
|
||||
in(par:length(0) DKS_RETAIN DKS_REUSE) \
|
||||
in(streamArr:length(0) DKS_RETAIN DKS_REUSE) \
|
||||
in(totalpart)
|
||||
{
|
||||
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
//every thread gets its own rnd stream state
|
||||
VSLStreamStatePtr stream = m_micbase->defaultRndStream[omp_get_thread_num()];
|
||||
|
||||
//VSLStreamStatePtr stream = m_micbase->defaultRndStream[omp_get_thread_num()];
|
||||
VSLStreamStatePtr stream = streamArr[omp_get_thread_num()];
|
||||
|
||||
#pragma omp for nowait
|
||||
for (int ii = 0; ii < totalpart; ii += MIC_WIDTH) {
|
||||
@ -514,10 +518,12 @@ int MICCollimatorPhysics::CollimatorPhysicsSoA(void *label_ptr, void *localID_pt
|
||||
double Eng = (sq - 1) * M_P;
|
||||
double dEdx = 0;
|
||||
|
||||
|
||||
if (label[i] == 0) {
|
||||
energyLoss(Eng, dEdx, par, randv, i - ii);
|
||||
}
|
||||
|
||||
|
||||
if (Eng > 1e-4 && dEdx < 0) {
|
||||
double ptot = sqrt((M_P + Eng) * (M_P + Eng) - (M_P * M_P)) / M_P;
|
||||
sq = sqrt(dot(px[i], py[i], pz[i]));
|
||||
@ -533,6 +539,7 @@ int MICCollimatorPhysics::CollimatorPhysicsSoA(void *label_ptr, void *localID_pt
|
||||
|
||||
} //end outer energy loss loop
|
||||
|
||||
|
||||
//vectorize coulomb scattering as much as possible
|
||||
#pragma omp for nowait
|
||||
for (int ii = 0; ii < totalpart; ii += MIC_WIDTH) {
|
||||
|
@ -26,7 +26,7 @@ typedef struct {
|
||||
} MIC_PART_SMALL;
|
||||
|
||||
|
||||
class MICCollimatorPhysics : DKSAlogorithms{
|
||||
class MICCollimatorPhysics : public DKSCollimatorPhysics {
|
||||
|
||||
private:
|
||||
|
||||
@ -40,8 +40,7 @@ public:
|
||||
|
||||
~MICCollimatorPhysics() { };
|
||||
|
||||
int CollimatorPhysics(void *mem_ptr, void *par_ptr, int numparticles,
|
||||
bool enableRutherfordScattering = true);
|
||||
int CollimatorPhysics(void *mem_ptr, void *par_ptr, int numparticles);
|
||||
|
||||
int CollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
|
@ -6,15 +6,18 @@
|
||||
|
||||
MICFFT::MICFFT(MICBase *base) {
|
||||
m_micbase = base;
|
||||
m_fftsetup = false;
|
||||
}
|
||||
|
||||
MICFFT::~MICFFT() {
|
||||
if (m_fftsetup) {
|
||||
#pragma offload target(mic:0)
|
||||
{
|
||||
DftiFreeDescriptor(&FFTHandle_m);
|
||||
DftiFreeDescriptor(&handle);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//setup fft
|
||||
int MICFFT::setupFFT(int ndim, int N[3]) {
|
||||
@ -35,7 +38,7 @@ int MICFFT::setupFFT(int ndim, int N[3]) {
|
||||
|
||||
}
|
||||
|
||||
|
||||
m_fftsetup = true;
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
//BENI:
|
||||
@ -122,8 +125,8 @@ int MICFFT::executeFFT(void *mem_ptr, int ndim, int N[3], int streamId, bool for
|
||||
}
|
||||
|
||||
//execute iFFT
|
||||
int MICFFT::executeIFFT(void *mem_ptr, int ndim, int N[3]) {
|
||||
return mic_executeFFT(mem_ptr, ndim, N, -1, false);
|
||||
int MICFFT::executeIFFT(void *mem_ptr, int ndim, int N[3], int streamId) {
|
||||
return executeFFT(mem_ptr, ndim, N, -1, false);
|
||||
}
|
||||
|
||||
//execute REAL->COMPLEX FFT
|
||||
|
@ -7,13 +7,14 @@
|
||||
#include <offload.h>
|
||||
#include <mkl_dfti.h>
|
||||
|
||||
#include "../Algorithm/DKSFFT.h"
|
||||
#include "../Algorithms/FFT.h"
|
||||
#include "MICBase.h"
|
||||
|
||||
class MICFFT : public DKSFFT {
|
||||
|
||||
private:
|
||||
|
||||
bool m_fftsetup;
|
||||
MICBase *m_micbase;
|
||||
|
||||
/// Internal FFT object for performing serial FFTs.
|
||||
@ -74,6 +75,18 @@ public:
|
||||
/* normalize IFFT on MIC */
|
||||
int normalizeFFT(void *mem_ptr, int ndim, int N[3], int streamId = -1);
|
||||
|
||||
/**
|
||||
* Info: destroy default FFT plans
|
||||
* Return: success or error code
|
||||
*/
|
||||
int destroyFFT() { return DKS_SUCCESS; }
|
||||
|
||||
/*
|
||||
Info: execute normalize for complex to real iFFT
|
||||
Return: success or error code
|
||||
*/
|
||||
int normalizeCRFFT(void *real_ptr, int ndim, int N[3], int streamId = -1) { return DKS_SUCCESS; }
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
|
@ -55,11 +55,11 @@ MICGreensFunction::~MICGreensFunction() {
|
||||
}
|
||||
*/
|
||||
|
||||
int MICGreensFunction::mic_GreensIntegral(void * tmp_ptr_, int I,int J, int K, double hr_m0,
|
||||
double hr_m1, double hr_m2)
|
||||
int MICGreensFunction::greensIntegral(void *tmpgreen, int I, int J, int K, int NI, int NJ,
|
||||
double hr_m0, double hr_m1, double hr_m2, int streamId)
|
||||
{
|
||||
|
||||
double *tmp_ptr = (double*) tmp_ptr_;
|
||||
double *tmp_ptr = (double*) tmpgreen;
|
||||
#pragma offload target(mic:0) in(tmp_ptr:length(0) DKS_RETAIN DKS_REUSE) in(I, J,K, hr_m0, hr_m1, hr_m2)
|
||||
{
|
||||
std::memset(tmp_ptr,0,I*J*K);
|
||||
@ -173,12 +173,14 @@ return 0;
|
||||
*/
|
||||
|
||||
//CUDA similar version:
|
||||
int MICGreensFunction::mic_IntegrationGreensFunction(void * mem_ptr_, void * tmp_ptr_,int I,int J, int K) {
|
||||
double *tmpgreen = (double*) tmp_ptr_;
|
||||
double *mem_ptr = (double*) mem_ptr_;
|
||||
int MICGreensFunction::integrationGreensFunction(void * rho2_m, void *tmpgreen, int I, int J, int K,
|
||||
int streamId)
|
||||
{
|
||||
double *tmpgreen_ptr = (double*) tmpgreen;
|
||||
double *mem_ptr = (double*) rho2_m;
|
||||
|
||||
// the actual integration
|
||||
#pragma offload target(mic:0) in(tmpgreen:length(0) DKS_RETAIN DKS_REUSE) in(mem_ptr:length(0) DKS_RETAIN DKS_REUSE) in(I,J,K)
|
||||
#pragma offload target(mic:0) in(tmpgreen_ptr:length(0) DKS_RETAIN DKS_REUSE) in(mem_ptr:length(0) DKS_RETAIN DKS_REUSE) in(I,J,K)
|
||||
{
|
||||
int II = 2*(I-1); int JJ=2*(J-1); int KK=2*(K-1);
|
||||
std::memset(mem_ptr,0,II*JJ*KK);
|
||||
@ -197,27 +199,27 @@ int MICGreensFunction::mic_IntegrationGreensFunction(void * mem_ptr_, void * tmp
|
||||
tmp4 = 0; tmp5 = 0; tmp6 = 0; tmp7 = 0;
|
||||
|
||||
if (i+1 < NI_tmp && j+1 < NJ_tmp && k+1 < NK_tmp)
|
||||
tmp0 = tmpgreen[(i+1) + (j+1) * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
tmp0 = tmpgreen_ptr[(i+1) + (j+1) * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
|
||||
if (i+1 < NI_tmp)
|
||||
tmp1 = tmpgreen[(i+1) + j * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
tmp1 = tmpgreen_ptr[(i+1) + j * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
|
||||
if (j+1 < NJ_tmp)
|
||||
tmp2 = tmpgreen[ i + (j+1) * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
tmp2 = tmpgreen_ptr[ i + (j+1) * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
|
||||
if (k+1 < NK_tmp)
|
||||
tmp3 = tmpgreen[ i + j * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
tmp3 = tmpgreen_ptr[ i + j * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
|
||||
if (i+1 < NI_tmp && j+1 < NJ_tmp)
|
||||
tmp4 = tmpgreen[(i+1) + (j+1) * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
tmp4 = tmpgreen_ptr[(i+1) + (j+1) * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
|
||||
if (i+1 < NI_tmp && k+1 < NK_tmp)
|
||||
tmp5 = tmpgreen[(i+1) + j * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
tmp5 = tmpgreen_ptr[(i+1) + j * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
|
||||
if (j+1 < NJ_tmp && k+1 < NK_tmp)
|
||||
tmp6 = tmpgreen[ i + (j+1) * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
tmp6 = tmpgreen_ptr[ i + (j+1) * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
|
||||
tmp7 = tmpgreen[ i + j * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
tmp7 = tmpgreen_ptr[ i + j * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
|
||||
double tmp_rho = tmp0 + tmp1 + tmp2 + tmp3 - tmp4 - tmp5 - tmp6 - tmp7;
|
||||
|
||||
@ -234,8 +236,8 @@ int MICGreensFunction::mic_IntegrationGreensFunction(void * mem_ptr_, void * tmp
|
||||
|
||||
|
||||
|
||||
int MICGreensFunction::mic_MirrorRhoField(void * mem_ptr_, int I, int J, int K) {
|
||||
double *mem_ptr = (double*) mem_ptr_;
|
||||
int MICGreensFunction::mirrorRhoField(void *rho2_m, int I, int J, int K, int streamId) {
|
||||
double *mem_ptr = (double*) rho2_m;
|
||||
|
||||
#pragma offload target(mic:0) in(mem_ptr:length(0) DKS_RETAIN DKS_REUSE) in(I,J,K)
|
||||
{
|
||||
@ -281,11 +283,11 @@ int MICGreensFunction::mic_MirrorRhoField(void * mem_ptr_, int I, int J, int K)
|
||||
}
|
||||
|
||||
/*multiply complex fields*/
|
||||
int MICGreensFunction::mic_MultiplyCompelxFields(void * mem_ptr1_, void * mem_ptr2_, int size) {
|
||||
int MICGreensFunction::multiplyCompelxFields(void * ptr1, void * ptr2, int size) {
|
||||
// double *mem_ptr1 = (double*) mem_ptr1_;
|
||||
// double *mem_ptr2 = (double*) mem_ptr2_;
|
||||
_Complex double *mem_ptr1 = (_Complex double *) mem_ptr1_;
|
||||
_Complex double *mem_ptr2 = (_Complex double *) mem_ptr2_;
|
||||
_Complex double *mem_ptr1 = (_Complex double *) ptr1;
|
||||
_Complex double *mem_ptr2 = (_Complex double *) ptr2;
|
||||
|
||||
#pragma offload target(mic:0) in(mem_ptr1:length(0) DKS_RETAIN DKS_REUSE) in (mem_ptr2:length(0) DKS_RETAIN DKS_REUSE) in(size)
|
||||
{
|
||||
|
@ -9,12 +9,13 @@
|
||||
#include <offload.h>
|
||||
#include <mkl_dfti.h>
|
||||
|
||||
#include "../Algorithms/GreensFunction.h"
|
||||
#include "MICBase.h"
|
||||
|
||||
#define DKS_SUCCESS 0
|
||||
#define DKS_ERROR 1
|
||||
|
||||
class MICGreensFunction {
|
||||
class MICGreensFunction : public GreensFunction {
|
||||
|
||||
private:
|
||||
MICBase *m_micbase;
|
||||
@ -28,16 +29,18 @@ public:
|
||||
~MICGreensFunction();
|
||||
|
||||
/* compute greens integral analytically */
|
||||
int mic_GreensIntegral(void * tmp_ptr_, int I, int J, int K, double hr_m0, double hr_m1, double hr_m2);
|
||||
int greensIntegral(void * tmpgreen_, int I, int J, int K, int NI, int NJ,
|
||||
double hr_m0, double hr_m1, double hr_m2, int streamId = -1);
|
||||
|
||||
/* perform the actual integration */
|
||||
int mic_IntegrationGreensFunction(void * mem_ptr_, void * tmp_ptr_,int I,int J, int K);
|
||||
int integrationGreensFunction(void * rho2_m, void * tmpgreen,int I,int J, int K,
|
||||
int stremaId = -1);
|
||||
|
||||
/* Mirror rho-Field */
|
||||
int mic_MirrorRhoField(void * mem_ptr_, int I, int J, int K);
|
||||
int mirrorRhoField(void * rho2_m, int I, int J, int K, int streamId = -1);
|
||||
|
||||
/*multiply complex fields*/
|
||||
int mic_MultiplyCompelxFields(void * mem_ptr1_, void * mem_ptr2_, int size);
|
||||
int multiplyCompelxFields(void * ptr1, void * ptr2, int size, int streamId = -1);
|
||||
|
||||
};
|
||||
|
||||
|
@ -1,31 +1,39 @@
|
||||
#dont include FFT, GreensFunction and CollimatorPhysics if clFFT and clRNG not found
|
||||
|
||||
SET (_HDRS OpenCLBase.h)
|
||||
SET (_SRCS OpenCLBase.cpp)
|
||||
SET (_KERNELS "")
|
||||
|
||||
IF (ENABLE_MUSR)
|
||||
SET (_HDRS ${_HDRS} OpenCLChiSquareRuntime.h)
|
||||
SET (_SRCS ${_SRCS} OpenCLChiSquareRuntime.cpp)
|
||||
SET (_KERNELS OpenCLKernels/OpenCLChiSquareRuntime.cl)
|
||||
ENDIF (ENABLE_MUSR)
|
||||
|
||||
IF (ENABLE_AMD AND ENABLE_OPAL)
|
||||
SET (_SRCS
|
||||
OpenCLBase.cpp
|
||||
${_SRCS}
|
||||
OpenCLFFT.cpp
|
||||
OpenCLChiSquare.cpp
|
||||
OpenCLCollimatorPhysics.cpp
|
||||
OpenCLChiSquareRuntime.cpp
|
||||
OpenCLGreensFunction.cpp
|
||||
)
|
||||
|
||||
SET (_HDRS
|
||||
OpenCLBase.h
|
||||
${_HDRS}
|
||||
OpenCLFFT.h
|
||||
OpenCLChiSquare.h
|
||||
OpenCLCollimatorPhysics.h
|
||||
OpenCLChiSquareRuntime.h
|
||||
OpenCLGreensFunction.h
|
||||
)
|
||||
|
||||
#INCLUDE_DIRECTORIES (
|
||||
# ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
#)
|
||||
|
||||
SET (_KERNELS
|
||||
OpenCLKernels/OpenCLChiSquare.cl
|
||||
${_KERNELS}
|
||||
OpenCLKernels/OpenCLFFT.cl
|
||||
OpenCLKernels/OpenCLFFTStockham.cl
|
||||
OpenCLKernels/OpenCLTranspose.cl
|
||||
OpenCLKernels/OpenCLCollimatorPhysics.cl
|
||||
OpenCLKernels/OpenCLChiSquareRuntime.cl
|
||||
OpenCLKernels/OpenCLGreensFunction.cl
|
||||
)
|
||||
ENDIF (ENABLE_AMD AND ENABLE_OPAL)
|
||||
|
||||
ADD_SOURCES (${_SRCS})
|
||||
ADD_HEADERS (${_HDRS})
|
||||
|
@ -7,21 +7,13 @@ cl_device_id OpenCLBase::m_device_id = NULL;
|
||||
cl_event OpenCLBase::m_last_event = NULL;
|
||||
|
||||
OpenCLBase::OpenCLBase() {
|
||||
//m_context = NULL;
|
||||
//m_command_queue = NULL;
|
||||
m_program = NULL;
|
||||
m_kernel = NULL;
|
||||
//m_device_id = NULL;
|
||||
//m_platform_id = NULL;
|
||||
m_kernel_file = NULL;
|
||||
|
||||
m_last_event = NULL;
|
||||
|
||||
//m_events = new cl_event[500];
|
||||
//m_num_events = 0;
|
||||
|
||||
defaultRndSet = 0;
|
||||
|
||||
}
|
||||
|
||||
OpenCLBase::~OpenCLBase() {
|
||||
@ -55,13 +47,34 @@ int OpenCLBase::ocl_createRndStates(int size) {
|
||||
|
||||
size_t work_items = size;
|
||||
size_t work_group_size = 1;
|
||||
|
||||
ocl_executeKernel(1, &work_items, &work_group_size);
|
||||
|
||||
defaultRndSet = 1;
|
||||
|
||||
return OCL_SUCCESS;
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
int OpenCLBase::ocl_createRandomNumbers(void *mem_ptr, int size) {
|
||||
//load kernel
|
||||
char * kernel_file = new char[500];
|
||||
kernel_file[0] = '\0';
|
||||
strcat(kernel_file, OPENCL_KERNELS);
|
||||
strcat(kernel_file, "OpenCL/OpenCLKernels/OpenCLCollimatorPhysics.cl");
|
||||
ocl_loadKernel(kernel_file);
|
||||
delete[] kernel_file;
|
||||
|
||||
//set kernel variables
|
||||
cl_mem tmp_data = (cl_mem) mem_ptr;
|
||||
|
||||
ocl_createKernel("createRandoms");
|
||||
ocl_setKernelArg(0, sizeof(cl_mem), &defaultRndState);
|
||||
ocl_setKernelArg(1, sizeof(cl_mem), &tmp_data);
|
||||
ocl_setKernelArg(2, sizeof(int), &size);
|
||||
|
||||
size_t work_size = 128;
|
||||
size_t work_items = (size % work_size + 1) * work_size;
|
||||
ocl_executeKernel(1, &work_items, &work_size);
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
/* destroy rnd states */
|
||||
@ -70,7 +83,7 @@ int OpenCLBase::ocl_deleteRndStates() {
|
||||
ocl_freeMemory(defaultRndState);
|
||||
defaultRndSet = 0;
|
||||
|
||||
return OCL_SUCCESS;
|
||||
return DKS_SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
@ -428,7 +441,8 @@ int OpenCLBase::ocl_compileProgram(const char* kernel_source, const char* opts)
|
||||
int ierr;
|
||||
|
||||
//create program from kernel
|
||||
m_program = clCreateProgramWithSource(m_context, 1, (const char **)&kernel_source, NULL, &ierr);
|
||||
m_program = clCreateProgramWithSource(m_context, 1, (const char **)&kernel_source,
|
||||
NULL, &ierr);
|
||||
if (ierr != CL_SUCCESS) {
|
||||
DEBUG_MSG("Error creating program from source, OpenCL error: " << ierr);
|
||||
return DKS_ERROR;
|
||||
@ -438,7 +452,7 @@ int OpenCLBase::ocl_compileProgram(const char* kernel_source, const char* opts)
|
||||
ierr = clBuildProgram(m_program, 0, NULL, opts, NULL, NULL);
|
||||
|
||||
/*
|
||||
check if compileng kernel source succeded, if failed return error code
|
||||
check if compiling kernel source succeded, if failed return error code
|
||||
if in debug mode get compilation info and print program build log witch
|
||||
will give indication what made the compilation fail
|
||||
*/
|
||||
@ -447,7 +461,8 @@ int OpenCLBase::ocl_compileProgram(const char* kernel_source, const char* opts)
|
||||
|
||||
//get build status
|
||||
cl_build_status status;
|
||||
clGetProgramBuildInfo(m_program, m_device_id, CL_PROGRAM_BUILD_STATUS, sizeof(cl_build_status), &status, NULL);
|
||||
clGetProgramBuildInfo(m_program, m_device_id, CL_PROGRAM_BUILD_STATUS,
|
||||
sizeof(cl_build_status), &status, NULL);
|
||||
|
||||
//get log size
|
||||
size_t log_size;
|
||||
@ -613,12 +628,12 @@ int OpenCLBase::ocl_loadKernel(const char * kernel_file) {
|
||||
}
|
||||
}
|
||||
|
||||
if (ierr != OCL_SUCCESS) {
|
||||
if (ierr != DKS_SUCCESS) {
|
||||
DEBUG_MSG("Failed to build kernel file " << kernel_file);
|
||||
return OCL_ERROR;
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
return OCL_SUCCESS;
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
//compile kernel form source code provided
|
||||
|
@ -30,13 +30,10 @@
|
||||
#include <CL/cl_ext.h>
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#include "../DKSDefinitions.h"
|
||||
|
||||
/* struct for random number state */
|
||||
typedef struct {
|
||||
|
||||
double s10;
|
||||
double s11;
|
||||
double s12;
|
||||
@ -45,16 +42,12 @@ typedef struct {
|
||||
double s22;
|
||||
double z;
|
||||
bool gen;
|
||||
|
||||
} RNDState;
|
||||
|
||||
class OpenCLBase {
|
||||
|
||||
private:
|
||||
|
||||
static cl_context m_context;
|
||||
static cl_command_queue m_command_queue;
|
||||
|
||||
static cl_platform_id m_platform_id;
|
||||
static cl_device_id m_device_id;
|
||||
|
||||
@ -119,6 +112,9 @@ protected:
|
||||
|
||||
public:
|
||||
|
||||
static cl_context m_context;
|
||||
static cl_command_queue m_command_queue;
|
||||
|
||||
/*
|
||||
constructor
|
||||
*/
|
||||
@ -135,6 +131,11 @@ public:
|
||||
*/
|
||||
int ocl_createRndStates(int size);
|
||||
|
||||
/* Create an array of random numbers on the device
|
||||
*
|
||||
*/
|
||||
int ocl_createRandomNumbers(void *mem_ptr, int size);
|
||||
|
||||
/*
|
||||
Destroy rnd states
|
||||
Return: success or error code
|
||||
@ -203,6 +204,20 @@ public:
|
||||
*/
|
||||
cl_mem ocl_allocateMemory(size_t size, int type, int &ierr);
|
||||
|
||||
/** Zero OpenCL memory buffer
|
||||
* Set all the elemetns in the device array to zero
|
||||
*/
|
||||
template <typename T>
|
||||
int ocl_fillMemory(cl_mem mem_ptr, size_t size, T value, int offset = 0) {
|
||||
|
||||
cl_int ierr;
|
||||
ierr = clEnqueueFillBuffer(m_command_queue, mem_ptr, &value, sizeof(T), offset,
|
||||
sizeof(T)*size, 0, nullptr, nullptr);
|
||||
if (ierr != CL_SUCCESS)
|
||||
return DKS_ERROR;
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
/*
|
||||
Name: writeData
|
||||
Info: write data to device memory (needs ptr to mem object)
|
||||
|
@ -34,7 +34,7 @@ TODO:
|
||||
2. boost.compute sort for user defined structure crashes
|
||||
*/
|
||||
int OpenCLCollimatorPhysics::CollimatorPhysics(void *mem_ptr, void *par_ptr,
|
||||
int numparticles, bool enableRutherfordScattering)
|
||||
int numparticles)
|
||||
{
|
||||
/*
|
||||
//set number of total threads, and number threads per block
|
||||
|
@ -52,8 +52,7 @@ public:
|
||||
}
|
||||
|
||||
/* execute degrader code on device */
|
||||
int CollimatorPhysics(void *mem_ptr, void *par_ptr, int numparticles,
|
||||
bool enableRutherfordScattering = true);
|
||||
int CollimatorPhysics(void *mem_ptr, void *par_ptr, int numparticles);
|
||||
|
||||
int CollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
|
||||
void *rx_ptr, void *ry_ptr, void *rz_ptr,
|
||||
|
@ -32,7 +32,6 @@ int OpenCLFFT::ocl_callFFTKernel(cl_mem &data, int cdim, int ndim, int N, bool f
|
||||
if (m_oclbase->ocl_setKernelArg(3, sizeof(int), &f) != OCL_SUCCESS)
|
||||
return OCL_ERROR;
|
||||
|
||||
|
||||
//execute kernel
|
||||
for (int step = 1; step < N; step <<= 1) {
|
||||
if (m_oclbase->ocl_setKernelArg(1, sizeof(int), &step) != OCL_SUCCESS)
|
||||
@ -89,26 +88,78 @@ int OpenCLFFT::ocl_callBitReverseKernel(cl_mem &data, int cdim, int ndim, int N)
|
||||
call fft execution on device for every dimension
|
||||
*/
|
||||
int OpenCLFFT::executeFFT(void *data, int ndim, int N[3], int streamId, bool forward) {
|
||||
int ierr;
|
||||
|
||||
int dkserr = DKS_SUCCESS;
|
||||
cl_int ierr;
|
||||
cl_mem inout = (cl_mem)data;
|
||||
int n = N[0];
|
||||
|
||||
for (int dim = 0; dim < ndim; dim++) {
|
||||
ierr = ocl_callBitReverseKernel(inout, dim, ndim, n);
|
||||
if (forward)
|
||||
ierr = clfftEnqueueTransform(planHandleZ2Z, CLFFT_FORWARD, 1, &m_oclbase->m_command_queue,
|
||||
0, NULL, NULL, &inout, NULL, NULL);
|
||||
else
|
||||
ierr = clfftEnqueueTransform(planHandleZ2Z, CLFFT_BACKWARD, 1, &m_oclbase->m_command_queue,
|
||||
0, NULL, NULL, &inout, NULL, NULL);
|
||||
|
||||
if (ierr != OCL_SUCCESS) {
|
||||
DEBUG_MSG("Error executing bit reverse");
|
||||
return OCL_ERROR;
|
||||
dkserr = DKS_ERROR;
|
||||
DEBUG_MSG("Error executing cfFFT\n");
|
||||
if (ierr == CLFFT_INVALID_PLAN)
|
||||
std::cout << "Invlalid plan" << std::endl;
|
||||
else
|
||||
std::cout << "CLFFT error" << std::endl;
|
||||
}
|
||||
|
||||
ierr = ocl_callFFTKernel(inout, dim, ndim, n, forward);
|
||||
return dkserr;
|
||||
}
|
||||
|
||||
/*
|
||||
call rcfft execution on device for every dimension
|
||||
*/
|
||||
int OpenCLFFT::executeRCFFT(void *real_ptr, void *comp_ptr, int ndim, int N[3], int streamId) {
|
||||
|
||||
int dkserr = DKS_SUCCESS;
|
||||
cl_int ierr;
|
||||
cl_mem real_in = (cl_mem)real_ptr;
|
||||
cl_mem comp_out = (cl_mem)comp_ptr;
|
||||
|
||||
ierr = clfftEnqueueTransform(planHandleD2Z, CLFFT_FORWARD, 1, &m_oclbase->m_command_queue,
|
||||
0, NULL, NULL, &real_in, &comp_out, NULL);
|
||||
|
||||
if (ierr != OCL_SUCCESS) {
|
||||
DEBUG_MSG("Error executing fft reverse");
|
||||
return OCL_ERROR;
|
||||
}
|
||||
dkserr = DKS_ERROR;
|
||||
DEBUG_MSG("Error executing cfFFT\n");
|
||||
if (ierr == CLFFT_INVALID_PLAN)
|
||||
std::cout << "Invlalid plan" << std::endl;
|
||||
else
|
||||
std::cout << "CLFFT error" << std::endl;
|
||||
}
|
||||
|
||||
return OCL_SUCCESS;
|
||||
return dkserr;
|
||||
}
|
||||
|
||||
/*
|
||||
call rcfft execution on device for every dimension
|
||||
*/
|
||||
int OpenCLFFT::executeCRFFT(void *real_ptr, void *comp_ptr, int ndim, int N[3], int streamId) {
|
||||
|
||||
int dkserr = DKS_SUCCESS;
|
||||
cl_int ierr;
|
||||
cl_mem real_in = (cl_mem)real_ptr;
|
||||
cl_mem comp_out = (cl_mem)comp_ptr;
|
||||
|
||||
ierr = clfftEnqueueTransform(planHandleZ2D, CLFFT_BACKWARD, 1, &m_oclbase->m_command_queue,
|
||||
0, NULL, NULL, &comp_out, &real_in, NULL);
|
||||
|
||||
if (ierr != OCL_SUCCESS) {
|
||||
dkserr = DKS_ERROR;
|
||||
DEBUG_MSG("Error executing cfFFT\n");
|
||||
if (ierr == CLFFT_INVALID_PLAN)
|
||||
std::cout << "Invlalid plan" << std::endl;
|
||||
else
|
||||
std::cout << "CLFFT error" << std::endl;
|
||||
}
|
||||
|
||||
return dkserr;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -120,10 +171,11 @@ int OpenCLFFT::executeIFFT(void *data, int ndim, int N[3], int streamId) {
|
||||
}
|
||||
|
||||
/*
|
||||
call kernel to normalize fft
|
||||
call kernel to normalize fft. clFFT inverse already includes the scaling so this is disabled.
|
||||
*/
|
||||
int OpenCLFFT::normalizeFFT(void *data, int ndim, int N[3], int streamId) {
|
||||
|
||||
/*
|
||||
cl_mem inout = (cl_mem)data;
|
||||
|
||||
int n = N[0];
|
||||
@ -150,132 +202,175 @@ int OpenCLFFT::normalizeFFT(void *data, int ndim, int N[3], int streamId) {
|
||||
DEBUG_MSG("Error executing kernel");
|
||||
return OCL_ERROR;
|
||||
}
|
||||
|
||||
*/
|
||||
return OCL_SUCCESS;
|
||||
}
|
||||
|
||||
int OpenCLFFT::ocl_executeFFTStockham(void* &src, int ndim, int N, bool forward) {
|
||||
int OpenCLFFT::setupFFT(int ndim, int N[3]) {
|
||||
|
||||
int ierr;
|
||||
int size = sizeof(cl_double2)*pow(N,ndim);
|
||||
|
||||
cl_mem mem_tmp;
|
||||
cl_mem mem_src = (cl_mem)src;
|
||||
cl_mem mem_dst = (cl_mem)m_oclbase->ocl_allocateMemory(size, ierr);
|
||||
|
||||
//set the number of work items in each dimension
|
||||
size_t work_items[3];
|
||||
int p = 1;
|
||||
int threads = N / 2;
|
||||
int f = (forward) ? -1 : 1;
|
||||
|
||||
//execute kernel
|
||||
int n = (int)log2(N);
|
||||
for (int i = 0; i < ndim; i++) {
|
||||
|
||||
int dim = i+1;
|
||||
p = 1;
|
||||
work_items[0] = (dim == 1) ? N/2 : N;
|
||||
work_items[1] = (dim == 2) ? N/2 : N;
|
||||
work_items[2] = (dim == 3) ? N/2 : N;
|
||||
|
||||
//transpose array if calculating dimension larger than 1
|
||||
//if (dim > 1)
|
||||
// ocl_executeTranspose(mem_src, N, ndim, dim);
|
||||
|
||||
//create kernel and set kernel arguments
|
||||
if (m_oclbase->ocl_createKernel("fft3d_radix2") != OCL_SUCCESS)
|
||||
return OCL_ERROR;
|
||||
|
||||
for (int t = 1; t <= log2(N); t++) {
|
||||
|
||||
m_oclbase->ocl_setKernelArg(0, sizeof(cl_mem), &mem_src);
|
||||
m_oclbase->ocl_setKernelArg(1, sizeof(cl_mem), &mem_dst);
|
||||
m_oclbase->ocl_setKernelArg(2, sizeof(int), &p);
|
||||
m_oclbase->ocl_setKernelArg(3, sizeof(int), &threads);
|
||||
m_oclbase->ocl_setKernelArg(4, sizeof(int), &dim);
|
||||
m_oclbase->ocl_setKernelArg(5, sizeof(int), &f);
|
||||
|
||||
if (m_oclbase->ocl_executeKernel(ndim, work_items) != OCL_SUCCESS)
|
||||
return OCL_ERROR;
|
||||
|
||||
mem_tmp = mem_src;
|
||||
mem_src = mem_dst;
|
||||
mem_dst = mem_tmp;
|
||||
|
||||
p = 2*p;
|
||||
}
|
||||
|
||||
//transpose array back if calculating dimension larger than 1
|
||||
//if (dim > 1)
|
||||
// ocl_executeTranspose(mem_src, N, ndim, dim);
|
||||
}
|
||||
|
||||
if (ndim*n % 2 == 1) {
|
||||
m_oclbase->ocl_copyData(mem_src, mem_dst, size);
|
||||
mem_tmp = mem_src;
|
||||
mem_src = mem_dst;
|
||||
mem_dst = mem_tmp;
|
||||
}
|
||||
|
||||
m_oclbase->ocl_freeMemory(mem_dst);
|
||||
|
||||
return OCL_SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
int OpenCLFFT::ocl_executeFFTStockham2(void* &src, int ndim, int N, bool forward) {
|
||||
|
||||
cl_mem mem_src = (cl_mem)src;
|
||||
|
||||
size_t work_items[3] = { (size_t)N/2, (size_t)N, (size_t)N};
|
||||
size_t work_group_size[3] = {(size_t)N/2, 1, 1};
|
||||
|
||||
m_oclbase->ocl_createKernel("fft_batch3D");
|
||||
|
||||
m_oclbase->ocl_setKernelArg(0, sizeof(cl_mem), &mem_src);
|
||||
m_oclbase->ocl_setKernelArg(1, sizeof(cl_double2)*N, NULL);
|
||||
m_oclbase->ocl_setKernelArg(2, sizeof(cl_double2)*N, NULL);
|
||||
m_oclbase->ocl_setKernelArg(3, sizeof(cl_double2), NULL);
|
||||
m_oclbase->ocl_setKernelArg(4, sizeof(int), &N);
|
||||
|
||||
|
||||
for (int dim = 1; dim < ndim+1; dim++) {
|
||||
m_oclbase->ocl_setKernelArg(5, sizeof(int), &dim);
|
||||
m_oclbase->ocl_executeKernel(3, work_items, work_group_size);
|
||||
}
|
||||
|
||||
return OCL_SUCCESS;
|
||||
}
|
||||
|
||||
int OpenCLFFT::ocl_executeTranspose(void *src, int N[3], int ndim, int dim) {
|
||||
|
||||
cl_mem mem_src = (cl_mem)src;
|
||||
cl_int err;
|
||||
|
||||
clfftDim dim;
|
||||
if (ndim == 1)
|
||||
return OCL_SUCCESS;
|
||||
dim = CLFFT_1D;
|
||||
else if (ndim == 2)
|
||||
dim = CLFFT_2D;
|
||||
else
|
||||
dim = CLFFT_3D;
|
||||
size_t clLength[3] = {(size_t)N[0], (size_t)N[1], (size_t)N[2]};
|
||||
|
||||
size_t work_items[3];
|
||||
work_items[0] = N[0];
|
||||
work_items[1] = N[1];
|
||||
work_items[2] = 1;
|
||||
/* Create 3D fft plan*/
|
||||
err = clfftCreateDefaultPlan(&planHandleZ2Z, m_oclbase->m_context, dim, clLength);
|
||||
|
||||
size_t work_group_size[3];
|
||||
work_group_size[0] = N[0];
|
||||
work_group_size[1] = N[1];
|
||||
work_group_size[2] = 1;
|
||||
/* Set plan parameters */
|
||||
err = clfftSetPlanPrecision(planHandleZ2Z, CLFFT_DOUBLE);
|
||||
if (err != CL_SUCCESS)
|
||||
std::cout << "Error setting precision" << std::endl;
|
||||
err = clfftSetLayout(planHandleZ2Z, CLFFT_COMPLEX_INTERLEAVED, CLFFT_COMPLEX_INTERLEAVED);
|
||||
if (err != CL_SUCCESS)
|
||||
std::cout << "Error setting layout" << std::endl;
|
||||
err = clfftSetResultLocation(planHandleZ2Z, CLFFT_INPLACE);
|
||||
if (err != CL_SUCCESS)
|
||||
std::cout << "Error setting result location" << std::endl;
|
||||
/* Bake the plan */
|
||||
err = clfftBakePlan(planHandleZ2Z, 1, &m_oclbase->m_command_queue, NULL, NULL);
|
||||
|
||||
size_t local_size = work_group_size[0] * work_group_size[1] * work_group_size[2];
|
||||
if (err != CL_SUCCESS) {
|
||||
DEBUG_MSG("Error creating Complex-to-complex plan");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
m_oclbase->ocl_createKernel("transpose");
|
||||
m_oclbase->ocl_setKernelArg(0, sizeof(cl_mem), &mem_src);
|
||||
m_oclbase->ocl_setKernelArg(1, sizeof(cl_mem), &mem_src);
|
||||
m_oclbase->ocl_setKernelArg(2, sizeof(int), &N[0]);
|
||||
m_oclbase->ocl_setKernelArg(3, sizeof(int), &N[1]);
|
||||
m_oclbase->ocl_setKernelArg(4, sizeof(cl_double2)*local_size, NULL);
|
||||
m_oclbase->ocl_executeKernel(ndim, work_items, work_group_size);
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
int OpenCLFFT::setupFFTRC(int ndim, int N[3], double scale) {
|
||||
cl_int err;
|
||||
|
||||
clfftDim dim;
|
||||
if (ndim == 1)
|
||||
dim = CLFFT_1D;
|
||||
else if (ndim == 2)
|
||||
dim = CLFFT_2D;
|
||||
else
|
||||
dim = CLFFT_3D;
|
||||
|
||||
size_t clLength[3] = {(size_t)N[0], (size_t)N[1], (size_t)N[2]};
|
||||
|
||||
size_t half = (size_t)N[0] / 2 + 1;
|
||||
size_t clInStride[3] = {1, (size_t)N[0], (size_t)N[0]*N[1]};
|
||||
size_t clOutStride[3] = {1, half, half * N[1]};
|
||||
|
||||
/* Create 3D fft plan*/
|
||||
err = clfftCreateDefaultPlan(&planHandleD2Z, m_oclbase->m_context, dim, clLength);
|
||||
|
||||
/* Set plan parameters */
|
||||
err = clfftSetPlanPrecision(planHandleD2Z, CLFFT_DOUBLE);
|
||||
err = clfftSetLayout(planHandleD2Z, CLFFT_REAL, CLFFT_HERMITIAN_INTERLEAVED);
|
||||
err = clfftSetResultLocation(planHandleD2Z, CLFFT_OUTOFPLACE);
|
||||
err = clfftSetPlanInStride(planHandleD2Z, dim, clInStride);
|
||||
err = clfftSetPlanOutStride(planHandleD2Z, dim, clOutStride);
|
||||
|
||||
/* Bake the plan */
|
||||
err = clfftBakePlan(planHandleD2Z, 1, &m_oclbase->m_command_queue, NULL, NULL);
|
||||
|
||||
if (err != CL_SUCCESS) {
|
||||
DEBUG_MSG("Error creating Real-to-complex plan");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
int OpenCLFFT::setupFFTCR(int ndim, int N[3], double scale) {
|
||||
cl_int err;
|
||||
|
||||
clfftDim dim;
|
||||
if (ndim == 1)
|
||||
dim = CLFFT_1D;
|
||||
else if (ndim == 2)
|
||||
dim = CLFFT_2D;
|
||||
else
|
||||
dim = CLFFT_3D;
|
||||
|
||||
size_t clLength[3] = {(size_t)N[0], (size_t)N[1], (size_t)N[2]};
|
||||
|
||||
size_t half = (size_t)N[0] / 2 + 1;
|
||||
size_t clInStride[3] = {1, half, half * N[1]};
|
||||
size_t clOutStride[3] = {1, (size_t)N[0], (size_t)N[0]*N[1]};
|
||||
|
||||
/* Create 3D fft plan*/
|
||||
err = clfftCreateDefaultPlan(&planHandleZ2D, m_oclbase->m_context, dim, clLength);
|
||||
|
||||
/* Set plan parameters */
|
||||
err = clfftSetPlanPrecision(planHandleZ2D, CLFFT_DOUBLE);
|
||||
err = clfftSetLayout(planHandleZ2D, CLFFT_HERMITIAN_INTERLEAVED, CLFFT_REAL);
|
||||
err = clfftSetResultLocation(planHandleZ2D, CLFFT_OUTOFPLACE);
|
||||
err = clfftSetPlanInStride(planHandleZ2D, dim, clInStride);
|
||||
err = clfftSetPlanOutStride(planHandleZ2D, dim, clOutStride);
|
||||
|
||||
/* Bake the plan */
|
||||
err = clfftBakePlan(planHandleZ2D, 1, &m_oclbase->m_command_queue, NULL, NULL);
|
||||
|
||||
if (err != CL_SUCCESS) {
|
||||
DEBUG_MSG("Error creating Complex-to-real plan");
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
int OpenCLFFT::destroyFFT() {
|
||||
clfftDestroyPlan(&planHandleZ2Z);
|
||||
clfftDestroyPlan(&planHandleD2Z);
|
||||
clfftDestroyPlan(&planHandleZ2D);
|
||||
|
||||
clfftTeardown();
|
||||
|
||||
return DKS_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
void OpenCLFFT::printError(clfftStatus err) {
|
||||
|
||||
if (err != CL_SUCCESS) {
|
||||
std::cout << "Error creating default plan " << err << std::endl;
|
||||
switch(err) {
|
||||
case CLFFT_BUGCHECK:
|
||||
std::cout << "bugcheck" << std::endl;
|
||||
break;
|
||||
case CLFFT_NOTIMPLEMENTED:
|
||||
std::cout << "not implemented" << std::endl;
|
||||
break;
|
||||
case CLFFT_TRANSPOSED_NOTIMPLEMENTED:
|
||||
std::cout << "transposed not implemented" << std::endl;
|
||||
break;
|
||||
case CLFFT_FILE_NOT_FOUND:
|
||||
std::cout << "file not found" << std::endl;
|
||||
break;
|
||||
case CLFFT_FILE_CREATE_FAILURE:
|
||||
std::cout << "file create failure" << std::endl;
|
||||
break;
|
||||
case CLFFT_VERSION_MISMATCH:
|
||||
std::cout << "version missmatch" << std::endl;
|
||||
break;
|
||||
case CLFFT_INVALID_PLAN:
|
||||
std::cout << "invalid plan" << std::endl;
|
||||
break;
|
||||
case CLFFT_DEVICE_NO_DOUBLE:
|
||||
std::cout << "no double" << std::endl;
|
||||
break;
|
||||
case CLFFT_DEVICE_MISMATCH:
|
||||
std::cout << "device missmatch" << std::endl;
|
||||
break;
|
||||
case CLFFT_ENDSTATUS:
|
||||
std::cout << "end status" << std::endl;
|
||||
break;
|
||||
default:
|
||||
std::cout << "other: " << err << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return OCL_SUCCESS;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -20,12 +20,19 @@
|
||||
#include "../Algorithms/FFT.h"
|
||||
#include "OpenCLBase.h"
|
||||
|
||||
#include "clFFT.h"
|
||||
|
||||
class OpenCLFFT : public DKSFFT {
|
||||
|
||||
private:
|
||||
|
||||
OpenCLBase *m_oclbase;
|
||||
|
||||
clfftSetupData fftSetup;
|
||||
clfftPlanHandle planHandleZ2Z;
|
||||
clfftPlanHandle planHandleD2Z;
|
||||
clfftPlanHandle planHandleZ2D;
|
||||
|
||||
/*
|
||||
Info: call fft kernels to execute FFT of the given domain,
|
||||
data - devevice memory ptr, cdim - current dim to transform,
|
||||
@ -42,15 +49,31 @@ private:
|
||||
*/
|
||||
int ocl_callBitReverseKernel(cl_mem &data, int cdim, int ndim, int N);
|
||||
|
||||
/** Get clfftStatus and print the corresponding error message.
|
||||
* clfftStatus is returned from all clFFT library functions, print error displays the
|
||||
* corresponding error message. If "other" is printed then error code corresponds to
|
||||
* OpenCL error code and not specifically to clFFT library, then OpenCL error codes should
|
||||
* be checked to determine the reason for the error.
|
||||
*/
|
||||
void printError(clfftStatus err);
|
||||
|
||||
public:
|
||||
|
||||
/* constructor - currently does nothing*/
|
||||
OpenCLFFT(OpenCLBase *base) {
|
||||
m_oclbase = base;
|
||||
|
||||
/* Set up fft */
|
||||
cl_int err;
|
||||
err = clfftInitSetupData(&fftSetup);
|
||||
err = clfftSetup(&fftSetup);
|
||||
|
||||
if (err != CL_SUCCESS)
|
||||
DEBUG_MSG("Error seting up clFFT");
|
||||
}
|
||||
|
||||
/* destructor - currently does nothing*/
|
||||
~OpenCLFFT() { }
|
||||
~OpenCLFFT() { destroyFFT(); }
|
||||
|
||||
/*
|
||||
Info: execute forward fft function with data set on device
|
||||
@ -77,35 +100,23 @@ public:
|
||||
Info: set FFT size
|
||||
Return: success or error code
|
||||
*/
|
||||
int setupFFT(int ndim, int N[3]) { return DKS_SUCCESS; }
|
||||
int setupFFT(int ndim, int N[3]);
|
||||
|
||||
int setupFFTRC(int ndim, int N[3], double scale = 1.0) { return DKS_SUCCESS; }
|
||||
int setupFFTRC(int ndim, int N[3], double scale = 1.0);
|
||||
|
||||
int setupFFTCR(int ndim, int N[3], double scale = 1.0) { return DKS_SUCCESS; }
|
||||
int setupFFTCR(int ndim, int N[3], double scale = 1.0);
|
||||
|
||||
int destroyFFT() { return DKS_SUCCESS; }
|
||||
int destroyFFT();
|
||||
|
||||
int executeRCFFT(void * real_ptr, void * comp_ptr, int ndim, int N[3],
|
||||
int streamId = -1)
|
||||
{
|
||||
return DKS_ERROR;
|
||||
}
|
||||
int streamId = -1);
|
||||
int executeCRFFT(void * real_ptr, void * comp_ptr, int ndim, int N[3],
|
||||
int streamId = -1)
|
||||
{
|
||||
return DKS_ERROR;
|
||||
}
|
||||
int streamId = -1);
|
||||
int normalizeCRFFT(void *real_ptr, int ndim, int N[3], int streamId = -1)
|
||||
{
|
||||
return DKS_ERROR;
|
||||
}
|
||||
|
||||
int ocl_executeFFTStockham(void* &src, int ndim, int N, bool forward = true);
|
||||
|
||||
int ocl_executeFFTStockham2(void* &src, int ndim, int N, bool forward = true);
|
||||
|
||||
int ocl_executeTranspose(void *src, int N[3], int ndim, int dim);
|
||||
|
||||
//void printData3DN4(cl_double2* &data, int N);
|
||||
|
||||
};
|
||||
|
181
src/OpenCL/OpenCLGreensFunction.cpp
Normal file
181
src/OpenCL/OpenCLGreensFunction.cpp
Normal file
@ -0,0 +1,181 @@
|
||||
#include "OpenCLGreensFunction.h"
|
||||
#define GREENS_KERNEL "OpenCL/OpenCLKernels/OpenCLGreensFunction.cl"
|
||||
|
||||
OpenCLGreensFunction::OpenCLGreensFunction(OpenCLBase *base) {
|
||||
m_base = base;
|
||||
base_create = false;
|
||||
}
|
||||
|
||||
OpenCLGreensFunction::OpenCLGreensFunction() {
|
||||
m_base = new OpenCLBase();
|
||||
base_create = true;
|
||||
}
|
||||
|
||||
OpenCLGreensFunction::~OpenCLGreensFunction() {
|
||||
if (base_create)
|
||||
delete m_base;
|
||||
}
|
||||
|
||||
int OpenCLGreensFunction::buildProgram() {
|
||||
char *kernel_file = new char[500];
|
||||
kernel_file[0] = '\0';
|
||||
strcat(kernel_file, OPENCL_KERNELS);
|
||||
strcat(kernel_file, GREENS_KERNEL);
|
||||
|
||||
return m_base->ocl_loadKernel(kernel_file);
|
||||
}
|
||||
|
||||
int OpenCLGreensFunction::greensIntegral(void *tmpgreen, int I, int J, int K, int NI, int NJ,
|
||||
double hr_m0, double hr_m1, double hr_m2,
|
||||
int streamId)
|
||||
{
|
||||
int ierr = DKS_SUCCESS;
|
||||
|
||||
//compile opencl program from source
|
||||
buildProgram();
|
||||
|
||||
//cast the input data ptr to cl_mem
|
||||
cl_mem tmpgreen_ptr = (cl_mem)tmpgreen;
|
||||
|
||||
//set the work item size
|
||||
size_t work_size = 128;
|
||||
size_t work_items = I * J * K;
|
||||
if (work_items % work_size > 0)
|
||||
work_items = (work_items / work_size + 1) * work_size;
|
||||
|
||||
//create kernel
|
||||
ierr = m_base->ocl_createKernel("kernelTmpgreen");
|
||||
|
||||
//set kernel parameters
|
||||
m_base->ocl_setKernelArg(0, sizeof(cl_mem), &tmpgreen_ptr);
|
||||
m_base->ocl_setKernelArg(1, sizeof(double), &hr_m0);
|
||||
m_base->ocl_setKernelArg(2, sizeof(double), &hr_m1);
|
||||
m_base->ocl_setKernelArg(3, sizeof(double), &hr_m2);
|
||||
m_base->ocl_setKernelArg(4, sizeof(int), &I);
|
||||
m_base->ocl_setKernelArg(5, sizeof(int), &J);
|
||||
m_base->ocl_setKernelArg(6, sizeof(int), &K);
|
||||
|
||||
//execute kernel
|
||||
ierr = m_base->ocl_executeKernel(1, &work_items, &work_size);
|
||||
|
||||
return ierr;
|
||||
}
|
||||
|
||||
int OpenCLGreensFunction::integrationGreensFunction(void *rho2_m, void *tmpgreen, int I, int J,
|
||||
int K, int streamId)
|
||||
{
|
||||
int ierr = DKS_SUCCESS;
|
||||
|
||||
//compile opencl program from source
|
||||
buildProgram();
|
||||
|
||||
//cast the input data ptr to cl_mem
|
||||
cl_mem rho2_ptr = (cl_mem)rho2_m;
|
||||
cl_mem tmpgreen_ptr = (cl_mem)tmpgreen;
|
||||
int NI = 2*(I - 1);
|
||||
int NJ = 2*(J - 1);
|
||||
|
||||
//set the work item size
|
||||
size_t work_size = 128;
|
||||
size_t work_items = I * J * K;
|
||||
if (work_items % work_size > 0)
|
||||
work_items = (work_items / work_size + 1) * work_size;
|
||||
|
||||
//create kernel
|
||||
ierr = m_base->ocl_createKernel("kernelIntegration");
|
||||
|
||||
//set kernel parameters
|
||||
m_base->ocl_setKernelArg(0, sizeof(cl_mem), &rho2_ptr);
|
||||
m_base->ocl_setKernelArg(1, sizeof(cl_mem), &tmpgreen_ptr);
|
||||
m_base->ocl_setKernelArg(2, sizeof(int), &NI);
|
||||
m_base->ocl_setKernelArg(3, sizeof(int), &NJ);
|
||||
m_base->ocl_setKernelArg(4, sizeof(int), &I);
|
||||
m_base->ocl_setKernelArg(5, sizeof(int), &J);
|
||||
m_base->ocl_setKernelArg(6, sizeof(int), &K);
|
||||
|
||||
//execute kernel
|
||||
double zero = 0.0;
|
||||
int sizerho = 2*(I - 1) * 2*(J - 1) * 2*(K - 1);
|
||||
m_base->ocl_fillMemory(rho2_ptr, sizerho, zero, 0);
|
||||
ierr = m_base->ocl_executeKernel(1, &work_items, &work_size);
|
||||
|
||||
return ierr;
|
||||
|
||||
}
|
||||
|
||||
|
||||
int OpenCLGreensFunction::mirrorRhoField(void *rho2_m, int I, int J, int K, int streamId)
|
||||
{
|
||||
int ierr = DKS_SUCCESS;
|
||||
|
||||
//compile opencl program from source
|
||||
buildProgram();
|
||||
|
||||
//cast the input data ptr to cl_mem
|
||||
cl_mem rho2_ptr = (cl_mem)rho2_m;
|
||||
int NI = I + 1;
|
||||
int NJ = J + 1;
|
||||
int NK = K + 1;
|
||||
int I2 = 2*I;
|
||||
int J2 = 2*J;
|
||||
int K2 = 2*K;
|
||||
|
||||
int rhosize = ( (I - 1) * 2 ) * ( (J - 1) * 2 ) * ( (K - 1) * 2 );
|
||||
|
||||
//set the work item size
|
||||
size_t work_size = 128;
|
||||
size_t work_items = NI * NJ * NK;
|
||||
if (work_items % work_size > 0)
|
||||
work_items = (work_items / work_size + 1) * work_size;
|
||||
|
||||
//create kernel
|
||||
ierr = m_base->ocl_createKernel("kernelMirroredRhoField");
|
||||
|
||||
//set kernel parameters
|
||||
m_base->ocl_setKernelArg(0, sizeof(cl_mem), &rho2_ptr);
|
||||
m_base->ocl_setKernelArg(1, sizeof(int), &I2);
|
||||
m_base->ocl_setKernelArg(2, sizeof(int), &J2);
|
||||
m_base->ocl_setKernelArg(3, sizeof(int), &K2);
|
||||
m_base->ocl_setKernelArg(4, sizeof(int), &NI);
|
||||
m_base->ocl_setKernelArg(5, sizeof(int), &NJ);
|
||||
m_base->ocl_setKernelArg(6, sizeof(int), &NK);
|
||||
m_base->ocl_setKernelArg(7, sizeof(int), &rhosize);
|
||||
|
||||
//execute kernel
|
||||
ierr = m_base->ocl_executeKernel(1, &work_items, &work_size);
|
||||
|
||||
return ierr;
|
||||
}
|
||||
|
||||
|
||||
int OpenCLGreensFunction::multiplyCompelxFields(void *ptr1, void *ptr2, int size, int streamId)
|
||||
{
|
||||
int ierr = DKS_SUCCESS;
|
||||
|
||||
//compile opencl program from source
|
||||
buildProgram();
|
||||
|
||||
//cast the input data ptr to cl_mem
|
||||
cl_mem mem_ptr1 = (cl_mem) ptr1;
|
||||
cl_mem mem_ptr2 = (cl_mem) ptr2;
|
||||
|
||||
//set the work item size
|
||||
size_t work_size = 128;
|
||||
size_t work_items = size;
|
||||
if (work_items % work_size > 0)
|
||||
work_items = (work_items / work_size + 1) * work_size;
|
||||
|
||||
//create kernel
|
||||
ierr = m_base->ocl_createKernel("multiplyComplexFields");
|
||||
|
||||
//set kernel parameters
|
||||
m_base->ocl_setKernelArg(0, sizeof(cl_mem), &mem_ptr1);
|
||||
m_base->ocl_setKernelArg(1, sizeof(cl_mem), &mem_ptr2);
|
||||
m_base->ocl_setKernelArg(2, sizeof(int), &size);
|
||||
|
||||
//execute kernel
|
||||
ierr = m_base->ocl_executeKernel(1, &work_items, &work_size);
|
||||
|
||||
return ierr;
|
||||
|
||||
}
|
63
src/OpenCL/OpenCLGreensFunction.h
Normal file
63
src/OpenCL/OpenCLGreensFunction.h
Normal file
@ -0,0 +1,63 @@
|
||||
#ifndef H_OPENCL_GREENSFUNCTION
|
||||
#define H_OPENCL_GREENSFUNCTION
|
||||
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
|
||||
#include "../Algorithms/GreensFunction.h"
|
||||
#include "OpenCLBase.h"
|
||||
|
||||
class OpenCLGreensFunction : public GreensFunction {
|
||||
|
||||
private:
|
||||
|
||||
bool base_create;
|
||||
OpenCLBase *m_base;
|
||||
|
||||
public:
|
||||
|
||||
/** Constructor with OpenCLBase argument */
|
||||
OpenCLGreensFunction(OpenCLBase *base);
|
||||
|
||||
/** Default constructor */
|
||||
OpenCLGreensFunction();
|
||||
|
||||
/** Destructor */
|
||||
~OpenCLGreensFunction();
|
||||
|
||||
/** Load OpenCL kernel file containing greens function kernels.
|
||||
* m_base takes the kernel file and compiles the OpenCL programm.
|
||||
*/
|
||||
int buildProgram();
|
||||
|
||||
/**
|
||||
Info: calc itegral on device memory (taken from OPAL src code)
|
||||
Return: success or error code
|
||||
*/
|
||||
int greensIntegral(void *tmpgreen, int I, int J, int K, int NI, int NJ,
|
||||
double hr_m0, double hr_m1, double hr_m2,
|
||||
int streamId = -1);
|
||||
|
||||
/**
|
||||
Info: integration of rho2_m field (taken from OPAL src code)
|
||||
Return: success or error code
|
||||
*/
|
||||
int integrationGreensFunction(void *rho2_m, void *tmpgreen, int I, int J, int K,
|
||||
int streamId = -1);
|
||||
|
||||
/**
|
||||
Info: mirror rho field (taken from OPAL src code)
|
||||
Return: succes or error code
|
||||
*/
|
||||
int mirrorRhoField(void *rho2_m, int I, int J, int K, int streamId = -1);
|
||||
|
||||
/**
|
||||
Info: multiply complex fields already on the GPU memory, result will be put in ptr1
|
||||
Return: success or error code
|
||||
*/
|
||||
int multiplyCompelxFields(void *ptr1, void *ptr2, int size, int streamId = -1);
|
||||
|
||||
};
|
||||
|
||||
|
||||
#endif
|
@ -1,6 +1,4 @@
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
||||
#pragma OPENCL EXTENSION
|
||||
|
||||
|
||||
/******Random numbers********/
|
||||
|
||||
@ -89,13 +87,14 @@ __kernel void initRand(__global RNDState *s, unsigned int seed, int N) {
|
||||
|
||||
if (id < N) {
|
||||
RNDState tmp;
|
||||
int tmp_seed = id;// * 0x100000000ULL;
|
||||
int tmp_seed = 2*id;// * 0x100000000ULL;
|
||||
tmp.s10 = 12345 + tmp_seed;
|
||||
tmp.s11 = 12345 + tmp_seed;
|
||||
tmp.s12 = 123 + tmp_seed;
|
||||
tmp.s12 = 12345 + tmp_seed;
|
||||
tmp.s20 = 12345 + tmp_seed;
|
||||
tmp.s21 = 12345 + tmp_seed;
|
||||
tmp.s22 = 123 + tmp_seed;
|
||||
tmp.s22 = 12345 + tmp_seed;
|
||||
|
||||
|
||||
tmp.z = 0;
|
||||
tmp.gen = true;
|
||||
@ -105,6 +104,19 @@ __kernel void initRand(__global RNDState *s, unsigned int seed, int N) {
|
||||
|
||||
}
|
||||
|
||||
/* create random numbers and fill an array */
|
||||
__kernel void createRandoms(__global RNDState *states, __global double *data, int size) {
|
||||
|
||||
int idx = get_global_id(0);
|
||||
|
||||
if (idx < size) {
|
||||
RNDState s = states[idx];
|
||||
data[idx] = rand_uniform(&s);
|
||||
states[idx] = s;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**********Degrader**********/
|
||||
enum PARAMS { POSITION,
|
||||
|
170
src/OpenCL/OpenCLKernels/OpenCLGreensFunction.cl
Normal file
170
src/OpenCL/OpenCLKernels/OpenCLGreensFunction.cl
Normal file
@ -0,0 +1,170 @@
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
||||
|
||||
/** compute the greens integral analytically */
|
||||
__kernel void kernelTmpgreen(__global double *tmpgreen, double hr_m0, double hr_m1, double hr_m2,
|
||||
int NI, int NJ, int NK)
|
||||
{
|
||||
|
||||
int tid = get_local_size(0);
|
||||
int id = get_global_id(0);
|
||||
|
||||
if (id < NI * NJ * NK) {
|
||||
int i = id % NI;
|
||||
int k = id / (NI * NJ);
|
||||
int j = (id - k * NI * NJ) / NI;
|
||||
|
||||
|
||||
double cellVolume = hr_m0 * hr_m1 * hr_m2;
|
||||
|
||||
double vv0 = i * hr_m0 - hr_m0 / 2;
|
||||
double vv1 = j * hr_m1 - hr_m1 / 2;
|
||||
double vv2 = k * hr_m2 - hr_m2 / 2;
|
||||
|
||||
double r = sqrt(vv0 * vv0 + vv1 * vv1 + vv2 * vv2);
|
||||
|
||||
double tmpgrn = -vv2*vv2 * atan(vv0 * vv1 / (vv2 * r) );
|
||||
tmpgrn += -vv1*vv1 * atan(vv0 * vv2 / (vv1 * r) );
|
||||
tmpgrn += -vv0*vv0 * atan(vv1 * vv2 / (vv0 * r) );
|
||||
|
||||
tmpgrn = tmpgrn / 2;
|
||||
|
||||
tmpgrn += vv1 * vv2 * log(vv0 + r);
|
||||
tmpgrn += vv0 * vv2 * log(vv1 + r);
|
||||
tmpgrn += vv0 * vv1 * log(vv2 + r);
|
||||
|
||||
tmpgreen[id] = tmpgrn / cellVolume;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** perform the actual integration */
|
||||
__kernel void kernelIntegration(__global double *rho2_m, __global double *tmpgreen,
|
||||
int NI, int NJ, int NI_tmp, int NJ_tmp, int NK_tmp)
|
||||
{
|
||||
|
||||
int tid = get_local_id(0);
|
||||
int id = get_global_id(0);
|
||||
|
||||
int ni = NI;
|
||||
int nj = NJ;
|
||||
|
||||
double tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
|
||||
if (id < NI_tmp * NJ_tmp * NK_tmp) {
|
||||
int i = id % NI_tmp;
|
||||
int k = id / (NI_tmp * NJ_tmp);
|
||||
int j = (id - k * NI_tmp * NJ_tmp) / NI_tmp;
|
||||
|
||||
tmp0 = 0; tmp1 = 0; tmp2 = 0; tmp3 = 0;
|
||||
tmp4 = 0; tmp5 = 0; tmp6 = 0; tmp7 = 0;
|
||||
|
||||
if (i+1 < NI_tmp && j+1 < NJ_tmp && k+1 < NK_tmp)
|
||||
tmp0 = tmpgreen[(i+1) + (j+1) * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
|
||||
if (i+1 < NI_tmp)
|
||||
tmp1 = tmpgreen[(i+1) + j * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
|
||||
if (j+1 < NJ_tmp)
|
||||
tmp2 = tmpgreen[ i + (j+1) * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
|
||||
if (k+1 < NK_tmp)
|
||||
tmp3 = tmpgreen[ i + j * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
|
||||
if (i+1 < NI_tmp && j+1 < NJ_tmp)
|
||||
tmp4 = tmpgreen[(i+1) + (j+1) * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
|
||||
if (i+1 < NI_tmp && k+1 < NK_tmp)
|
||||
tmp5 = tmpgreen[(i+1) + j * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
|
||||
if (j+1 < NJ_tmp && k+1 < NK_tmp)
|
||||
tmp6 = tmpgreen[ i + (j+1) * NI_tmp + (k+1) * NI_tmp * NJ_tmp];
|
||||
|
||||
tmp7 = tmpgreen[ i + j * NI_tmp + k * NI_tmp * NJ_tmp];
|
||||
|
||||
double tmp_rho = tmp0 + tmp1 + tmp2 + tmp3 - tmp4 - tmp5 - tmp6 - tmp7;
|
||||
|
||||
rho2_m[i + j*ni + k*ni*nj] = tmp_rho;
|
||||
}
|
||||
}
|
||||
|
||||
/** miror rho-field */
|
||||
__kernel void kernelMirroredRhoField0(__global double *rho2_m, int NI, int NJ) {
|
||||
rho2_m[0] = rho2_m[NI*NJ];
|
||||
}
|
||||
|
||||
__kernel void kernelMirroredRhoField(__global double *rho2_m,
|
||||
int NI, int NJ, int NK,
|
||||
int NI_tmp, int NJ_tmp, int NK_tmp,
|
||||
int size)
|
||||
{
|
||||
|
||||
int tid = get_local_id(0);
|
||||
int id = get_global_id(0);
|
||||
|
||||
if (id == 0)
|
||||
rho2_m[0] = rho2_m[NI * NJ];
|
||||
|
||||
barrier(CLK_GLOBAL_MEM_FENCE);
|
||||
|
||||
int id1, id2, id3, id4, id5, id6, id7, id8;
|
||||
|
||||
if (id < NI_tmp * NJ_tmp * NK_tmp) {
|
||||
int i = id % NI_tmp;
|
||||
int k = id / (NI_tmp * NJ_tmp);
|
||||
int j = (id - k * NI_tmp * NJ_tmp) / NI_tmp;
|
||||
|
||||
int ri = NI - i;
|
||||
int rj = NJ - j;
|
||||
int rk = NK - k;
|
||||
|
||||
id1 = k * NI * NJ + j * NI + i;
|
||||
id2 = k * NI * NJ + j * NI + ri;
|
||||
id3 = k * NI * NJ + rj * NI + i;
|
||||
id4 = k * NI * NJ + rj * NI + ri;
|
||||
|
||||
id5 = rk * NI * NJ + j * NI + i;
|
||||
id6 = rk * NI * NJ + j * NI + ri;
|
||||
id7 = rk * NI * NJ + rj * NI + i;
|
||||
id8 = rk * NI * NJ + rj * NI + ri;
|
||||
|
||||
double data = 0.0;
|
||||
if (id1 < size)
|
||||
data = rho2_m[id1];
|
||||
|
||||
if (i != 0 && id2 < size) rho2_m[id2] = data;
|
||||
|
||||
if (j != 0 && id3 < size) rho2_m[id3] = data;
|
||||
|
||||
if (i != 0 && j != 0 && id4 < size) rho2_m[id4] = data;
|
||||
|
||||
if (k != 0 && id5 < size) rho2_m[id5] = data;
|
||||
|
||||
if (k != 0 && i != 0 && id6 < size) rho2_m[id6] = data;
|
||||
|
||||
if (k!= 0 && j != 0 && id7 < size) rho2_m[id7] = data;
|
||||
|
||||
if (k != 0 && j != 0 & i != 0 && id8 < size) rho2_m[id8] = data;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** multiply complex fields */
|
||||
double2 ComplexMul(double2 a, double2 b) {
|
||||
double2 c;
|
||||
c.x = a.x * b.x - a.y * b.y;
|
||||
c.y = a.x * b.y + a.y * b.x;
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
__kernel void multiplyComplexFields(__global double2 *ptr1, __global double2 *ptr2,
|
||||
int size)
|
||||
{
|
||||
|
||||
int idx = get_global_id(0);
|
||||
|
||||
if (idx < size)
|
||||
ptr1[idx] = ComplexMul(ptr1[idx], ptr2[idx]);
|
||||
|
||||
}
|
@ -7,8 +7,8 @@ LINK_DIRECTORIES( ${CMAKE_SOURCE_DIR}/src )
|
||||
#ADD_EXECUTABLE(testFFT testFFT.cpp)
|
||||
#ADD_EXECUTABLE(testMIC testMIC.cpp)
|
||||
#ADD_EXECUTABLE(testMICOpenCL testMICOpenCL.cpp)
|
||||
#ADD_EXECUTABLE(testFFT3D testFFT3D.cpp)
|
||||
#ADD_EXECUTABLE(testFFT3DRC testFFT3DRC.cpp)
|
||||
ADD_EXECUTABLE(testFFT3D testFFT3D.cpp)
|
||||
ADD_EXECUTABLE(testFFT3DRC testFFT3DRC.cpp)
|
||||
#ADD_EXECUTABLE(testFFT3DRC_MIC testFFT3DRC_MIC.cpp)
|
||||
#ADD_EXECUTABLE(testFFT3DTiming testFFT3DTiming.cpp)
|
||||
#ADD_EXECUTABLE(testStockhamFFT testStockhamFFT.cpp)
|
||||
@ -22,10 +22,11 @@ LINK_DIRECTORIES( ${CMAKE_SOURCE_DIR}/src )
|
||||
#ADD_EXECUTABLE(testGather testGather.cpp)
|
||||
#ADD_EXECUTABLE(testGatherAsync testGatherAsync.cpp)
|
||||
#ADD_EXECUTABLE(testTranspose testTranspose.cpp)
|
||||
ADD_EXECUTABLE(testRandom testRandom.cpp)
|
||||
ADD_EXECUTABLE(testCollimatorPhysics testCollimatorPhysics.cpp)
|
||||
#ADD_EXECUTABLE(testCollimatorPhysicsSoA testCollimatorPhysicsSoA.cpp)
|
||||
ADD_EXECUTABLE(testCollimatorPhysicsSoA testCollimatorPhysicsSoA.cpp)
|
||||
#ADD_EXECUTABLE(testPush testPush.cpp)
|
||||
#ADD_EXECUTABLE(testFFTSolverMIC testFFTSolver_MIC.cpp)
|
||||
ADD_EXECUTABLE(testFFTSolverMIC testFFTSolver_MIC.cpp)
|
||||
#ADD_EXECUTABLE(testIntegration testTimeIntegration.cpp)
|
||||
#ADD_EXECUTABLE(testImageReconstruction testImageReconstruction.cpp)
|
||||
|
||||
@ -38,8 +39,8 @@ ADD_EXECUTABLE(testCollimatorPhysics testCollimatorPhysics.cpp)
|
||||
#TARGET_LINK_LIBRARIES(testFFT dks)
|
||||
#TARGET_LINK_LIBRARIES(testMIC dks)
|
||||
#TARGET_LINK_LIBRARIES(testMICOpenCL dks)
|
||||
#TARGET_LINK_LIBRARIES(testFFT3D dks)
|
||||
#TARGET_LINK_LIBRARIES(testFFT3DRC dks)
|
||||
TARGET_LINK_LIBRARIES(testFFT3D dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
TARGET_LINK_LIBRARIES(testFFT3DRC dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
#TARGET_LINK_LIBRARIES(testFFT3DRC_MIC dks)
|
||||
#TARGET_LINK_LIBRARIES(testFFT3DTiming dks)
|
||||
#TARGET_LINK_LIBRARIES(testStockhamFFT dks)
|
||||
@ -53,10 +54,11 @@ ADD_EXECUTABLE(testCollimatorPhysics testCollimatorPhysics.cpp)
|
||||
#TARGET_LINK_LIBRARIES(testGather dks)
|
||||
#TARGET_LINK_LIBRARIES(testGatherAsync dks)
|
||||
#TARGET_LINK_LIBRARIES(testTranspose dks)
|
||||
TARGET_LINK_LIBRARIES(testCollimatorPhysics dks ${Boost_LIBRARIES})
|
||||
#TARGET_LINK_LIBRARIES(testCollimatorPhysicsSoA dks)
|
||||
TARGET_LINK_LIBRARIES(testRandom dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
TARGET_LINK_LIBRARIES(testCollimatorPhysics dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
TARGET_LINK_LIBRARIES(testCollimatorPhysicsSoA dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
#TARGET_LINK_LIBRARIES(testPush dks)
|
||||
#TARGET_LINK_LIBRARIES(testFFTSolverMIC dks)
|
||||
TARGET_LINK_LIBRARIES(testFFTSolverMIC dks ${Boost_LIBRARIES} ${CLFFT_LIBRARIES})
|
||||
#TARGET_LINK_LIBRARIES(testIntegration dks)
|
||||
#TARGET_LINK_LIBRARIES(testImageReconstruction dks)
|
||||
|
||||
|
@ -129,7 +129,9 @@ int main(int argc, char *argv[]) {
|
||||
//init random
|
||||
base.callInitRandoms(numpart);
|
||||
|
||||
|
||||
//**test collimator physics and sort***//
|
||||
|
||||
void *label_ptr, *localID_ptr, *rx_ptr, *ry_ptr, *rz_ptr, *px_ptr, *py_ptr, *pz_ptr, *param_ptr;
|
||||
|
||||
//allocate memory for particles
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <complex>
|
||||
#include <string>
|
||||
|
||||
#include "Utility/TimeStamp.h"
|
||||
#include "DKSBase.h"
|
||||
@ -18,24 +19,32 @@ int main(int argc, char *argv[]) {
|
||||
int N = 16;
|
||||
char *api_name = new char[10];
|
||||
char *device_name = new char[10];
|
||||
if (argc == 2) {
|
||||
N = atoi(argv[1]);
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
if (argv[i] == string("-cuda")) {
|
||||
strcpy(api_name, "Cuda");
|
||||
strcpy(device_name, "-gpu");
|
||||
} else if (argc == 3) {
|
||||
N = atoi(argv[1]);
|
||||
strcpy(api_name, argv[2]);
|
||||
strcpy(device_name, "-gpu");
|
||||
} else if (argc == 4) {
|
||||
N = atoi(argv[1]);
|
||||
strcpy(api_name, argv[2]);
|
||||
strcpy(device_name, argv[3]);
|
||||
} else {
|
||||
N = 16;
|
||||
}
|
||||
|
||||
if (argv[i] == string("-opencl")) {
|
||||
strcpy(api_name, "OpenCL");
|
||||
strcpy(device_name, "-gpu");
|
||||
}
|
||||
|
||||
if (argv[i] == string("-mic")) {
|
||||
strcpy(api_name, "OpenMP");
|
||||
strcpy(device_name, "-mic");
|
||||
}
|
||||
|
||||
if (argv[i] == string("-cpu")) {
|
||||
strcpy(api_name, "OpenCL");
|
||||
strcpy(device_name, "-cpu");
|
||||
}
|
||||
|
||||
if (argv[i] == string("-N"))
|
||||
N = atoi(argv[i+1]);
|
||||
}
|
||||
|
||||
cout << "Use api: " << api_name << ", " << device_name << endl;
|
||||
|
||||
int dimsize[3] = {N, N, N};
|
||||
@ -74,9 +83,16 @@ int main(int argc, char *argv[]) {
|
||||
|
||||
/* write data to device */
|
||||
ierr = base.writeData< complex<double> >(mem_ptr, cdata, N*N*N);
|
||||
if (N < 5)
|
||||
printData3DN4(cdata, N, 3);
|
||||
|
||||
|
||||
/* execute fft */
|
||||
base.callFFT(mem_ptr, 3, dimsize);
|
||||
if (N < 5) {
|
||||
base.readData< complex<double> > (mem_ptr, cfft, N*N*N);
|
||||
printData3DN4(cfft, N, 3);
|
||||
}
|
||||
|
||||
/* execute ifft */
|
||||
base.callIFFT(mem_ptr, 3, dimsize);
|
||||
@ -86,6 +102,8 @@ int main(int argc, char *argv[]) {
|
||||
|
||||
/* read data from device */
|
||||
base.readData< complex<double> >(mem_ptr, cifft, N*N*N);
|
||||
if (N < 5)
|
||||
printData3DN4(cifft, N, 3);
|
||||
|
||||
/* free device memory */
|
||||
base.freeMemory< complex<double> >(mem_ptr, N*N*N);
|
||||
@ -130,7 +148,7 @@ void printData3DN4(complex<double>* &data, int N, int dim) {
|
||||
if (a < 10e-5 && a > -10e-5)
|
||||
a = 0;
|
||||
|
||||
cout << d << "; " << a << "\t";
|
||||
cout << "(" << d << "," << a << ") ";
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
@ -157,3 +175,5 @@ void compareData(complex<double>* &data1, complex<double>* &data2, int N, int di
|
||||
cout << "Size " << N << " CC <--> CC diff: " << sum << endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <complex>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
|
||||
#include "Utility/TimeStamp.h"
|
||||
#include "DKSBase.h"
|
||||
@ -8,54 +10,53 @@
|
||||
using namespace std;
|
||||
|
||||
void compareData(double* data1, double* data2, int NI, int NJ, int NK, int dim);
|
||||
void initData(double *data, int dimsize[3]);
|
||||
bool readParams(int argc, char *argv[], int &N1, int &N2, int &N3, int &loop);
|
||||
void initData(double *data, int dimsize[3], int dim);
|
||||
bool readParams(int argc, char *argv[], int &N1, int &N2, int &N3, int &loop, int &dim,
|
||||
char *api_name, char *device_name, char *file_name);
|
||||
void printHelp();
|
||||
|
||||
void printData3DN4(complex<double>* &data, int N, int dim);
|
||||
void printData3DN4(double* &data, int N, int dim);
|
||||
|
||||
double precision(double a) {
|
||||
//if (a < 1e-10)
|
||||
// return 0.0;
|
||||
//else
|
||||
return a;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
int N1 = 8;
|
||||
int N2 = 8;
|
||||
int N3 = 8;
|
||||
int dim = 3;
|
||||
int loop = 10;
|
||||
int loop = 0;
|
||||
char *api_name = new char[10];
|
||||
char *device_name = new char[10];
|
||||
char *file_name = new char[50];
|
||||
|
||||
if ( readParams(argc, argv, N1, N2, N3, loop) )
|
||||
if ( readParams(argc, argv, N1, N2, N3, loop, dim, api_name, device_name, file_name) )
|
||||
return 0;
|
||||
|
||||
int dimsize[3] = {N3, N2, N1};
|
||||
cout << "Use api: " << api_name << ", " << device_name << endl;
|
||||
|
||||
int dimsize[3] = {N1, N2, N3};
|
||||
int sizereal = dimsize[0] * dimsize[1] * dimsize[2];
|
||||
int sizecomp = (dimsize[0]/2+1) * dimsize[1] *dimsize[2];
|
||||
|
||||
double *rdata = new double[sizereal];
|
||||
double *outdata = new double[sizereal];
|
||||
complex<double> *cfft = new complex<double>[sizecomp];
|
||||
|
||||
for (int i=0; i<sizecomp; ++i) {
|
||||
cfft[i].real() = 7.;
|
||||
cfft[i].imag() = 3.33;
|
||||
}
|
||||
initData(rdata, dimsize);
|
||||
initData(rdata, dimsize, dim);
|
||||
|
||||
/* init DKSBase */
|
||||
cout << "Init device and set function" << endl;
|
||||
#ifdef DKS_MIC
|
||||
DKSBase base;
|
||||
base.setAPI("OpenMP", 6);
|
||||
base.setDevice("-mic", 4);
|
||||
base.initDevice();
|
||||
base.setupFFTRC(dim, dimsize);
|
||||
/* setup backward fft (COMPLEX->REAL) */
|
||||
base.setupFFTCR(dim, dimsize,1./(N1*N2*N3));
|
||||
#endif
|
||||
|
||||
#ifdef DKS_CUDA
|
||||
DKSBase base;
|
||||
base.setAPI("Cuda", 4);
|
||||
base.setDevice("-gpu", 4);
|
||||
base.setAPI(api_name, strlen(api_name));
|
||||
base.setDevice(device_name, strlen(device_name));
|
||||
base.initDevice();
|
||||
base.setupFFT(dim, dimsize);
|
||||
#endif
|
||||
|
||||
// allocate memory on device
|
||||
int ierr;
|
||||
@ -67,69 +68,59 @@ int main(int argc, char *argv[]) {
|
||||
// execute one run before starting the timers
|
||||
base.writeData<double>(real_ptr, rdata, sizereal);
|
||||
base.callR2CFFT(real_ptr, comp_ptr, dim, dimsize);
|
||||
base.readData< complex<double> >(comp_ptr, cfft, sizecomp);
|
||||
base.callC2RFFT(real_res_ptr, comp_ptr, dim, dimsize);
|
||||
base.readData<double>(real_res_ptr, outdata, sizereal);
|
||||
|
||||
//timer for total loop time, FFT and IFFT calls
|
||||
struct timeval timeStart, timeEnd;
|
||||
struct timeval timeFFTStart[loop], timeFFTEnd[loop];
|
||||
struct timeval timeIFFTStart[loop], timeIFFTEnd[loop];
|
||||
|
||||
gettimeofday(&timeStart, NULL);
|
||||
for (int i=0; i<loop; ++i){
|
||||
|
||||
// write data to device
|
||||
base.writeData<double>(real_ptr, rdata, sizereal);
|
||||
|
||||
// execute rcfft
|
||||
gettimeofday(&timeFFTStart[i], NULL);
|
||||
base.callR2CFFT(real_ptr, comp_ptr, dim, dimsize);
|
||||
gettimeofday(&timeFFTEnd[i], NULL);
|
||||
|
||||
// execute crfft
|
||||
gettimeofday(&timeIFFTStart[i], NULL);
|
||||
base.callC2RFFT(real_res_ptr, comp_ptr, dim, dimsize);
|
||||
gettimeofday(&timeIFFTEnd[i], NULL);
|
||||
|
||||
//normalize
|
||||
#ifdef DKS_CUDA
|
||||
base.callNormalizeC2RFFT(real_res_ptr, dim, dimsize);
|
||||
#endif
|
||||
|
||||
// read IFFT data from device
|
||||
base.readData<double>(real_res_ptr, outdata, sizereal);
|
||||
|
||||
}
|
||||
gettimeofday(&timeEnd, NULL);
|
||||
|
||||
|
||||
ofstream myfile;
|
||||
myfile.open(file_name);
|
||||
myfile<< "in\tout\treal\timag\n";
|
||||
for (int i = 0; i < sizereal; i++) {
|
||||
//myfile << precision(rdata[i]) << "\t";
|
||||
//myfile << precision(outdata[i]) << "\t";
|
||||
if (i < sizecomp) {
|
||||
myfile << precision(cfft[i].real()) << "\t";
|
||||
myfile << precision(cfft[i].imag());
|
||||
}
|
||||
myfile << "\n";
|
||||
}
|
||||
myfile.close();
|
||||
|
||||
|
||||
/*
|
||||
if (dim == 2) {
|
||||
for (int i = 0; i < N2; i++) {
|
||||
for (int j = 0; j < N1; j++) {
|
||||
cout << rdata[i*N1 + j] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
|
||||
if (dim == 2) {
|
||||
for (int i = 0; i < N2; i++) {
|
||||
for (int j = 0; j < N1 / 2 + 1; j++) {
|
||||
cout << cfft[i*(N1 / 2 + 1) + j] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
*/
|
||||
// free device memory
|
||||
base.freeMemory< std::complex<double> >(comp_ptr, sizecomp);
|
||||
base.freeMemory<double>(real_ptr, sizereal);
|
||||
base.freeMemory<double>(real_res_ptr, sizereal);
|
||||
|
||||
// compare in and out data to see if we get back the same results
|
||||
cout << "comp" << endl;
|
||||
compareData(rdata, outdata, N1, N2, N3, dim);
|
||||
|
||||
//calculate seconds for total time and fft times
|
||||
double tfft = 0;
|
||||
double tifft = 0;
|
||||
double ttot = ( (timeEnd.tv_sec - timeStart.tv_sec) * 1e6 +
|
||||
(timeEnd.tv_usec - timeStart.tv_usec) ) * 1e-6;
|
||||
|
||||
for (int i = 0; i < loop; i++) {
|
||||
tfft += ( (timeFFTEnd[i].tv_sec - timeFFTStart[i].tv_sec) * 1e6 +
|
||||
(timeFFTEnd[i].tv_usec - timeFFTStart[i].tv_usec) ) * 1e-6;
|
||||
|
||||
tifft += ( (timeIFFTEnd[i].tv_sec - timeIFFTStart[i].tv_sec) * 1e6 +
|
||||
(timeIFFTEnd[i].tv_usec - timeIFFTStart[i].tv_usec) ) * 1e-6;
|
||||
}
|
||||
|
||||
//print timing results
|
||||
std::cout << std::fixed << std::setprecision(5) << "\nTiming results"
|
||||
<< "\nTotal time\t" << ttot << "s\tavg time\t" << ttot / loop << "s"
|
||||
<< "\nFFT total\t" << tfft << "s\tFFT avg \t" << tfft / loop << "s"
|
||||
<< "\nIFFT total\t" << tifft << "s\tIFFT avg\t" << tifft / loop << "s"
|
||||
<< "\n\n";
|
||||
cout << "done" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -137,10 +128,10 @@ int main(int argc, char *argv[]) {
|
||||
void compareData(double* data1, double* data2, int NI, int NJ, int NK, int dim) {
|
||||
int id;
|
||||
double sum = 0;
|
||||
for (int i = 0; i < NI; i++) {
|
||||
for (int i = 0; i < NK; i++) {
|
||||
for (int j = 0; j < NJ; j++) {
|
||||
for (int k = 0; k < NK; k++) {
|
||||
id = k*NI*NJ + j*NI + i;
|
||||
for (int k = 0; k < NI; k++) {
|
||||
id = i*NI*NJ + j*NI + k;
|
||||
sum += fabs(data1[id] - data2[id]);
|
||||
}
|
||||
}
|
||||
@ -148,13 +139,21 @@ void compareData(double* data1, double* data2, int NI, int NJ, int NK, int dim)
|
||||
std::cout << "RC <--> CR diff: " << sum << std::endl;
|
||||
}
|
||||
|
||||
void initData(double *data, int dimsize[3]) {
|
||||
for (int i = 0; i < dimsize[2]; i++) {
|
||||
void initData(double *data, int dimsize[3], int dim) {
|
||||
if (dim == 3) {
|
||||
for (int i = 0; i < dimsize[2]; i++)
|
||||
for (int j = 0; j < dimsize[1]; j++)
|
||||
for (int k = 0; k < dimsize[0]; k++)
|
||||
data[i*dimsize[1]*dimsize[0] + j*dimsize[0] + k] = sin(k);
|
||||
} else if (dim == 2) {
|
||||
for (int j = 0; j < dimsize[1]; j++) {
|
||||
for (int k = 0; k < dimsize[0]; k++) {
|
||||
data[i*dimsize[1]*dimsize[0] + j*dimsize[0] + k] = k;
|
||||
data[j*dimsize[0] + k] = sin(k);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int k = 0; k < dimsize[0]; k++)
|
||||
data[k] = sin(k);
|
||||
}
|
||||
}
|
||||
|
||||
@ -173,10 +172,17 @@ void printHelp() {
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
bool readParams(int argc, char *argv[], int &N1, int &N2, int &N3, int &loop) {
|
||||
bool readParams(int argc, char *argv[], int &N1, int &N2, int &N3, int &loop, int &dim,
|
||||
char *api_name, char *device_name, char *file_name)
|
||||
{
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
|
||||
if ( argv[i] == std::string("-dim")) {
|
||||
dim = atoi(argv[i + 1]);
|
||||
i++;
|
||||
}
|
||||
|
||||
if ( argv[i] == std::string("-grid") ) {
|
||||
N1 = atoi(argv[i + 1]);
|
||||
N2 = atoi(argv[i + 2]);
|
||||
@ -193,7 +199,72 @@ bool readParams(int argc, char *argv[], int &N1, int &N2, int &N3, int &loop) {
|
||||
printHelp();
|
||||
return true;
|
||||
}
|
||||
|
||||
if (argv[i] == string("-cuda")) {
|
||||
strcpy(api_name, "Cuda");
|
||||
strcpy(device_name, "-gpu");
|
||||
strcpy(file_name, "cuda_fft.dat");
|
||||
}
|
||||
|
||||
if (argv[i] == string("-opencl")) {
|
||||
strcpy(api_name, "OpenCL");
|
||||
strcpy(device_name, "-gpu");
|
||||
strcpy(file_name, "opencl_fft.dat");
|
||||
}
|
||||
|
||||
if (argv[i] == string("-mic")) {
|
||||
strcpy(api_name, "OpenMP");
|
||||
strcpy(device_name, "-mic");
|
||||
strcpy(file_name, "openmp_fft.dat");
|
||||
}
|
||||
|
||||
if (argv[i] == string("-cpu")) {
|
||||
strcpy(api_name, "OpenCL");
|
||||
strcpy(device_name, "-cpu");
|
||||
strcpy(file_name, "opencl_cpu_fft.dat");
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void printData3DN4(complex<double>* &data, int N, int dim) {
|
||||
|
||||
for (int j = 0; j < N; j++) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int k = 0; k < N/2 + 1; k++) {
|
||||
double d = data[i*N*N + j*N + k].real();
|
||||
double a = data[i*N*N + j*N + k].imag();
|
||||
|
||||
if (d < 10e-5 && d > -10e-5)
|
||||
d = 0;
|
||||
if (a < 10e-5 && a > -10e-5)
|
||||
a = 0;
|
||||
|
||||
cout << "(" << d << "," << a << ") ";
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
}
|
||||
|
||||
void printData3DN4(double* &data, int N, int dim) {
|
||||
|
||||
for (int j = 0; j < N; j++) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int k = 0; k < N; k++) {
|
||||
double d = data[i*N*N + j*N + k];
|
||||
|
||||
if (d < 10e-5 && d > -10e-5)
|
||||
d = 0;
|
||||
|
||||
cout << d << " ";
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
}
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include <iostream>
|
||||
//#include <mpi.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "DKSBase.h"
|
||||
@ -58,6 +57,14 @@ void printComplex(complex<double> *d, int N) {
|
||||
|
||||
}
|
||||
|
||||
void printDouble(double *d, int N) {
|
||||
|
||||
for (int i = 0; i < N; i++)
|
||||
cout << d[i] << ", ";
|
||||
cout << endl;
|
||||
|
||||
}
|
||||
|
||||
void initMirror(double *data, int n1, int n2, int n3) {
|
||||
int d = 1;
|
||||
for (int i = 0; i < n3; i++) {
|
||||
@ -105,19 +112,32 @@ double sumData(double *data, int datasize) {
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
/* mpi init */
|
||||
//int rank, nprocs;
|
||||
//MPI_Init(&argc, &argv);
|
||||
//MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
||||
//MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
|
||||
char *api_name = new char[10];
|
||||
char *device_name = new char[10];
|
||||
|
||||
/*
|
||||
if (nprocs != 8) {
|
||||
cout << "example was set to run with 8 processes" << endl;
|
||||
cout << "exit..." << endl;
|
||||
return 0;
|
||||
for (int i = 1; i < argc; i++) {
|
||||
if (argv[i] == string("-cuda")) {
|
||||
strcpy(api_name, "Cuda");
|
||||
strcpy(device_name, "-gpu");
|
||||
}
|
||||
*/
|
||||
|
||||
if (argv[i] == string("-opencl")) {
|
||||
strcpy(api_name, "OpenCL");
|
||||
strcpy(device_name, "-gpu");
|
||||
}
|
||||
|
||||
if (argv[i] == string("-mic")) {
|
||||
strcpy(api_name, "OpenMP");
|
||||
strcpy(device_name, "-mic");
|
||||
}
|
||||
|
||||
if (argv[i] == string("-cpu")) {
|
||||
strcpy(api_name, "OpenCL");
|
||||
strcpy(device_name, "-cpu");
|
||||
}
|
||||
}
|
||||
|
||||
cout << "Use api: " << api_name << ", " << device_name << endl;
|
||||
|
||||
/* set domain size */
|
||||
int NG[3] = {64, 64, 32};
|
||||
@ -126,55 +146,26 @@ int main(int argc, char *argv[]) {
|
||||
int sizerho = NG[0] * NG[1] * NG[2];
|
||||
int sizegreen = ng[0] * ng[1] * ng[2];
|
||||
int sizecomp = NG[0] * NG[1] * NG[2] / 2 + 1;
|
||||
int id[3];
|
||||
|
||||
//id[0] = 0;
|
||||
//id[1] = NL[1] * (rank % 4);
|
||||
//id[2] = NL[2] * (rank / 4);
|
||||
|
||||
/* print some messages bout the example in the begginig */
|
||||
cout << "Global domain: " << NG[0] << ", " << NG[1] << ", " << NG[2] << endl;
|
||||
//cout << "Local domain: " << NL[0] << ", " << NL[1] << ", " << NL[2] << endl;
|
||||
cout << "Greens domain: " << ng[0] << ", " << ng[1] << ", " << ng[2] << endl;
|
||||
//cout << "Start idx0: " << id[0] << ", " << id[1] << ", " << id[2] << endl;
|
||||
int tmp[3];
|
||||
/* for (int p = 1; p < nprocs; p++) {
|
||||
MPI_Status mpistatus;
|
||||
MPI_Recv(tmp, 3, MPI_INT, p, 1001, MPI_COMM_WORLD, &mpistatus);
|
||||
cout << "Start idx" << p << ": " << tmp[0] << ", " << tmp[1] << ", " << tmp[2] << endl;
|
||||
}*/
|
||||
// } else {
|
||||
// MPI_Send(id, 3, MPI_INT, 0, 1001, MPI_COMM_WORLD);
|
||||
// }
|
||||
|
||||
/* dks init and create 2 streams */
|
||||
int dkserr;
|
||||
//int streamGreens, streamFFT;
|
||||
#ifdef DKS_MIC
|
||||
DKSBase base;
|
||||
base.setAPI("OpenMP", 6);
|
||||
base.setDevice("-mic", 4);
|
||||
base.setAPI(api_name, strlen(api_name));
|
||||
base.setDevice(device_name, strlen(device_name));
|
||||
base.initDevice();
|
||||
#endif
|
||||
|
||||
#ifdef DKS_CUDA
|
||||
DKSBase base;
|
||||
base.setAPI("Cuda", 4);
|
||||
base.setDevice("-gpu", 4);
|
||||
base.initDevice();
|
||||
#endif
|
||||
|
||||
//base.createStream(streamFFT);
|
||||
//if (rank == 0) {
|
||||
// base.createStream(streamGreens);
|
||||
base.setupFFT(3, NG);
|
||||
//}
|
||||
|
||||
/* allocate memory and init rho field */
|
||||
double *rho = new double[sizerho];
|
||||
double *rho_out = new double[sizerho];
|
||||
//double *green_out = new double[sizegreen];
|
||||
initMirror(rho, NL[0], NL[1], NL[2]);
|
||||
double *mirror_out = new double[sizerho];
|
||||
//initMirror(rho, NL[0], NL[1], NL[2]);
|
||||
initMirror(rho, NG[0], NG[1], NG[2]);
|
||||
|
||||
/*
|
||||
allocate memory on device for
|
||||
@ -185,32 +176,11 @@ int main(int argc, char *argv[]) {
|
||||
- greens integral FFT
|
||||
*/
|
||||
void *tmpgreen_ptr, *rho2_ptr, *grn_ptr, *rho2tr_ptr, *grntr_ptr;
|
||||
// if (rank == 0) {
|
||||
tmpgreen_ptr = base.allocateMemory<double>(sizegreen, dkserr);
|
||||
rho2_ptr = base.allocateMemory<double>(sizerho, dkserr);
|
||||
grn_ptr = base.allocateMemory<double>(sizerho, dkserr);
|
||||
rho2tr_ptr = base.allocateMemory< complex<double> >(sizecomp, dkserr);
|
||||
grntr_ptr = base.allocateMemory< complex<double> >(sizecomp, dkserr);
|
||||
/* } else {
|
||||
grntr_ptr = NULL;
|
||||
rho2_ptr = NULL;
|
||||
grn_ptr = NULL;
|
||||
rho2tr_ptr = NULL;
|
||||
tmpgreen_ptr = NULL;
|
||||
}*/
|
||||
|
||||
|
||||
/* send and receive pointer to allocated memory on device */
|
||||
/*
|
||||
if (rank == 0) {
|
||||
for (int p = 1; p < nprocs; p++)
|
||||
base.sendPointer( rho2_ptr, p, MPI_COMM_WORLD);
|
||||
} else {
|
||||
rho2_ptr = base.receivePointer(0, MPI_COMM_WORLD, dkserr);
|
||||
}
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
*/
|
||||
|
||||
|
||||
/* =================================================*/
|
||||
/* =================================================*/
|
||||
@ -219,43 +189,54 @@ int main(int argc, char *argv[]) {
|
||||
/* =================================================*/
|
||||
|
||||
double old_sum = 0;
|
||||
double tmp_sum = 0;
|
||||
for (int l = 0; l < 100; l++) {
|
||||
//MPI_Barrier(MPI_COMM_WORLD);
|
||||
/* on node 0, calculate tmpgreen on gpu */
|
||||
|
||||
int hr_m[3] = {1, 1, 1};
|
||||
//if (rank == 0)
|
||||
base.callGreensIntegral(tmpgreen_ptr, ng[0], ng[1], ng[2], ng[0], ng[1],
|
||||
hr_m[0], hr_m[1], hr_m[2]);
|
||||
base.callGreensIntegral(tmpgreen_ptr, ng[0], ng[1], ng[2], ng[0], ng[1], hr_m[0], hr_m[1], hr_m[2]);
|
||||
|
||||
/* calculate greens integral on gpu */
|
||||
//if (rank == 0)
|
||||
base.callGreensIntegration(grn_ptr, tmpgreen_ptr, ng[0], ng[1], ng[2]);
|
||||
|
||||
/* mirror the field */
|
||||
//if (rank == 0)
|
||||
base.callMirrorRhoField(grn_ptr, ng[0], ng[1], ng[2]);
|
||||
/*
|
||||
base.readData<double>(grn_ptr, mirror_out, sizerho);
|
||||
for (int i = 0; i < sizerho; i++)
|
||||
cout << mirror_out[i] << " ";
|
||||
cout << endl << endl;
|
||||
|
||||
|
||||
/* get FFT of mirrored greens integral */
|
||||
//if (rank == 0)
|
||||
base.callR2CFFT(grn_ptr, grntr_ptr, 3, NG);
|
||||
|
||||
for (int i = 0; i < sizerho; i++)
|
||||
cout << rho[i] << " ";
|
||||
cout << endl << endl;
|
||||
*/
|
||||
/* transfer rho field to device */
|
||||
//base.gather3DDataAsync<double> ( rho2_ptr, rho, NG, NL, id, streamFFT);
|
||||
base.writeData<double>(rho2_ptr, rho,NG[0]*NG[1]*NG[2]);
|
||||
//MPI_Barrier(MPI_COMM_WORLD);
|
||||
base.writeData<double>(rho2_ptr, rho, sizerho);
|
||||
|
||||
/* get FFT of rho field */
|
||||
//if (rank == 0) {
|
||||
//base.syncDevice();
|
||||
base.callR2CFFT(rho2_ptr, rho2tr_ptr, 3, NG);
|
||||
//}
|
||||
|
||||
/* get FFT of mirrored greens integral */
|
||||
base.callR2CFFT(grn_ptr, grntr_ptr, 3, NG);
|
||||
|
||||
/* multiply both FFTs */
|
||||
//if (rank == 0)
|
||||
base.callMultiplyComplexFields(rho2tr_ptr, grntr_ptr, sizecomp);
|
||||
//MPI_Barrier(MPI_COMM_WORLD);
|
||||
|
||||
/*
|
||||
complex<double> *crho = new complex<double>[sizecomp];
|
||||
complex<double> *cgre = new complex<double>[sizecomp];
|
||||
base.readData< complex<double> >(rho2tr_ptr, crho, sizecomp);
|
||||
base.readData< complex<double> >(grntr_ptr, cgre, sizecomp);
|
||||
|
||||
for (int i = 0; i < sizecomp; i++)
|
||||
cout << cgre[i].real() << " ";
|
||||
cout << endl << endl;
|
||||
|
||||
for (int i = 0; i < sizecomp; i++)
|
||||
cout << crho[i].real() << " ";
|
||||
cout << endl << endl;
|
||||
|
||||
delete[] crho;
|
||||
delete[] cgre;
|
||||
*/
|
||||
|
||||
/* inverse fft and transfer data back */
|
||||
/*
|
||||
@ -263,57 +244,31 @@ int main(int argc, char *argv[]) {
|
||||
transfer is started when results are ready and progam moves on
|
||||
only when data transfer is finished
|
||||
*/
|
||||
//if (rank == 0) {
|
||||
base.callC2RFFT(rho2tr_ptr, rho2_ptr, 3, NG);
|
||||
//base.syncDevice();
|
||||
//MPI_Barrier(MPI_COMM_WORLD);
|
||||
//base.scatter3DDataAsync<double> (rho2_ptr, rho_out, NG, NL, id);
|
||||
base.readData<double> (rho2_ptr, rho_out, NG[0]*NG[1]*NG[2]);
|
||||
//MPI_Barrier(MPI_COMM_WORLD);
|
||||
//base.syncDevice();
|
||||
//MPI_Barrier(MPI_COMM_WORLD);
|
||||
//cout << "result: " << sumData(rho_out, sizerho) << endl;
|
||||
if (l == 0) {
|
||||
|
||||
base.readData<double> (rho2_ptr, rho_out, sizerho);
|
||||
|
||||
for (int i = 0; i < 10; i++)
|
||||
cout << rho_out[i] << " ";
|
||||
cout << endl;
|
||||
|
||||
old_sum = sumData(rho_out, sizerho);
|
||||
} else {
|
||||
tmp_sum = sumData(rho_out, sizerho);
|
||||
if (old_sum != tmp_sum) {
|
||||
cout << "diff in iteration: " << l << endl;
|
||||
}
|
||||
}
|
||||
/*} else {
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
base.scatter3DDataAsync<double> (rho2_ptr, rho_out, NG, NL, id);
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
}
|
||||
/* =================================================*/
|
||||
/* =================================================*/
|
||||
/* ==========end fftpoison solver test run==========*/
|
||||
/* =================================================*/
|
||||
/* =================================================*/
|
||||
|
||||
|
||||
|
||||
/* free memory on device */
|
||||
//if (rank == 0) {
|
||||
base.freeMemory<double>(tmpgreen_ptr, sizegreen);
|
||||
base.freeMemory<double>(grn_ptr, sizerho);
|
||||
base.freeMemory< complex<double> >(rho2tr_ptr, sizecomp);
|
||||
base.freeMemory< complex<double> >(grntr_ptr, sizecomp);
|
||||
//MPI_Barrier(MPI_COMM_WORLD);
|
||||
base.freeMemory<double>(rho2_ptr, sizerho);
|
||||
|
||||
delete[] rho_out;
|
||||
delete[] rho;
|
||||
delete[] mirror_out;
|
||||
cout << "Final sum: " << old_sum << endl;
|
||||
/*} else {
|
||||
base.closeHandle(rho2_ptr);
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
}*/
|
||||
|
||||
//MPI_Finalize();
|
||||
|
||||
|
||||
}
|
||||
|
81
test/testRandom.cpp
Normal file
81
test/testRandom.cpp
Normal file
@ -0,0 +1,81 @@
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <sys/time.h>
|
||||
|
||||
#include "DKSBase.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
int size = 10;
|
||||
bool apiSet = false;
|
||||
char *api_name = new char[10];
|
||||
char *device_name = new char[10];
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
|
||||
if (argv[i] == string("-cuda")) {
|
||||
strcpy(api_name, "Cuda");
|
||||
strcpy(device_name, "-gpu");
|
||||
apiSet = true;
|
||||
}
|
||||
|
||||
if (argv[i] == string("-opencl")) {
|
||||
strcpy(api_name, "OpenCL");
|
||||
strcpy(device_name, "-gpu");
|
||||
apiSet = true;
|
||||
}
|
||||
|
||||
if (argv[i] == string("-N")) {
|
||||
size = atoi(argv[i+1]);
|
||||
i++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (!apiSet) {
|
||||
strcpy(api_name, "Cuda");
|
||||
strcpy(device_name, "-gpu");
|
||||
}
|
||||
|
||||
cout << "=========================BEGIN TEST=========================" << endl;
|
||||
cout << "Use api: " << api_name << "\t" << device_name << endl;
|
||||
cout << "Number of randoms: " << size << endl;
|
||||
|
||||
//init dks
|
||||
int ierr;
|
||||
DKSBase base;
|
||||
base.setAPI(api_name, strlen(api_name));
|
||||
base.setDevice(device_name, strlen(api_name));
|
||||
base.initDevice();
|
||||
base.callInitRandoms(size);
|
||||
|
||||
//create host vector to store results
|
||||
double *host_data = new double[size];
|
||||
|
||||
//create device vector
|
||||
void *device_data = base.allocateMemory<double>(size, ierr);
|
||||
|
||||
for (int i = 0; i < 5; i++) {
|
||||
//fill device vector with random values
|
||||
base.callCreateRandomNumbers(device_data, size);
|
||||
|
||||
//read device vector
|
||||
base.readData<double>(device_data, host_data, size);
|
||||
|
||||
//print host data
|
||||
for (int i = 0; i < size; i++)
|
||||
cout << host_data[i] << " ";
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
//free device vector
|
||||
base.freeMemory<double>(device_data, size);
|
||||
|
||||
//free host data
|
||||
delete[] host_data;
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user