seperate OPAL DKS functions from base

This commit is contained in:
Uldis Locans
2017-02-28 15:06:45 +01:00
parent 7c7c2e240b
commit eee9dfd89e
4 changed files with 520 additions and 557 deletions

View File

@ -103,17 +103,14 @@ DKSBase::DKSBase() {
#ifdef DKS_CUDA #ifdef DKS_CUDA
cbase = new CudaBase(); cbase = new CudaBase();
cchi = new CudaChiSquare(cbase);
#endif #endif
ls#ifdef DKS_OPENCL #ifdef DKS_OPENCL
oclbase = new OpenCLBase(); oclbase = new OpenCLBase();
oclchi = new OpenCLChiSquare(oclbase);
#endif #endif
#ifdef DKS_MIC #ifdef DKS_MIC
micbase = new MICBase(); micbase = new MICBase();
micchi = new MICChiSquare(micbase);
#endif #endif
} }
@ -157,10 +154,6 @@ DKSBase::~DKSBase() {
if (m_function_name != NULL) if (m_function_name != NULL)
delete[] m_function_name; delete[] m_function_name;
delete dksfft;
delete dkscol;
delete dksgreens;
#ifdef DKS_CUDA #ifdef DKS_CUDA
delete cchi; delete cchi;
delete cbase; delete cbase;
@ -287,37 +280,7 @@ int DKSBase::getDeviceList(std::vector<int> &devices) {
return DKS_ERROR; return DKS_ERROR;
} }
int DKSBase::setup() { int DKSBase::setupDevice() {
int ierr = DKS_ERROR;
if (apiOpenCL()) {
ierr = OPENCL_SAFECALL( DKS_SUCCESS );
//TODO: only enable if AMD libraries are available
dksfft = OPENCL_SAFEINIT_AMD( new OpenCLFFT(oclbase) );
dkscol = OPENCL_SAFEINIT_AMD( new OpenCLCollimatorPhysics(oclbase) );
dksgreens = OPENCL_SAFEINIT_AMD( new OpenCLGreensFunction(oclbase) );
} else if (apiCuda()) {
ierr = CUDA_SAFECALL( DKS_SUCCESS );
dksfft = CUDA_SAFEINIT( new CudaFFT(cbase) );
dkscol = CUDA_SAFEINIT( new CudaCollimatorPhysics(cbase) );
dksgreens = CUDA_SAFEINIT( new CudaGreensFunction(cbase) );
} else if (apiOpenMP()) {
ierr = MIC_SAFECALL( DKS_SUCCESS );
dksfft = MIC_SAFEINIT( new MICFFT(micbase) );
dkscol = MIC_SAFEINIT( new MICCollimatorPhysics(micbase) );
dksgreens = MIC_SAFEINIT( new MICGreensFunction(micbase) );
} else {
ierr = DKS_ERROR;
}
return ierr;
}
/*
init device
*/
int DKSBase::initDevice() {
int ierr = DKS_ERROR; int ierr = DKS_ERROR;
@ -347,10 +310,15 @@ int DKSBase::initDevice() {
} }
} }
if (ierr == DKS_SUCCESS)
ierr = setup();
return ierr; return ierr;
}
/*
init device
*/
int DKSBase::initDevice() {
return setupDevice();
} }
/* /*
@ -468,292 +436,16 @@ int DKSBase::syncDevice() {
return DKS_ERROR; return DKS_ERROR;
} }
/* setup fft plans to reuse if multiple ffts of same size are needed */
int DKSBase::setupFFT(int ndim, int N[3]) {
if (apiCuda()) {
return dksfft->setupFFT(ndim, N);
} else if (apiOpenCL()) {
int ierr1 = dksfft->setupFFT(ndim, N);
int ierr2 = dksfft->setupFFTRC(ndim, N);
int ierr3 = dksfft->setupFFTCR(ndim, N);
if (ierr1 != DKS_SUCCESS || ierr2 != DKS_SUCCESS || ierr3 != DKS_SUCCESS)
return DKS_ERROR;
return DKS_SUCCESS;
} else if (apiOpenMP()) {
//micbase.mic_setupFFT(ndim, N);
//BENI: setting up RC and CR transformations on MIC
int ierr1 = dksfft->setupFFTRC(ndim, N, 1.);
int ierr2 = dksfft->setupFFTCR(ndim, N, 1./(N[0]*N[1]*N[2]));
if (ierr1 != DKS_SUCCESS)
return ierr1;
if (ierr2 != DKS_SUCCESS)
return ierr2;
return DKS_SUCCESS;
}
return DKS_ERROR;
}
//BENI:
int DKSBase::setupFFTRC(int ndim, int N[3], double scale) {
int DKSBase::callCreateRandomNumbers(void *mem_ptr, int size) {
if (apiCuda()) if (apiCuda())
return dksfft->setupFFT(ndim, N); return CUDA_SAFECALL(cbase->cuda_createRandomNumbers(mem_ptr, size));
if (apiOpenCL()) if (apiOpenCL())
return dksfft->setupFFTRC(ndim, N); return OPENCL_SAFECALL(oclbase->ocl_createRandomNumbers(mem_ptr, size));
else if (apiOpenMP())
return dksfft->setupFFTRC(ndim, N, scale);
return DKS_ERROR; return DKS_ERROR;
} }
//BENI:
int DKSBase::setupFFTCR(int ndim, int N[3], double scale) {
if (apiCuda())
return dksfft->setupFFT(ndim, N);
if (apiOpenCL())
return dksfft->setupFFTCR(ndim, N);
else if (apiOpenMP())
return dksfft->setupFFTCR(ndim, N, scale);
return DKS_ERROR;
}
/* call OpenCL FFT function for selected platform */
int DKSBase::callFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
if (apiOpenCL() || apiOpenMP())
return dksfft->executeFFT(data_ptr, ndim, dimsize);
else if (apiCuda())
return dksfft->executeFFT(data_ptr, ndim, dimsize, streamId);
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* call OpenCL IFFT function for selected platform */
int DKSBase::callIFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
if (apiOpenCL() || apiOpenMP())
return dksfft->executeIFFT(data_ptr, ndim, dimsize);
else if (apiCuda())
return dksfft->executeIFFT(data_ptr, ndim, dimsize, streamId);
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* call normalize FFT function for selected platform */
int DKSBase::callNormalizeFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
if (apiOpenCL()) {
if ( loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLFFT.cl") == DKS_SUCCESS )
return dksfft->normalizeFFT(data_ptr, ndim, dimsize);
else
return DKS_ERROR;
} else if (apiCuda()) {
return dksfft->normalizeFFT(data_ptr, ndim, dimsize, streamId);
} else if (apiOpenMP()) {
return dksfft->normalizeFFT(data_ptr, ndim, dimsize);
}
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* call real to complex FFT */
int DKSBase::callR2CFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId) {
if (apiCuda())
return dksfft->executeRCFFT(real_ptr, comp_ptr, ndim, dimsize, streamId);
else if (apiOpenCL() || apiOpenMP())
return dksfft->executeRCFFT(real_ptr, comp_ptr, ndim, dimsize);
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* call complex to real FFT */
int DKSBase::callC2RFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId) {
if (apiCuda())
return dksfft->executeCRFFT(real_ptr, comp_ptr, ndim, dimsize, streamId);
else if (apiOpenCL() || apiOpenMP())
return dksfft->executeCRFFT(real_ptr, comp_ptr, ndim, dimsize);
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* normalize complex to real iFFT */
int DKSBase::callNormalizeC2RFFT(void * real_ptr, int ndim, int dimsize[3], int streamId) {
if (apiCuda())
return dksfft->normalizeCRFFT(real_ptr, ndim, dimsize, streamId);
else if (apiOpenCL())
return DKS_ERROR;
else if (apiOpenMP())
return DKS_ERROR;
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
int DKSBase::callGreensIntegral(void *tmp_ptr, int I, int J, int K, int NI, int NJ,
double hz_m0, double hz_m1, double hz_m2, int streamId) {
return dksgreens->greensIntegral(tmp_ptr, I, J, K, NI, NJ,
hz_m0, hz_m1, hz_m2, streamId);
}
int DKSBase::callGreensIntegration(void *mem_ptr, void *tmp_ptr,
int I, int J, int K, int streamId) {
return dksgreens->integrationGreensFunction(mem_ptr, tmp_ptr, I, J, K, streamId);
}
int DKSBase::callMirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId) {
return dksgreens->mirrorRhoField(mem_ptr, I, J, K, streamId);
}
int DKSBase::callMultiplyComplexFields(void *mem_ptr1, void *mem_ptr2, int size, int streamId) {
return dksgreens->multiplyCompelxFields(mem_ptr1, mem_ptr2, size, streamId);
}
int DKSBase::callPHistoTFFcn(void *mem_data, void *mem_par, void *mem_chisq,
double fTimeResolution, double fRebin,
int sensors, int length, int numpar, double &result)
{
if (apiCuda()) {
return CUDA_SAFECALL(cchi->cuda_PHistoTFFcn(mem_data, mem_par, mem_chisq,
fTimeResolution, fRebin,
sensors, length, numpar,
result));
} else if (apiOpenCL()) {
if (loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLChiSquare.cl") == DKS_SUCCESS)
return OPENCL_SAFECALL(oclchi->ocl_PHistoTFFcn(mem_data, mem_par, mem_chisq,
fTimeResolution, fRebin,
sensors, length, numpar, result));
else
return DKS_ERROR;
}
DEBUG_MSG("No implementation for selceted platform");
return DKS_ERROR;
}
int DKSBase::callSingleGaussTF(void *mem_data, void *mem_t0, void *mem_par, void *mem_result,
double fTimeResolution, double fRebin, double fGoodBinOffset,
int sensors, int length, int numpar,
double &result)
{
if (apiCuda()) {
return CUDA_SAFECALL(cchi->cuda_singleGaussTF(mem_data, mem_t0, mem_par, mem_result,
fTimeResolution, fRebin, fGoodBinOffset,
sensors, length, numpar,
result));
} else if (apiOpenCL()) {
if (loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLChiSquare.cl") == DKS_SUCCESS)
return OPENCL_SAFECALL(oclchi->ocl_singleGaussTF(mem_data, mem_t0, mem_par, mem_result,
fTimeResolution, fRebin, fGoodBinOffset,
sensors, length, numpar, result));
else
return DKS_ERROR;
}
DEBUG_MSG("No implementation for selceted platform");
return DKS_ERROR;
}
int DKSBase::callDoubleLorentzTF(void *mem_data, void *mem_t0, void *mem_par, void *mem_result,
double fTimeResolution, double fRebin, double fGoodBinOffset,
int sensors, int length, int numpar,
double &result)
{
if (apiCuda()) {
return CUDA_SAFECALL(cchi->cuda_doubleLorentzTF(mem_data, mem_t0, mem_par, mem_result,
fTimeResolution, fRebin, fGoodBinOffset,
sensors, length, numpar,
result));
} else if (apiOpenCL()) {
if (loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLChiSquare.cl") == DKS_SUCCESS)
return OPENCL_SAFECALL(oclchi->ocl_doubleLorentzTF(mem_data, mem_t0, mem_par, mem_result,
fTimeResolution, fRebin, fGoodBinOffset,
sensors, length, numpar, result));
else
return DKS_ERROR;
}
DEBUG_MSG("No implementation for selceted platform");
return DKS_ERROR;
}
int DKSBase::callCollimatorPhysics(void *mem_ptr, void *par_ptr,
int numparticles, int numparams,
int &numaddback, int &numdead)
{
return dkscol->CollimatorPhysics(mem_ptr, par_ptr, numparticles);
}
int DKSBase::callCollimatorPhysics2(void *mem_ptr, void *par_ptr, int numparticles)
{
return dkscol->CollimatorPhysics(mem_ptr, par_ptr, numparticles);
}
int DKSBase::callCollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
void *rx_ptr, void *ry_ptr, void *rz_ptr,
void *px_ptr, void *py_ptr, void *pz_ptr,
void *par_ptr, int numparticles)
{
return dkscol->CollimatorPhysicsSoA(label_ptr, localID_ptr,
rx_ptr, ry_ptr, rz_ptr,
px_ptr, py_ptr, pz_ptr,
par_ptr, numparticles);
}
int DKSBase::callCollimatorPhysicsSort(void *mem_ptr, int numparticles, int &numaddback)
{
return dkscol->CollimatorPhysicsSort(mem_ptr, numparticles, numaddback);
}
int DKSBase::callCollimatorPhysicsSortSoA(void *label_ptr, void *localID_ptr,
void *rx_ptr, void *ry_ptr, void *rz_ptr,
void *px_ptr, void *py_ptr, void *pz_ptr,
void *par_ptr, int numparticles, int &numaddback)
{
return MIC_SAFECALL(dkscol->CollimatorPhysicsSortSoA(label_ptr, localID_ptr,
rx_ptr, ry_ptr, rz_ptr,
px_ptr, py_ptr, pz_ptr,
par_ptr, numparticles, numaddback));
}
int DKSBase::callInitRandoms(int size) { int DKSBase::callInitRandoms(int size) {
if (apiCuda()) if (apiCuda())
return CUDA_SAFECALL(cbase->cuda_createCurandStates(size)); return CUDA_SAFECALL(cbase->cuda_createCurandStates(size));
@ -766,32 +458,3 @@ int DKSBase::callInitRandoms(int size) {
return DKS_ERROR; return DKS_ERROR;
} }
int DKSBase::callParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart,
void *dt_ptr, double dt, double c,
bool usedt, int streamId)
{
return dkscol->ParallelTTrackerPush(r_ptr, p_ptr, npart, dt_ptr, dt, c, usedt, streamId);
}
int DKSBase::callParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
void *lastSec_ptr, void *orient_ptr,
int npart, int nsec, void *dt_ptr, double dt,
double c, bool usedt, int streamId)
{
return dkscol->ParallelTTrackerPushTransform(x_ptr, p_ptr, lastSec_ptr, orient_ptr,
npart, nsec, dt_ptr, dt, c, usedt, streamId);
}
int DKSBase::callCreateRandomNumbers(void *mem_ptr, int size) {
if (apiCuda())
return CUDA_SAFECALL(cbase->cuda_createRandomNumbers(mem_ptr, size));
if (apiOpenCL())
return OPENCL_SAFECALL(oclbase->ocl_createRandomNumbers(mem_ptr, size));
return DKS_ERROR;
}

View File

@ -76,10 +76,6 @@ private:
bool m_auto_tuning; bool m_auto_tuning;
bool m_use_config; bool m_use_config;
DKSFFT *dksfft;
DKSCollimatorPhysics *dkscol;
GreensFunction *dksgreens;
#ifdef DKS_OPENCL #ifdef DKS_OPENCL
OpenCLBase *oclbase; OpenCLBase *oclbase;
OpenCLChiSquare *oclchi; OpenCLChiSquare *oclchi;
@ -140,6 +136,12 @@ protected:
} }
#endif #endif
#ifdef DKS_MIC
MICBase *getMICBase() {
return micbase;
}
#endif
/** Call OpenCL base to load specified kenrel file. /** Call OpenCL base to load specified kenrel file.
* *
*/ */
@ -155,10 +157,6 @@ protected:
return device_name; return device_name;
} }
/** Private function to initialize objects based on the device used.
*
*/
int setup();
public: public:
@ -179,6 +177,11 @@ public:
*/ */
~DKSBase(); ~DKSBase();
/** Function to initialize objects based on the device used.
*
*/
int setupDevice();
/** Turn on auto tuning */ /** Turn on auto tuning */
void setAutoTuningOn() { m_auto_tuning = true; } void setAutoTuningOn() { m_auto_tuning = true; }
@ -891,184 +894,10 @@ public:
return DKS_ERROR; return DKS_ERROR;
} }
///////////////////////////////////////////////
///////Function library part of dksbase////////
///////////////////////////////////////////////
/** /**
* Setup FFT function. * Create random numbers on the device and fille mem_data array
* Initializes parameters for fft executuin. If ndim > 0 initializes handles for fft calls.
* If ffts of various sizes are needed setupFFT should be called with ndim 0, in this case
* each fft will do its own setup according to fft size and dimensions.
* TODO: opencl and mic implementations
*/ */
int setupFFT(int ndim, int N[3]); int callCreateRandomNumbers(void *mem_ptr, int size);
//BENI:
int setupFFTRC(int ndim, int N[3], double scale = 1.0);
//BENI:
int setupFFTCR(int ndim, int N[3], double scale = 1.0);
/**
* Call complex-to-complex fft.
* Executes in place complex to compelx fft on the device on data pointed by data_ptr.
* stream id can be specified to use other streams than default.
* TODO: mic implementation
*/
int callFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Call complex-to-complex ifft.
* Executes in place complex to compelx ifft on the device on data pointed by data_ptr.
* stream id can be specified to use other streams than default.
* TODO: mic implementation.
*/
int callIFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Normalize complex to complex ifft.
* Cuda, mic and OpenCL implementations return ifft unscaled, this function divides each element by
* fft size
* TODO: mic implementation.
*/
int callNormalizeFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Call real to complex FFT.
* Executes out of place real to complex fft, real_ptr points to real data, comp_pt - points
* to complex data, ndim - dimension of data, dimsize size of each dimension. real_ptr size
* should be dimsize[0]*dimsize[1]*disize[2], comp_ptr size should be atleast
* (dimsize[0]/2+1)*dimsize[1]*dimsize[2]
* TODO: opencl and mic implementations
*/
int callR2CFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Call complex to real iFFT.
* Executes out of place complex to real ifft, real_ptr points to real data, comp_pt - points
* to complex data, ndim - dimension of data, dimsize size of each dimension. real_ptr size
* should be dimsize[0]*dimsize[1]*disize[2], comp_ptr size should be atleast
* (dimsize[0]/2+1)*dimsize[1]*dimsize[2]
* TODO: opencl and mic implementations.
*/
int callC2RFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Normalize compelx to real ifft.
* Cuda, mic and OpenCL implementations return ifft unscaled, this function divides each element by
* fft size.
* TODO: opencl and mic implementations.
*/
int callNormalizeC2RFFT(void * real_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
* For specifics check OPAL docs.
* TODO: opencl and mic implementations.
*/
int callGreensIntegral(void *tmp_ptr, int I, int J, int K, int NI, int NJ,
double hz_m0, double hz_m1, double hz_m2, int streamId = -1);
/**
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
* For specifics check OPAL docs.
* TODO: opencl and mic implementations.
*/
int callGreensIntegration(void *mem_ptr, void *tmp_ptr,
int I, int J, int K, int streamId = -1);
/**
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
* For specifics check OPAL docs.
* TODO: opencl and mic implementations.
*/
int callMirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId = -1);
/**
* Element by element multiplication.
* Multiplies each element of mem_ptr1 with corresponding element of mem_ptr2, size specifies
* the number of elements in mem_ptr1 and mem_ptr2 to use. Results are put in mem_ptr1.
* TODO: opencl and mic implementations.
*/
int callMultiplyComplexFields(void *mem_ptr1, void *mem_ptr2, int size, int streamId = -1);
/**
* Chi square for parameter fitting on device.
* mem_data - measurement data, mem_par - pointer to parameter set, mem_chisq - pointer for
* intermediate results. Chi square results are put in &results
*/
int callPHistoTFFcn(void *mem_data, void *mem_par, void *mem_chisq,
double fTimeResolution, double fRebin,
int sensors, int length, int numpar, double &result);
/**
* max-log-likelihood for parameter fitting on device.
* mem_data - measurement data, mem_t0 - pointer to time 0 for each sensor,
* mem_par - pointer to parameter set, mem_results - pointer for
* intermediate results. Chi square results are put in &results.
* TODO: opencl and mic implementations.
*/
int callSingleGaussTF(void *mem_data, void *mem_t0, void *mem_par, void *mem_result,
double fTimeResolution, double fRebin, double fGoodBinOffser,
int sensors, int length, int numpar,
double &result);
/**
* max-log-likelihood for parameter fitting on device.
* mem_data - measurement data, mem_t0 - pointer to time 0 for each sensor,
* mem_par - pointer to parameter set, mem_results - pointer for
* intermediate results. Chi square results are put in &results.
* TODO: opencl and mic implementations.
*/
int callDoubleLorentzTF(void *mem_data, void *mem_t0, void *mem_par, void *mem_result,
double fTimeResolution, double fRebin, double fGoodBinOffser,
int sensors, int length, int numpar,
double &result);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* TODO: opencl and mic implementations.
*/
int callCollimatorPhysics(void *mem_ptr, void *par_ptr,
int numparticles, int numparams,
int &numaddback, int &numdead);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* TODO: opencl and mic implementations.
*/
int callCollimatorPhysics2(void *mem_ptr, void *par_ptr, int numparticles);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* Test function for the MIC to test SoA layout vs AoS layout used in previous versions
*/
int callCollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
void *rx_ptr, void *ry_ptr, void *rz_ptr,
void *px_ptr, void *py_ptr, void *pz_ptr,
void *par_ptr, int numparticles);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* TODO: opencl and mic implementations.
*/
int callCollimatorPhysicsSort(void *mem_ptr, int numparticles, int &numaddback);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* TODO: opencl and mic implementations.
*/
int callCollimatorPhysicsSortSoA(void *label_ptr, void *localID_ptr,
void *rx_ptr, void *ry_ptr, void *rz_ptr,
void *px_ptr, void *py_ptr, void *pz_ptr,
void *par_ptr, int numparticles, int &numaddback);
/** /**
* Init random number states and save for reuse on device. * Init random number states and save for reuse on device.
@ -1076,29 +905,6 @@ public:
*/ */
int callInitRandoms(int size); int callInitRandoms(int size);
/**
* Integration code from ParallelTTracker from OPAL.
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
*/
int callParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart,
void *dt_ptr, double dt, double c,
bool usedt = false, int streamId = -1);
/**
* Integration code from ParallelTTracker from OPAL.
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
*/
int callParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
void *lastSec_ptr, void *orient_ptr,
int npart, int nsec, void *dt_ptr,
double dt, double c, bool usedt = false,
int streamId = -1);
/**
* Create random numbers on the device and fille mem_data array
*/
int callCreateRandomNumbers(void *mem_ptr, int size);
/** /**
* Print memory information on device (total, used, available) * Print memory information on device (total, used, available)
* TODO: opencl and mic imlementation * TODO: opencl and mic imlementation

277
src/DKSOPAL.cpp Normal file
View File

@ -0,0 +1,277 @@
#include "DKSOPAL.h"
DKSOPAL::DKSOPAL() {
dksfft = nullptr;
dkscol = nullptr;
dksgreens = nullptr;
}
DKSOPAL::~DKSOPAL() {
delete dksfft;
delete dkscol;
delete dksgreens;
}
int DKSOPAL::setupOPAL() {
int ierr = DKS_ERROR;
if (apiOpenCL()) {
ierr = OPENCL_SAFECALL( DKS_SUCCESS );
//TODO: only enable if AMD libraries are available
dksfft = OPENCL_SAFEINIT_AMD( new OpenCLFFT(getOpenCLBase()) );
dkscol = OPENCL_SAFEINIT_AMD( new OpenCLCollimatorPhysics(getOpenCLBase()) );
dksgreens = OPENCL_SAFEINIT_AMD( new OpenCLGreensFunction(getOpenCLBase()) );
} else if (apiCuda()) {
ierr = CUDA_SAFECALL( DKS_SUCCESS );
dksfft = CUDA_SAFEINIT( new CudaFFT(getCudaBase()) );
dkscol = CUDA_SAFEINIT( new CudaCollimatorPhysics(getCudaBase()) );
dksgreens = CUDA_SAFEINIT( new CudaGreensFunction(getCudaBase()) );
} else if (apiOpenMP()) {
ierr = MIC_SAFECALL( DKS_SUCCESS );
dksfft = MIC_SAFEINIT( new MICFFT(getMICBase()) );
dkscol = MIC_SAFEINIT( new MICCollimatorPhysics(getMICBase()) );
dksgreens = MIC_SAFEINIT( new MICGreensFunction(getMICBase()) );
} else {
ierr = DKS_ERROR;
}
return ierr;
}
int DKSOPAL::initDevice() {
int ierr = setupDevice();
if (ierr == DKS_ERROR)
ierr = setupOPAL();
return ierr;
}
/* setup fft plans to reuse if multiple ffts of same size are needed */
int DKSOPAL::setupFFT(int ndim, int N[3]) {
if (apiCuda()) {
return dksfft->setupFFT(ndim, N);
} else if (apiOpenCL()) {
int ierr1 = dksfft->setupFFT(ndim, N);
int ierr2 = dksfft->setupFFTRC(ndim, N);
int ierr3 = dksfft->setupFFTCR(ndim, N);
if (ierr1 != DKS_SUCCESS || ierr2 != DKS_SUCCESS || ierr3 != DKS_SUCCESS)
return DKS_ERROR;
return DKS_SUCCESS;
} else if (apiOpenMP()) {
//micbase.mic_setupFFT(ndim, N);
//BENI: setting up RC and CR transformations on MIC
int ierr1 = dksfft->setupFFTRC(ndim, N, 1.);
int ierr2 = dksfft->setupFFTCR(ndim, N, 1./(N[0]*N[1]*N[2]));
if (ierr1 != DKS_SUCCESS)
return ierr1;
if (ierr2 != DKS_SUCCESS)
return ierr2;
return DKS_SUCCESS;
}
return DKS_ERROR;
}
//BENI:
int DKSOPAL::setupFFTRC(int ndim, int N[3], double scale) {
if (apiCuda())
return dksfft->setupFFT(ndim, N);
if (apiOpenCL())
return dksfft->setupFFTRC(ndim, N);
else if (apiOpenMP())
return dksfft->setupFFTRC(ndim, N, scale);
return DKS_ERROR;
}
//BENI:
int DKSOPAL::setupFFTCR(int ndim, int N[3], double scale) {
if (apiCuda())
return dksfft->setupFFT(ndim, N);
if (apiOpenCL())
return dksfft->setupFFTCR(ndim, N);
else if (apiOpenMP())
return dksfft->setupFFTCR(ndim, N, scale);
return DKS_ERROR;
}
/* call OpenCL FFT function for selected platform */
int DKSOPAL::callFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
if (apiOpenCL() || apiOpenMP())
return dksfft->executeFFT(data_ptr, ndim, dimsize);
else if (apiCuda())
return dksfft->executeFFT(data_ptr, ndim, dimsize, streamId);
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* call OpenCL IFFT function for selected platform */
int DKSOPAL::callIFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
if (apiOpenCL() || apiOpenMP())
return dksfft->executeIFFT(data_ptr, ndim, dimsize);
else if (apiCuda())
return dksfft->executeIFFT(data_ptr, ndim, dimsize, streamId);
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* call normalize FFT function for selected platform */
int DKSOPAL::callNormalizeFFT(void * data_ptr, int ndim, int dimsize[3], int streamId) {
if (apiOpenCL()) {
if ( loadOpenCLKernel("OpenCL/OpenCLKernels/OpenCLFFT.cl") == DKS_SUCCESS )
return dksfft->normalizeFFT(data_ptr, ndim, dimsize);
else
return DKS_ERROR;
} else if (apiCuda()) {
return dksfft->normalizeFFT(data_ptr, ndim, dimsize, streamId);
} else if (apiOpenMP()) {
return dksfft->normalizeFFT(data_ptr, ndim, dimsize);
}
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* call real to complex FFT */
int DKSOPAL::callR2CFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId) {
if (apiCuda())
return dksfft->executeRCFFT(real_ptr, comp_ptr, ndim, dimsize, streamId);
else if (apiOpenCL() || apiOpenMP())
return dksfft->executeRCFFT(real_ptr, comp_ptr, ndim, dimsize);
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* call complex to real FFT */
int DKSOPAL::callC2RFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId) {
if (apiCuda())
return dksfft->executeCRFFT(real_ptr, comp_ptr, ndim, dimsize, streamId);
else if (apiOpenCL() || apiOpenMP())
return dksfft->executeCRFFT(real_ptr, comp_ptr, ndim, dimsize);
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
/* normalize complex to real iFFT */
int DKSOPAL::callNormalizeC2RFFT(void * real_ptr, int ndim, int dimsize[3], int streamId) {
if (apiCuda())
return dksfft->normalizeCRFFT(real_ptr, ndim, dimsize, streamId);
else if (apiOpenCL())
return DKS_ERROR;
else if (apiOpenMP())
return DKS_ERROR;
DEBUG_MSG("No implementation for selected platform");
return DKS_ERROR;
}
int DKSOPAL::callGreensIntegral(void *tmp_ptr, int I, int J, int K, int NI, int NJ,
double hz_m0, double hz_m1, double hz_m2, int streamId) {
return dksgreens->greensIntegral(tmp_ptr, I, J, K, NI, NJ,
hz_m0, hz_m1, hz_m2, streamId);
}
int DKSOPAL::callGreensIntegration(void *mem_ptr, void *tmp_ptr,
int I, int J, int K, int streamId) {
return dksgreens->integrationGreensFunction(mem_ptr, tmp_ptr, I, J, K, streamId);
}
int DKSOPAL::callMirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId) {
return dksgreens->mirrorRhoField(mem_ptr, I, J, K, streamId);
}
int DKSOPAL::callMultiplyComplexFields(void *mem_ptr1, void *mem_ptr2, int size, int streamId) {
return dksgreens->multiplyCompelxFields(mem_ptr1, mem_ptr2, size, streamId);
}
int DKSOPAL::callCollimatorPhysics(void *mem_ptr, void *par_ptr,
int numparticles, int numparams,
int &numaddback, int &numdead)
{
return dkscol->CollimatorPhysics(mem_ptr, par_ptr, numparticles);
}
int DKSOPAL::callCollimatorPhysics2(void *mem_ptr, void *par_ptr, int numparticles)
{
return dkscol->CollimatorPhysics(mem_ptr, par_ptr, numparticles);
}
int DKSOPAL::callCollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
void *rx_ptr, void *ry_ptr, void *rz_ptr,
void *px_ptr, void *py_ptr, void *pz_ptr,
void *par_ptr, int numparticles)
{
return dkscol->CollimatorPhysicsSoA(label_ptr, localID_ptr,
rx_ptr, ry_ptr, rz_ptr,
px_ptr, py_ptr, pz_ptr,
par_ptr, numparticles);
}
int DKSOPAL::callCollimatorPhysicsSort(void *mem_ptr, int numparticles, int &numaddback)
{
return dkscol->CollimatorPhysicsSort(mem_ptr, numparticles, numaddback);
}
int DKSOPAL::callCollimatorPhysicsSortSoA(void *label_ptr, void *localID_ptr,
void *rx_ptr, void *ry_ptr, void *rz_ptr,
void *px_ptr, void *py_ptr, void *pz_ptr,
void *par_ptr, int numparticles, int &numaddback)
{
return MIC_SAFECALL(dkscol->CollimatorPhysicsSortSoA(label_ptr, localID_ptr,
rx_ptr, ry_ptr, rz_ptr,
px_ptr, py_ptr, pz_ptr,
par_ptr, numparticles, numaddback));
}
int DKSOPAL::callParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart,
void *dt_ptr, double dt, double c,
bool usedt, int streamId)
{
return dkscol->ParallelTTrackerPush(r_ptr, p_ptr, npart, dt_ptr, dt, c, usedt, streamId);
}
int DKSOPAL::callParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
void *lastSec_ptr, void *orient_ptr,
int npart, int nsec, void *dt_ptr, double dt,
double c, bool usedt, int streamId)
{
return dkscol->ParallelTTrackerPushTransform(x_ptr, p_ptr, lastSec_ptr, orient_ptr,
npart, nsec, dt_ptr, dt, c, usedt, streamId);
}

217
src/DKSOPAL.h Normal file
View File

@ -0,0 +1,217 @@
#ifndef H_DKS_OPAL
#define H_DKS_OPAL
#include <iostream>
#include "AutoTuning/DKSAutoTuning.h"
#include "DKSBase.h"
#include "DKSDefinitions.h"
#include "Algorithms/GreensFunction.h"
#include "Algorithms/CollimatorPhysics.h"
#include "Algorithms/FFT.h"
#ifdef DKS_AMD
#include "OpenCL/OpenCLFFT.h"
#include "OpenCL/OpenCLGreensFunction.h"
#include "OpenCL/OpenCLCollimatorPhysics.h"
#endif
#ifdef DKS_CUDA
#include "CUDA/CudaFFT.cuh"
#include "CUDA/CudaGreensFunction.cuh"
#include "CUDA/CudaCollimatorPhysics.cuh"
#endif
#ifdef DKS_MIC
#include "MIC/MICFFT.h"
#include "MIC/MICGreensFunction.hpp"
#include "MIC/MICCollimatorPhysics.h"
#endif
class DKSOPAL : public DKSBase {
private:
DKSFFT *dksfft;
DKSCollimatorPhysics *dkscol;
GreensFunction *dksgreens;
int setupOPAL();
public:
DKSOPAL();
~DKSOPAL();
int initDevice();
///////////////////////////////////////////////
///////Function library part of dksbase////////
///////////////////////////////////////////////
/**
* Setup FFT function.
* Initializes parameters for fft executuin. If ndim > 0 initializes handles for fft calls.
* If ffts of various sizes are needed setupFFT should be called with ndim 0, in this case
* each fft will do its own setup according to fft size and dimensions.
* TODO: opencl and mic implementations
*/
int setupFFT(int ndim, int N[3]);
//BENI:
int setupFFTRC(int ndim, int N[3], double scale = 1.0);
//BENI:
int setupFFTCR(int ndim, int N[3], double scale = 1.0);
/**
* Call complex-to-complex fft.
* Executes in place complex to compelx fft on the device on data pointed by data_ptr.
* stream id can be specified to use other streams than default.
* TODO: mic implementation
*/
int callFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Call complex-to-complex ifft.
* Executes in place complex to compelx ifft on the device on data pointed by data_ptr.
* stream id can be specified to use other streams than default.
* TODO: mic implementation.
*/
int callIFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Normalize complex to complex ifft.
* Cuda, mic and OpenCL implementations return ifft unscaled, this function divides each element by
* fft size
* TODO: mic implementation.
*/
int callNormalizeFFT(void * data_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Call real to complex FFT.
* Executes out of place real to complex fft, real_ptr points to real data, comp_pt - points
* to complex data, ndim - dimension of data, dimsize size of each dimension. real_ptr size
* should be dimsize[0]*dimsize[1]*disize[2], comp_ptr size should be atleast
* (dimsize[0]/2+1)*dimsize[1]*dimsize[2]
* TODO: opencl and mic implementations
*/
int callR2CFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Call complex to real iFFT.
* Executes out of place complex to real ifft, real_ptr points to real data, comp_pt - points
* to complex data, ndim - dimension of data, dimsize size of each dimension. real_ptr size
* should be dimsize[0]*dimsize[1]*disize[2], comp_ptr size should be atleast
* (dimsize[0]/2+1)*dimsize[1]*dimsize[2]
* TODO: opencl and mic implementations.
*/
int callC2RFFT(void * real_ptr, void * comp_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Normalize compelx to real ifft.
* Cuda, mic and OpenCL implementations return ifft unscaled, this function divides each element by
* fft size.
* TODO: opencl and mic implementations.
*/
int callNormalizeC2RFFT(void * real_ptr, int ndim, int dimsize[3], int streamId = -1);
/**
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
* For specifics check OPAL docs.
* TODO: opencl and mic implementations.
*/
int callGreensIntegral(void *tmp_ptr, int I, int J, int K, int NI, int NJ,
double hz_m0, double hz_m1, double hz_m2, int streamId = -1);
/**
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
* For specifics check OPAL docs.
* TODO: opencl and mic implementations.
*/
int callGreensIntegration(void *mem_ptr, void *tmp_ptr,
int I, int J, int K, int streamId = -1);
/**
* Integrated greens function from OPAL FFTPoissonsolver.cpp put on device.
* For specifics check OPAL docs.
* TODO: opencl and mic implementations.
*/
int callMirrorRhoField(void *mem_ptr, int I, int J, int K, int streamId = -1);
/**
* Element by element multiplication.
* Multiplies each element of mem_ptr1 with corresponding element of mem_ptr2, size specifies
* the number of elements in mem_ptr1 and mem_ptr2 to use. Results are put in mem_ptr1.
* TODO: opencl and mic implementations.
*/
int callMultiplyComplexFields(void *mem_ptr1, void *mem_ptr2, int size, int streamId = -1);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* TODO: opencl and mic implementations.
*/
int callCollimatorPhysics(void *mem_ptr, void *par_ptr,
int numparticles, int numparams,
int &numaddback, int &numdead);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* TODO: opencl and mic implementations.
*/
int callCollimatorPhysics2(void *mem_ptr, void *par_ptr, int numparticles);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* Test function for the MIC to test SoA layout vs AoS layout used in previous versions
*/
int callCollimatorPhysicsSoA(void *label_ptr, void *localID_ptr,
void *rx_ptr, void *ry_ptr, void *rz_ptr,
void *px_ptr, void *py_ptr, void *pz_ptr,
void *par_ptr, int numparticles);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* TODO: opencl and mic implementations.
*/
int callCollimatorPhysicsSort(void *mem_ptr, int numparticles, int &numaddback);
/**
* Monte carlo code for the degrader from OPAL classic/5.0/src/Solvers/CollimatorPhysics.cpp on device.
* For specifics check OPAL docs and CudaCollimatorPhysics class documentation.
* TODO: opencl and mic implementations.
*/
int callCollimatorPhysicsSortSoA(void *label_ptr, void *localID_ptr,
void *rx_ptr, void *ry_ptr, void *rz_ptr,
void *px_ptr, void *py_ptr, void *pz_ptr,
void *par_ptr, int numparticles, int &numaddback);
/**
* Integration code from ParallelTTracker from OPAL.
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
*/
int callParallelTTrackerPush(void *r_ptr, void *p_ptr, int npart,
void *dt_ptr, double dt, double c,
bool usedt = false, int streamId = -1);
/**
* Integration code from ParallelTTracker from OPAL.
* For specifics check OPAL docs and CudaCollimatorPhysics class docs
*/
int callParallelTTrackerPushTransform(void *x_ptr, void *p_ptr,
void *lastSec_ptr, void *orient_ptr,
int npart, int nsec, void *dt_ptr,
double dt, double c, bool usedt = false,
int streamId = -1);
};
#endif