mirror of
https://github.com/tiqi-group/pydase.git
synced 2025-06-06 13:30:41 +02:00
Merge pull request #178 from tiqi-group/177-docs-add-configuration-section-to-readthedocs
docs: add configuration section to readthedocs
This commit is contained in:
commit
87f720f567
38
README.md
38
README.md
@ -184,37 +184,33 @@ For more information, see [here][RESTful API].
|
||||
|
||||
## Configuring pydase via Environment Variables
|
||||
|
||||
Configuring `pydase` through environment variables enhances flexibility, security, and reusability. This approach allows for easy adaptation of services across different environments without code changes, promoting scalability and maintainability. With that, it simplifies deployment processes and facilitates centralized configuration management. Moreover, environment variables enable separation of configuration from code, aiding in secure and collaborative development.
|
||||
`pydase` services work out of the box without requiring any configuration. However, you
|
||||
might want to change some options, such as the web server port or logging level. To
|
||||
accommodate such customizations, `pydase` allows configuration through environment
|
||||
variables, such as:
|
||||
|
||||
`pydase` offers various configurable options:
|
||||
- **`ENVIRONMENT`**:
|
||||
Defines the operation mode (`"development"` or `"production"`), which influences
|
||||
behaviour such as logging (see [Logging in pydase](#logging-in-pydase)).
|
||||
|
||||
- **`ENVIRONMENT`**: Sets the operation mode to either "development" or "production". Affects logging behaviour (see [logging section](#logging-in-pydase)).
|
||||
- **`SERVICE_CONFIG_DIR`**: Specifies the directory for service configuration files, like `web_settings.json`. This directory can also be used to hold user-defined configuration files. Default is the `config` folder in the service root folder. The variable can be accessed through:
|
||||
- **`SERVICE_CONFIG_DIR`**:
|
||||
Specifies the directory for configuration files (e.g., `web_settings.json`). Defaults
|
||||
to the `config` folder in the service root. Access this programmatically using:
|
||||
|
||||
```python
|
||||
import pydase.config
|
||||
pydase.config.ServiceConfig().config_dir
|
||||
```
|
||||
|
||||
- **`SERVICE_WEB_PORT`**: Defines the port number for the web server. This has to be different for each services running on the same host. Default is 8001.
|
||||
- **`GENERATE_WEB_SETTINGS`**: When set to true, generates / updates the `web_settings.json` file. If the file already exists, only new entries are appended.
|
||||
- **`SERVICE_WEB_PORT`**:
|
||||
Defines the web server’s port. Ensure each service on the same host uses a unique
|
||||
port. Default: `8001`.
|
||||
|
||||
Some of those settings can also be altered directly in code when initializing the server:
|
||||
- **`GENERATE_WEB_SETTINGS`**:
|
||||
When `true`, generates or updates the `web_settings.json` file. Existing entries are
|
||||
preserved, and new entries are appended.
|
||||
|
||||
```python
|
||||
import pathlib
|
||||
|
||||
from pydase import Server
|
||||
from your_service_module import YourService
|
||||
|
||||
|
||||
server = Server(
|
||||
YourService(),
|
||||
web_port=8080,
|
||||
config_dir=pathlib.Path("other_config_dir"), # note that you need to provide an argument of type pathlib.Path
|
||||
generate_web_settings=True
|
||||
).run()
|
||||
```
|
||||
For more information, see [Configuring pydase](https://pydase.readthedocs.io/en/stable/user-guide/Configuration/).
|
||||
|
||||
## Customizing the Web Interface
|
||||
|
||||
|
211
docs/user-guide/Configuration.md
Normal file
211
docs/user-guide/Configuration.md
Normal file
@ -0,0 +1,211 @@
|
||||
|
||||
# Configuring `pydase`
|
||||
|
||||
## Do I Need to Configure My `pydase` Service?
|
||||
|
||||
`pydase` services work out of the box without requiring any configuration. However, you
|
||||
might want to change some options, such as the web server port or logging level. To
|
||||
accommodate such customizations, `pydase` allows configuration through environment
|
||||
variables - avoiding hard-coded settings in your service code.
|
||||
|
||||
Why should you avoid hard-coding configurations? Here are two reasons:
|
||||
|
||||
1. **Security**:
|
||||
Protect sensitive information, such as usernames and passwords. By using environment
|
||||
variables, your service code can remain public while keeping private information
|
||||
secure.
|
||||
|
||||
2. **Reusability**:
|
||||
Services often need to be reused in different environments. For example, you might
|
||||
deploy multiple instances of a service (e.g., for different sensors in a lab). By
|
||||
separating configuration from code, you can adapt the service to new requirements
|
||||
without modifying its codebase.
|
||||
|
||||
Next, we’ll walk you through the environment variables `pydase` supports and provide an
|
||||
example of how to separate service code from configuration.
|
||||
|
||||
## Configuring `pydase` Using Environment Variables
|
||||
|
||||
`pydase` provides the following environment variables for customization:
|
||||
|
||||
- **`ENVIRONMENT`**:
|
||||
Defines the operation mode (`"development"` or `"production"`), which influences
|
||||
behaviour such as logging (see [Logging in pydase](https://github.com/tiqi-group/pydase?tab=readme-ov-file#logging-in-pydase)).
|
||||
|
||||
- **`SERVICE_CONFIG_DIR`**:
|
||||
Specifies the directory for configuration files (e.g., `web_settings.json`). Defaults
|
||||
to the `config` folder in the service root. Access this programmatically using:
|
||||
|
||||
```python
|
||||
import pydase.config
|
||||
pydase.config.ServiceConfig().config_dir
|
||||
```
|
||||
|
||||
- **`SERVICE_WEB_PORT`**:
|
||||
Defines the web server’s port. Ensure each service on the same host uses a unique
|
||||
port. Default: `8001`.
|
||||
|
||||
- **`GENERATE_WEB_SETTINGS`**:
|
||||
When `true`, generates or updates the `web_settings.json` file. Existing entries are
|
||||
preserved, and new entries are appended.
|
||||
|
||||
### Configuring `pydase` via Keyword Arguments
|
||||
|
||||
Some settings can also be overridden directly in your service code using keyword
|
||||
arguments when initializing the server. This allows for flexibility in code-based
|
||||
configuration:
|
||||
|
||||
```python
|
||||
import pathlib
|
||||
from pydase import Server
|
||||
from your_service_module import YourService
|
||||
|
||||
server = Server(
|
||||
YourService(),
|
||||
web_port=8080, # Overrides SERVICE_WEB_PORT
|
||||
config_dir=pathlib.Path("custom_config"), # Overrides SERVICE_CONFIG_DIR
|
||||
generate_web_settings=True # Overrides GENERATE_WEB_SETTINGS
|
||||
).run()
|
||||
```
|
||||
|
||||
## Separating Service Code from Configuration
|
||||
|
||||
To decouple configuration from code, `pydase` utilizes `confz` for configuration
|
||||
management. Below is an example that demonstrates how to configure a `pydase` service
|
||||
for a sensor readout application.
|
||||
|
||||
### Scenario: Configuring a Sensor Service
|
||||
|
||||
Imagine you have multiple sensors distributed across your lab. You need to configure
|
||||
each service instance with:
|
||||
|
||||
1. **Hostname**: The hostname or IP address of the sensor.
|
||||
2. **Authentication Token**: A token or credentials to authenticate with the sensor.
|
||||
3. **Readout Interval**: A periodic interval to read sensor data and log it to a
|
||||
database.
|
||||
|
||||
Given the repository structure:
|
||||
|
||||
```bash title="Service Repository Structure"
|
||||
my_sensor
|
||||
├── pyproject.toml
|
||||
├── README.md
|
||||
└── src
|
||||
└── my_sensor
|
||||
├── my_sensor.py
|
||||
├── config.py
|
||||
├── __init__.py
|
||||
└── __main__.py
|
||||
```
|
||||
|
||||
Your service might look like this:
|
||||
|
||||
### Configuration
|
||||
|
||||
Define the configuration using `confz`:
|
||||
|
||||
```python title="src/my_sensor/config.py"
|
||||
import confz
|
||||
from pydase.config import ServiceConfig
|
||||
|
||||
class MySensorConfig(confz.BaseConfig):
|
||||
instance_name: str
|
||||
hostname: str
|
||||
auth_token: str
|
||||
readout_interval_s: float
|
||||
|
||||
CONFIG_SOURCES = confz.FileSource(file=ServiceConfig().config_dir / "config.yaml")
|
||||
```
|
||||
|
||||
This class defines configurable parameters and loads values from a `config.yaml` file
|
||||
located in the service’s configuration directory (which is configurable through an
|
||||
environment variable, see [above](#configuring-pydase-using-environment-variables)).
|
||||
A sample YAML file might look like this:
|
||||
|
||||
```yaml title="config.yaml"
|
||||
instance_name: my-sensor-service-01
|
||||
hostname: my-sensor-01.example.com
|
||||
auth_token: my-secret-authentication-token
|
||||
readout_interval_s: 5
|
||||
```
|
||||
|
||||
### Service Implementation
|
||||
|
||||
Your service implementation might look like this:
|
||||
|
||||
```python title="src/my_sensor/my_sensor.py"
|
||||
import asyncio
|
||||
import http.client
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import pydase.components
|
||||
import pydase.units as u
|
||||
from pydase.task.decorator import task
|
||||
|
||||
from my_sensor.config import MySensorConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MySensor(pydase.DataService):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.readout_interval_s: u.Quantity = (
|
||||
MySensorConfig().readout_interval_s * u.units.s
|
||||
)
|
||||
|
||||
@property
|
||||
def hostname(self) -> str:
|
||||
"""Hostname of the sensor. Read-only."""
|
||||
return MySensorConfig().hostname
|
||||
|
||||
def _get_data(self) -> dict[str, Any]:
|
||||
"""Fetches sensor data via an HTTP GET request. It passes the authentication
|
||||
token as "Authorization" header."""
|
||||
|
||||
connection = http.client.HTTPConnection(self.hostname, timeout=10)
|
||||
connection.request(
|
||||
"GET", "/", headers={"Authorization": MySensorConfig().auth_token}
|
||||
)
|
||||
response = connection.getresponse()
|
||||
connection.close()
|
||||
|
||||
return json.loads(response.read())
|
||||
|
||||
@task(autostart=True)
|
||||
async def get_and_log_sensor_values(self) -> None:
|
||||
"""Periodically fetches and logs sensor data."""
|
||||
while True:
|
||||
try:
|
||||
data = self._get_data()
|
||||
# Write data to database using MySensorConfig().instance_name ...
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Error occurred, retrying in %s seconds. Error: %s",
|
||||
self.readout_interval_s.m,
|
||||
e,
|
||||
)
|
||||
await asyncio.sleep(self.readout_interval_s.m)
|
||||
```
|
||||
|
||||
### Starting the Service
|
||||
|
||||
The service is launched via the `__main__.py` entry point:
|
||||
|
||||
```python title="src/my_sensor/__main__.py"
|
||||
import pydase
|
||||
from my_sensor.my_sensor import MySensor
|
||||
|
||||
pydase.Server(MySensor()).run()
|
||||
```
|
||||
|
||||
You can now start the service with:
|
||||
|
||||
```bash
|
||||
python -m my_sensor
|
||||
```
|
||||
|
||||
This approach ensures the service is fully configured via the `config.yaml` file,
|
||||
separating service logic from configuration.
|
@ -60,7 +60,7 @@ Each key in the file corresponds to the full access path of public attributes, p
|
||||
- **Control Component Visibility**: Utilize the `"display"` key-value pair to control whether a component is rendered in the frontend. Set the value to `true` to make the component visible or `false` to hide it.
|
||||
- **Adjustable Component Order**: The `"displayOrder"` values determine the order of components. Alter these values to rearrange the components as desired. The value defaults to [`Number.MAX_SAFE_INTEGER`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER).
|
||||
|
||||
The `web_settings.json` file will be stored in the directory specified by `SERVICE_CONFIG_DIR`. You can generate a `web_settings.json` file by setting the `GENERATE_WEB_SETTINGS` to `True`. For more information, see the [configuration section](#configuring-pydase-via-environment-variables).
|
||||
The `web_settings.json` file will be stored in the directory specified by the `SERVICE_CONFIG_DIR` environment variable. You can generate a `web_settings.json` file by setting the `GENERATE_WEB_SETTINGS` to `True`. For more information, see the [configuration section](../Configuration).
|
||||
|
||||
For example, styling the following service
|
||||
|
||||
|
@ -11,6 +11,7 @@ nav:
|
||||
- Understanding Tasks: user-guide/Tasks.md
|
||||
- Understanding Units: user-guide/Understanding-Units.md
|
||||
- Validating Property Setters: user-guide/Validating-Property-Setters.md
|
||||
- Configuring pydase: user-guide/Configuration.md
|
||||
- Developer Guide:
|
||||
- Developer Guide: dev-guide/README.md
|
||||
- API Reference: dev-guide/api.md
|
||||
|
Loading…
x
Reference in New Issue
Block a user