mirror of
https://github.com/tiqi-group/pydase.git
synced 2025-04-20 08:20:02 +02:00
refactoring serializer module methods
This commit is contained in:
parent
7c573cdc10
commit
14b5219915
@ -13,13 +13,16 @@ from pydase.data_service.task_manager import TaskManager
|
||||
from pydase.utils.helpers import (
|
||||
convert_arguments_to_hinted_types,
|
||||
get_class_and_instance_attributes,
|
||||
get_nested_value_from_DataService_by_path_and_key,
|
||||
get_object_attr_from_path,
|
||||
is_property_attribute,
|
||||
parse_list_attr_and_index,
|
||||
update_value_if_changed,
|
||||
)
|
||||
from pydase.utils.serializer import Serializer, generate_serialized_data_paths
|
||||
from pydase.utils.serializer import (
|
||||
Serializer,
|
||||
generate_serialized_data_paths,
|
||||
get_nested_dict_by_path,
|
||||
)
|
||||
from pydase.utils.warnings import (
|
||||
warn_if_instance_class_does_not_inherit_from_DataService,
|
||||
)
|
||||
@ -165,21 +168,14 @@ class DataService(rpyc.Service, AbstractDataService):
|
||||
# Traverse the serialized representation and set the attributes of the class
|
||||
serialized_class = self.serialize()
|
||||
for path in generate_serialized_data_paths(json_dict):
|
||||
value = get_nested_value_from_DataService_by_path_and_key(
|
||||
json_dict, path=path
|
||||
)
|
||||
value_type = get_nested_value_from_DataService_by_path_and_key(
|
||||
json_dict, path=path, key="type"
|
||||
)
|
||||
class_value_type = get_nested_value_from_DataService_by_path_and_key(
|
||||
serialized_class, path=path, key="type"
|
||||
)
|
||||
nested_json_dict = get_nested_dict_by_path(json_dict, path)
|
||||
value = nested_json_dict["value"]
|
||||
value_type = nested_json_dict["type"]
|
||||
|
||||
nested_class_dict = get_nested_dict_by_path(serialized_class, path)
|
||||
class_value_type = nested_class_dict.get("type", None)
|
||||
if class_value_type == value_type:
|
||||
class_attr_is_read_only = (
|
||||
get_nested_value_from_DataService_by_path_and_key(
|
||||
serialized_class, path=path, key="readonly"
|
||||
)
|
||||
)
|
||||
class_attr_is_read_only = nested_class_dict["readonly"]
|
||||
if class_attr_is_read_only:
|
||||
logger.debug(
|
||||
f'Attribute "{path}" is read-only. Ignoring value from JSON '
|
||||
|
@ -6,8 +6,10 @@ from typing import TYPE_CHECKING, Any, Optional, cast
|
||||
|
||||
import pydase.units as u
|
||||
from pydase.data_service.data_service_cache import DataServiceCache
|
||||
from pydase.utils.helpers import get_nested_value_from_DataService_by_path_and_key
|
||||
from pydase.utils.serializer import generate_serialized_data_paths
|
||||
from pydase.utils.serializer import (
|
||||
generate_serialized_data_paths,
|
||||
get_nested_dict_by_path,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pydase import DataService
|
||||
@ -102,21 +104,14 @@ class StateManager:
|
||||
|
||||
serialized_class = self.cache
|
||||
for path in generate_serialized_data_paths(json_dict):
|
||||
value = get_nested_value_from_DataService_by_path_and_key(
|
||||
json_dict, path=path
|
||||
)
|
||||
value_type = get_nested_value_from_DataService_by_path_and_key(
|
||||
json_dict, path=path, key="type"
|
||||
)
|
||||
class_value_type = get_nested_value_from_DataService_by_path_and_key(
|
||||
serialized_class, path=path, key="type"
|
||||
)
|
||||
nested_json_dict = get_nested_dict_by_path(json_dict, path)
|
||||
value = nested_json_dict["value"]
|
||||
value_type = nested_json_dict["type"]
|
||||
|
||||
nested_class_dict = get_nested_dict_by_path(serialized_class, path)
|
||||
class_value_type = nested_class_dict.get("type", None)
|
||||
if class_value_type == value_type:
|
||||
class_attr_is_read_only = (
|
||||
get_nested_value_from_DataService_by_path_and_key(
|
||||
serialized_class, path=path, key="readonly"
|
||||
)
|
||||
)
|
||||
class_attr_is_read_only = nested_class_dict["readonly"]
|
||||
if class_attr_is_read_only:
|
||||
logger.debug(
|
||||
f"Attribute {path!r} is read-only. Ignoring value from JSON "
|
||||
|
@ -1,23 +1,10 @@
|
||||
import inspect
|
||||
import logging
|
||||
import re
|
||||
from itertools import chain
|
||||
from typing import Any, Optional, cast
|
||||
from typing import Any, Optional
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
STANDARD_TYPES = (
|
||||
"int",
|
||||
"float",
|
||||
"bool",
|
||||
"str",
|
||||
"method",
|
||||
"Enum",
|
||||
"NoneType",
|
||||
"Quantity",
|
||||
"ColouredEnum",
|
||||
)
|
||||
|
||||
|
||||
def get_attribute_doc(attr: Any) -> Optional[str]:
|
||||
"""This function takes an input attribute attr and returns its documentation
|
||||
@ -77,142 +64,6 @@ def get_object_attr_from_path(target_obj: Any, path: list[str]) -> Any:
|
||||
return target_obj
|
||||
|
||||
|
||||
def extract_dict_or_list_entry(data: dict[str, Any], key: str) -> dict[str, Any] | None:
|
||||
"""
|
||||
Extract a nested dictionary or list entry based on the provided key.
|
||||
|
||||
Given a dictionary and a key, this function retrieves the corresponding nested
|
||||
dictionary or list entry. If the key includes an index in the format "[<index>]",
|
||||
the function assumes that the corresponding entry in the dictionary is a list, and
|
||||
it will attempt to retrieve the indexed item from that list.
|
||||
|
||||
Args:
|
||||
data (dict): The input dictionary containing nested dictionaries or lists.
|
||||
key (str): The key specifying the desired entry within the dictionary. The key
|
||||
can be a regular dictionary key or can include an index in the format
|
||||
"[<index>]" to retrieve an item from a nested list.
|
||||
|
||||
Returns:
|
||||
dict | None: The nested dictionary or list item found for the given key. If the
|
||||
key is invalid, or if the specified index is out of bounds for a list, it
|
||||
returns None.
|
||||
|
||||
Example:
|
||||
>>> data = {
|
||||
... "attr1": [
|
||||
... {"type": "int", "value": 10}, {"type": "string", "value": "hello"}
|
||||
... ],
|
||||
... "attr2": {
|
||||
... "type": "MyClass",
|
||||
... "value": {"sub_attr": {"type": "float", "value": 20.5}}
|
||||
... }
|
||||
... }
|
||||
|
||||
>>> extract_dict_or_list_entry(data, "attr1[1]")
|
||||
{"type": "string", "value": "hello"}
|
||||
|
||||
>>> extract_dict_or_list_entry(data, "attr2")
|
||||
{"type": "MyClass", "value": {"sub_attr": {"type": "float", "value": 20.5}}}
|
||||
"""
|
||||
|
||||
attr_name = key
|
||||
index: Optional[int] = None
|
||||
|
||||
# Check if the key contains an index part like '[<index>]'
|
||||
if "[" in key and key.endswith("]"):
|
||||
attr_name, index_part = key.split("[", 1)
|
||||
index_part = index_part.rstrip("]") # remove the closing bracket
|
||||
|
||||
# Convert the index part to an integer
|
||||
if index_part.isdigit():
|
||||
index = int(index_part)
|
||||
else:
|
||||
logger.error(f"Invalid index format in key: {key}")
|
||||
|
||||
current_data: dict[str, Any] | list[dict[str, Any]] | None = data.get(
|
||||
attr_name, None
|
||||
)
|
||||
if not isinstance(current_data, dict):
|
||||
# key does not exist in dictionary, e.g. when class does not have this
|
||||
# attribute
|
||||
return None
|
||||
|
||||
if isinstance(current_data["value"], list):
|
||||
current_data = current_data["value"]
|
||||
|
||||
if index is not None and 0 <= index < len(current_data):
|
||||
current_data = current_data[index]
|
||||
else:
|
||||
return None
|
||||
|
||||
# When the attribute is a class instance, the attributes are nested in the
|
||||
# "value" key
|
||||
if current_data["type"] not in STANDARD_TYPES:
|
||||
current_data = cast(dict[str, Any], current_data.get("value", None)) # type: ignore
|
||||
assert isinstance(current_data, dict)
|
||||
|
||||
return current_data
|
||||
|
||||
|
||||
def get_nested_value_from_DataService_by_path_and_key(
|
||||
data: dict[str, Any], path: str, key: str = "value"
|
||||
) -> Any:
|
||||
"""
|
||||
Get the value associated with a specific key from a dictionary given a path.
|
||||
|
||||
This function traverses the dictionary according to the path provided and
|
||||
returns the value associated with the specified key at that path. The path is
|
||||
a string with dots connecting the levels and brackets indicating list indices.
|
||||
|
||||
The function can handle complex dictionaries where data is nested within different
|
||||
types of objects. It checks the type of each object it encounters and correctly
|
||||
descends into the object if it is not a standard type (i.e., int, float, bool, str,
|
||||
Enum).
|
||||
|
||||
Args:
|
||||
data (dict): The input dictionary to get the value from.
|
||||
path (str): The path to the value in the dictionary.
|
||||
key (str, optional): The key associated with the value to be returned.
|
||||
Default is "value".
|
||||
|
||||
Returns:
|
||||
Any: The value associated with the specified key at the given path in the
|
||||
dictionary.
|
||||
|
||||
Examples:
|
||||
Let's consider the following dictionary:
|
||||
|
||||
>>> data = {
|
||||
>>> "attr1": {"type": "int", "value": 10},
|
||||
>>> "attr2": {
|
||||
"type": "MyClass",
|
||||
"value": {"attr3": {"type": "float", "value": 20.5}}
|
||||
}
|
||||
>>> }
|
||||
|
||||
The function can be used to get the value of 'attr1' as follows:
|
||||
>>> get_nested_value_by_path_and_key(data, "attr1")
|
||||
10
|
||||
|
||||
It can also be used to get the value of 'attr3', which is nested within 'attr2',
|
||||
as follows:
|
||||
>>> get_nested_value_by_path_and_key(data, "attr2.attr3", "type")
|
||||
float
|
||||
"""
|
||||
|
||||
# Split the path into parts
|
||||
parts: list[str] = re.split(r"\.", path) # Split by '.'
|
||||
current_data: dict[str, Any] | None = data
|
||||
|
||||
for part in parts:
|
||||
if current_data is None:
|
||||
return
|
||||
current_data = extract_dict_or_list_entry(current_data, part)
|
||||
|
||||
if isinstance(current_data, dict):
|
||||
return current_data.get(key, None)
|
||||
|
||||
|
||||
def convert_arguments_to_hinted_types(
|
||||
args: dict[str, Any], type_hints: dict[str, Any]
|
||||
) -> dict[str, Any] | str:
|
||||
|
@ -241,23 +241,16 @@ def set_nested_value_by_path(
|
||||
|
||||
parent_path_parts, attr_name = path.split(".")[:-1], path.split(".")[-1]
|
||||
current_dict: dict[str, Any] = serialization_dict
|
||||
index: Optional[int] = None
|
||||
|
||||
try:
|
||||
for path_part in parent_path_parts:
|
||||
# Check if the key contains an index part like 'attr_name[<index>]'
|
||||
path_part, index = parse_list_attr_and_index(path_part)
|
||||
|
||||
current_dict = get_nested_dict_by_attr_and_index(
|
||||
current_dict, path_part, index, allow_append=False
|
||||
current_dict = get_next_level_dict_by_key(
|
||||
current_dict, path_part, allow_append=False
|
||||
)
|
||||
current_dict = current_dict["value"]
|
||||
|
||||
index = None
|
||||
|
||||
attr_name, index = parse_list_attr_and_index(attr_name)
|
||||
current_dict = get_nested_dict_by_attr_and_index(
|
||||
current_dict, attr_name, index, allow_append=True
|
||||
current_dict = get_next_level_dict_by_key(
|
||||
current_dict, attr_name, allow_append=True
|
||||
)
|
||||
except (SerializationPathError, SerializationValueError, KeyError) as e:
|
||||
logger.error(e)
|
||||
@ -272,10 +265,33 @@ def set_nested_value_by_path(
|
||||
current_dict.update(serialized_value)
|
||||
|
||||
|
||||
def get_nested_dict_by_attr_and_index(
|
||||
def get_nested_dict_by_path(
|
||||
serialization_dict: dict[str, Any],
|
||||
path: str,
|
||||
) -> dict[str, Any]:
|
||||
parent_path_parts, attr_name = path.split(".")[:-1], path.split(".")[-1]
|
||||
current_dict: dict[str, Any] = serialization_dict
|
||||
|
||||
try:
|
||||
for path_part in parent_path_parts:
|
||||
current_dict = get_next_level_dict_by_key(
|
||||
current_dict, path_part, allow_append=False
|
||||
)
|
||||
current_dict = current_dict["value"]
|
||||
current_dict = get_next_level_dict_by_key(
|
||||
current_dict, attr_name, allow_append=False
|
||||
)
|
||||
|
||||
except (SerializationPathError, SerializationValueError, KeyError) as e:
|
||||
logger.error(e)
|
||||
return {}
|
||||
|
||||
return current_dict
|
||||
|
||||
|
||||
def get_next_level_dict_by_key(
|
||||
serialization_dict: dict[str, Any],
|
||||
attr_name: str,
|
||||
index: Optional[int],
|
||||
allow_append: bool = False,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
@ -284,8 +300,8 @@ def get_nested_dict_by_attr_and_index(
|
||||
|
||||
Args:
|
||||
serialization_dict: The base dictionary representing serialized data.
|
||||
attr_name: The key name representing the attribute in the dictionary.
|
||||
index: The optional index for list items within the dictionary value.
|
||||
attr_name: The key name representing the attribute in the dictionary,
|
||||
e.g. 'list_attr[0]' or 'attr'
|
||||
allow_append: Flag to allow appending a new entry if `index` is out of range by
|
||||
one.
|
||||
|
||||
@ -297,6 +313,8 @@ def get_nested_dict_by_attr_and_index(
|
||||
invalid or leads to an IndexError or KeyError.
|
||||
SerializationValueError: If the expected nested structure is not a dictionary.
|
||||
"""
|
||||
# Check if the key contains an index part like 'attr_name[<index>]'
|
||||
attr_name, index = parse_list_attr_and_index(attr_name)
|
||||
|
||||
try:
|
||||
if index is not None:
|
||||
|
@ -2,7 +2,7 @@ import logging
|
||||
|
||||
import pydase
|
||||
from pydase.data_service.data_service_cache import DataServiceCache
|
||||
from pydase.utils.helpers import get_nested_value_from_DataService_by_path_and_key
|
||||
from pydase.utils.serializer import get_nested_dict_by_path
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
@ -19,15 +19,7 @@ def test_nested_attributes_cache_callback() -> None:
|
||||
cache = DataServiceCache(test_service)
|
||||
|
||||
test_service.name = "Peepz"
|
||||
assert (
|
||||
get_nested_value_from_DataService_by_path_and_key(cache.cache, "name")
|
||||
== "Peepz"
|
||||
)
|
||||
assert get_nested_dict_by_path(cache.cache, "name")["value"] == "Peepz"
|
||||
|
||||
test_service.class_attr.name = "Ciao"
|
||||
assert (
|
||||
get_nested_value_from_DataService_by_path_and_key(
|
||||
cache.cache, "class_attr.name"
|
||||
)
|
||||
== "Ciao"
|
||||
)
|
||||
assert get_nested_dict_by_path(cache.cache, "class_attr.name")["value"] == "Ciao"
|
||||
|
@ -1,70 +1,6 @@
|
||||
import pytest
|
||||
|
||||
from pydase.utils.helpers import (
|
||||
extract_dict_or_list_entry,
|
||||
get_nested_value_from_DataService_by_path_and_key,
|
||||
is_property_attribute,
|
||||
)
|
||||
|
||||
# Sample data for the tests
|
||||
data_sample = {
|
||||
"attr1": {"type": "bool", "value": False, "readonly": False, "doc": None},
|
||||
"class_attr": {
|
||||
"type": "MyClass",
|
||||
"value": {"sub_attr": {"type": "float", "value": 20.5}},
|
||||
},
|
||||
"list_attr": {
|
||||
"type": "list",
|
||||
"value": [
|
||||
{"type": "int", "value": 0, "readonly": False, "doc": None},
|
||||
{"type": "float", "value": 1.0, "readonly": False, "doc": None},
|
||||
],
|
||||
"readonly": False,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
# Tests for extract_dict_or_list_entry
|
||||
def test_extract_dict_with_valid_list_index() -> None:
|
||||
result = extract_dict_or_list_entry(data_sample, "list_attr[1]")
|
||||
assert result == {"type": "float", "value": 1.0, "readonly": False, "doc": None}
|
||||
|
||||
|
||||
def test_extract_dict_without_list_index() -> None:
|
||||
result = extract_dict_or_list_entry(data_sample, "attr1")
|
||||
assert result == {"type": "bool", "value": False, "readonly": False, "doc": None}
|
||||
|
||||
|
||||
def test_extract_dict_with_invalid_key() -> None:
|
||||
result = extract_dict_or_list_entry(data_sample, "attr_not_exist")
|
||||
assert result is None
|
||||
|
||||
|
||||
def test_extract_dict_with_invalid_list_index() -> None:
|
||||
result = extract_dict_or_list_entry(data_sample, "list_attr[5]")
|
||||
assert result is None
|
||||
|
||||
|
||||
# Tests for get_nested_value_from_DataService_by_path_and_key
|
||||
def test_get_nested_value_with_default_key() -> None:
|
||||
result = get_nested_value_from_DataService_by_path_and_key(
|
||||
data_sample, "list_attr[0]"
|
||||
)
|
||||
assert result == 0
|
||||
|
||||
|
||||
def test_get_nested_value_with_custom_key() -> None:
|
||||
result = get_nested_value_from_DataService_by_path_and_key(
|
||||
data_sample, "class_attr.sub_attr", "type"
|
||||
)
|
||||
assert result == "float"
|
||||
|
||||
|
||||
def test_get_nested_value_with_invalid_path() -> None:
|
||||
result = get_nested_value_from_DataService_by_path_and_key(
|
||||
data_sample, "class_attr.nonexistent_attr"
|
||||
)
|
||||
assert result is None
|
||||
from pydase.utils.helpers import is_property_attribute
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -6,7 +6,12 @@ import pytest
|
||||
import pydase
|
||||
import pydase.units as u
|
||||
from pydase.components.coloured_enum import ColouredEnum
|
||||
from pydase.utils.serializer import dump, set_nested_value_by_path
|
||||
from pydase.utils.serializer import (
|
||||
SerializationPathError,
|
||||
dump,
|
||||
get_next_level_dict_by_key,
|
||||
set_nested_value_by_path,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@ -347,3 +352,25 @@ def test_update_list_inside_class(setup_dict):
|
||||
def test_update_class_attribute_inside_list(setup_dict):
|
||||
set_nested_value_by_path(setup_dict, "attr_list[2].attr3", 50)
|
||||
assert setup_dict["attr_list"]["value"][2]["value"]["attr3"]["value"] == 50
|
||||
|
||||
|
||||
def test_get_attribute_nested_dict(setup_dict):
|
||||
nested_dict = get_next_level_dict_by_key(setup_dict, "attr1")
|
||||
assert nested_dict == setup_dict["attr1"]
|
||||
|
||||
|
||||
def test_get_list_entry_nested_dict(setup_dict):
|
||||
nested_dict = get_next_level_dict_by_key(setup_dict, "attr_list[0]")
|
||||
assert nested_dict == setup_dict["attr_list"]["value"][0]
|
||||
|
||||
|
||||
def test_get_invalid_path_nested_dict(setup_dict):
|
||||
with pytest.raises(SerializationPathError):
|
||||
get_next_level_dict_by_key(setup_dict, "invalid_path")
|
||||
|
||||
|
||||
def test_get_invalid_list_index(setup_dict):
|
||||
with pytest.raises(SerializationPathError):
|
||||
get_next_level_dict_by_key(setup_dict, "attr_list[10]")
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user