Don't lock around the Stop() operation though, as that may take
a while and block other operations. That may mean we call Stop()
multiple times, but the Lease object should handle that correctly
itself.
Classless static routes (DHCP option 121) are now processed first.
If CSRs exist, static routes (DHCP option 33) and the gateway default
route are ignored as per RFC 3442.
This diff adds -hostprefix option in dhcp daemon. This option
could be used to run dhcp daemon as container because container
cannot touch host's netns directly. The diff changes dhcp daemon
to touch procfs mounted to another path, like '/hostfs/proc'.
There are at least two reasons why a lease is not present:
* The dhcp ipam daemon was restarted
* On add the IPAM plugin failed
Don't fail the IPAM invocation when the lease is not present, to allow
proper device cleanup on CNI delete invocations.
Updates the spec and plugins to return an array of interfaces and IP details
to the runtime including:
- interface names and MAC addresses configured by the plugin
- whether the interfaces are sandboxed (container/VM) or host (bridge, veth, etc)
- multiple IP addresses configured by IPAM and which interface they
have been assigned to
Returning interface details is useful for runtimes, as well as allowing
more flexible chaining of CNI plugins themselves. For example, some
meta plugins may need to know the host-side interface to be able to
apply firewall or traffic shaping rules to the container.
Add a namespace object interface for somewhat cleaner code when
creating and switching between network namespaces. All created
namespaces are now mounted in /var/run/netns to ensure they
have persistent inodes and paths that can be passed around
between plugin components without relying on the current namespace
being correct.
Also remove the thread-locking arguments from the ns package
per https://github.com/appc/cni/issues/183 by doing all the namespace
changes in a separate goroutine that locks/unlocks itself, instead of
the caller having to track OS thread locking.
This takes some of the machinery from CNI and from the rkt networking
code, and turns it into a library that can be linked into go apps.
Included is an example command-line application that uses the library,
called `cnitool`.
Other headline changes:
* Plugin exec'ing is factored out
The motivation here is to factor out the protocol for invoking
plugins. To that end, a generalisation of the code from api.go and
pkg/plugin/ipam.go goes into pkg/invoke/exec.go.
* Move argument-handling and conf-loading into public API
The fact that the arguments get turned into an environment for the
plugin is incidental to the API; so, provide a way of supplying them
as a struct or saying "just use the same arguments as I got" (the
latter is for IPAM plugins).
The dhcp daemon may be running with a different cwd
and so the netns paths need to be absolute. This patch
also refactors the code to pull out the common, RPC
parts, out into a separate function.
Path rewriting causes too many problems when vendoring
vendored code. When CNI code is vendored into rkt,
godep has problems code already vendored by CNI.
When plugin errors out, it prints out a JSON object to stdout
describing the failure. This object needs to be propagated out
through the plugins and to the container runtime. This change
also adds Print method to both the result and error structs
for easy serialization to stdout.
The plugin binary actually functions in two modes. The first mode
is a regular CNI plugin. The second mode (when stared with "daemon" arg)
runs a DHCP client daemon. When executed as a CNI plugin, it issues
an RPC request to the daemon for actual processing. The daemon is
required since a DHCP lease needs to be maintained by periodically
renewing it. One instance of the daemon can server arbitrary number
of containers/leases.