Instead of allocating a /31 for each container,
use the same IP on the host side for all veths.
This is very similar how real point-to-point
devices work (using donor IPs).
When plugin is executed with a DEL command, it does not
print result to stdout unless there is an error. Therefore
it stdout bytes should not be passed to json.Unmarshal.
When plugin is executed with a DEL command, it does not
print result to stdout unless there is an error. Therefore
it stdout bytes should not be passed to json.Unmarshal.
This takes some of the machinery from CNI and from the rkt networking
code, and turns it into a library that can be linked into go apps.
Included is an example command-line application that uses the library,
called `cnitool`.
Other headline changes:
* Plugin exec'ing is factored out
The motivation here is to factor out the protocol for invoking
plugins. To that end, a generalisation of the code from api.go and
pkg/plugin/ipam.go goes into pkg/invoke/exec.go.
* Move argument-handling and conf-loading into public API
The fact that the arguments get turned into an environment for the
plugin is incidental to the API; so, provide a way of supplying them
as a struct or saying "just use the same arguments as I got" (the
latter is for IPAM plugins).
This takes some of the machinery from CNI and from the rkt networking
code, and turns it into a library that can be linked into go apps.
Included is an example command-line application that uses the library,
called `cnitool`.
Other headline changes:
* Plugin exec'ing is factored out
The motivation here is to factor out the protocol for invoking
plugins. To that end, a generalisation of the code from api.go and
pkg/plugin/ipam.go goes into pkg/invoke/exec.go.
* Move argument-handling and conf-loading into public API
The fact that the arguments get turned into an environment for the
plugin is incidental to the API; so, provide a way of supplying them
as a struct or saying "just use the same arguments as I got" (the
latter is for IPAM plugins).
Luckily the docs haven't mentioned support for ipMasq for both plugins so far.
Even if anyone has attempted to enable the feature in their configuration files it didn't have the desired effect for the network.
A specific IP can now be requested via the environment variable CNI_ARGS, e.g.
`CNI_ARGS=ip=1.2.3.4`.
The plugin will try to reserve the specified IP.
If this is not successful the execution will fail.
A specific IP can now be requested via the environment variable CNI_ARGS, e.g.
`CNI_ARGS=ip=1.2.3.4`.
The plugin will try to reserve the specified IP.
If this is not successful the execution will fail.
A specific IP can now be requested via the environment variable CNI_ARGS, e.g.
`CNI_ARGS=ip=1.2.3.4`.
The plugin will try to reserve the specified IP.
If this is not successful the execution will fail.