Now that libcni has the ability to print a version message, plumb it
through correctly.
While we're at it,
- fix import paths
- run gofmt
- add some more comments to sample
- add container runtime swappability for release
Recent CNI specification changes require the container ID on ADD/DEL,
which the testcases were not providing. Fix that up so things work
when this repo gets CNI revendored.
Namespace creation had an unergonomic interface and isn't used, except
for testing code. Remove it; downstream users should really be creating
their own namespaces
- start list of linux_only plugins; ignore them when testing on Windows
- Isolate linux-only code by filename suffix
- Remove stub (NotImplemented) functions
- other misc. fixes for Windows compatibility
Updates the spec and plugins to return an array of interfaces and IP details
to the runtime including:
- interface names and MAC addresses configured by the plugin
- whether the interfaces are sandboxed (container/VM) or host (bridge, veth, etc)
- multiple IP addresses configured by IPAM and which interface they
have been assigned to
Returning interface details is useful for runtimes, as well as allowing
more flexible chaining of CNI plugins themselves. For example, some
meta plugins may need to know the host-side interface to be able to
apply firewall or traffic shaping rules to the container.
- Add optional 'stateDir' to flannel NetConf, if not present default to
/var/lib/cni/flannel
Signed-off-by: Jay Dunkelberger <ldunkelberger@pivotal.io>
The 'flannel' meta plugin delegates to other plugins to do the actual
OS-level work. It used the ipam.Exec{Add,Del} procedures for this
delegation, since those do precisely what's needed.
However this is a bit misleading, since the flannel plugin _isn't_
doing this for IPAM, and the ipam.Exec* procedures aren't doing
something specific to IPAM plugins.
So: anticipating that there may be more meta plugins that want to
delegate in the same way, this commit moves generic delegation
procedures to `pkg/invoke`, and makes the `pkg/ipam` procedures (still
used, accurately, in the non-meta plugins) shims.
This takes some of the machinery from CNI and from the rkt networking
code, and turns it into a library that can be linked into go apps.
Included is an example command-line application that uses the library,
called `cnitool`.
Other headline changes:
* Plugin exec'ing is factored out
The motivation here is to factor out the protocol for invoking
plugins. To that end, a generalisation of the code from api.go and
pkg/plugin/ipam.go goes into pkg/invoke/exec.go.
* Move argument-handling and conf-loading into public API
The fact that the arguments get turned into an environment for the
plugin is incidental to the API; so, provide a way of supplying them
as a struct or saying "just use the same arguments as I got" (the
latter is for IPAM plugins).
This introduces a notion of a "meta" plugin. A meta plugin
is one that delegates the actual work of setting up the interface
to the main plugin. The meta plugin is used to select and dynamically
configure the main plugin. The sequence of events, is as follows:
Given netconf like:
{
"name": "mynet",
"type": "flannel",
"delegate": {
"type": "bridge"
}
}
flannel fills in values like "mtu", "ipam.subnet" and delegates to
"bridge" main plugin. "bridge" plugin will operate as usual, calling
into ipam module for IP assignment.
Delegate dictionary should not contain "name" field as it will be
filled in by the flannel plugin.