This takes some of the machinery from CNI and from the rkt networking
code, and turns it into a library that can be linked into go apps.
Included is an example command-line application that uses the library,
called `cnitool`.
Other headline changes:
* Plugin exec'ing is factored out
The motivation here is to factor out the protocol for invoking
plugins. To that end, a generalisation of the code from api.go and
pkg/plugin/ipam.go goes into pkg/invoke/exec.go.
* Move argument-handling and conf-loading into public API
The fact that the arguments get turned into an environment for the
plugin is incidental to the API; so, provide a way of supplying them
as a struct or saying "just use the same arguments as I got" (the
latter is for IPAM plugins).
The dhcp daemon may be running with a different cwd
and so the netns paths need to be absolute. This patch
also refactors the code to pull out the common, RPC
parts, out into a separate function.
When plugin errors out, it prints out a JSON object to stdout
describing the failure. This object needs to be propagated out
through the plugins and to the container runtime. This change
also adds Print method to both the result and error structs
for easy serialization to stdout.
The plugin binary actually functions in two modes. The first mode
is a regular CNI plugin. The second mode (when stared with "daemon" arg)
runs a DHCP client daemon. When executed as a CNI plugin, it issues
an RPC request to the daemon for actual processing. The daemon is
required since a DHCP lease needs to be maintained by periodically
renewing it. One instance of the daemon can server arbitrary number
of containers/leases.