vendor: add gomega/gbytes and gomega/gexec

This commit is contained in:
Dan Williams 2017-05-09 22:41:15 -05:00
parent af9127b7ea
commit 8c27b64f13
7 changed files with 777 additions and 0 deletions

10
Godeps/Godeps.json generated
View File

@ -161,6 +161,16 @@
"Comment": "v1.0-71-g2152b45",
"Rev": "2152b45fa28a361beba9aab0885972323a444e28"
},
{
"ImportPath": "github.com/onsi/gomega/gbytes",
"Comment": "v1.0-71-g2152b45",
"Rev": "2152b45fa28a361beba9aab0885972323a444e28"
},
{
"ImportPath": "github.com/onsi/gomega/gexec",
"Comment": "v1.0-71-g2152b45",
"Rev": "2152b45fa28a361beba9aab0885972323a444e28"
},
{
"ImportPath": "github.com/onsi/gomega/internal/assertion",
"Comment": "v1.0-71-g2152b45",

229
vendor/github.com/onsi/gomega/gbytes/buffer.go generated vendored Normal file
View File

@ -0,0 +1,229 @@
/*
Package gbytes provides a buffer that supports incrementally detecting input.
You use gbytes.Buffer with the gbytes.Say matcher. When Say finds a match, it fastforwards the buffer's read cursor to the end of that match.
Subsequent matches against the buffer will only operate against data that appears *after* the read cursor.
The read cursor is an opaque implementation detail that you cannot access. You should use the Say matcher to sift through the buffer. You can always
access the entire buffer's contents with Contents().
*/
package gbytes
import (
"errors"
"fmt"
"io"
"regexp"
"sync"
"time"
)
/*
gbytes.Buffer implements an io.Writer and can be used with the gbytes.Say matcher.
You should only use a gbytes.Buffer in test code. It stores all writes in an in-memory buffer - behavior that is inappropriate for production code!
*/
type Buffer struct {
contents []byte
readCursor uint64
lock *sync.Mutex
detectCloser chan interface{}
closed bool
}
/*
NewBuffer returns a new gbytes.Buffer
*/
func NewBuffer() *Buffer {
return &Buffer{
lock: &sync.Mutex{},
}
}
/*
BufferWithBytes returns a new gbytes.Buffer seeded with the passed in bytes
*/
func BufferWithBytes(bytes []byte) *Buffer {
return &Buffer{
lock: &sync.Mutex{},
contents: bytes,
}
}
/*
Write implements the io.Writer interface
*/
func (b *Buffer) Write(p []byte) (n int, err error) {
b.lock.Lock()
defer b.lock.Unlock()
if b.closed {
return 0, errors.New("attempt to write to closed buffer")
}
b.contents = append(b.contents, p...)
return len(p), nil
}
/*
Read implements the io.Reader interface. It advances the
cursor as it reads.
Returns an error if called after Close.
*/
func (b *Buffer) Read(d []byte) (int, error) {
b.lock.Lock()
defer b.lock.Unlock()
if b.closed {
return 0, errors.New("attempt to read from closed buffer")
}
if uint64(len(b.contents)) <= b.readCursor {
return 0, io.EOF
}
n := copy(d, b.contents[b.readCursor:])
b.readCursor += uint64(n)
return n, nil
}
/*
Close signifies that the buffer will no longer be written to
*/
func (b *Buffer) Close() error {
b.lock.Lock()
defer b.lock.Unlock()
b.closed = true
return nil
}
/*
Closed returns true if the buffer has been closed
*/
func (b *Buffer) Closed() bool {
b.lock.Lock()
defer b.lock.Unlock()
return b.closed
}
/*
Contents returns all data ever written to the buffer.
*/
func (b *Buffer) Contents() []byte {
b.lock.Lock()
defer b.lock.Unlock()
contents := make([]byte, len(b.contents))
copy(contents, b.contents)
return contents
}
/*
Detect takes a regular expression and returns a channel.
The channel will receive true the first time data matching the regular expression is written to the buffer.
The channel is subsequently closed and the buffer's read-cursor is fast-forwarded to just after the matching region.
You typically don't need to use Detect and should use the ghttp.Say matcher instead. Detect is useful, however, in cases where your code must
be branch and handle different outputs written to the buffer.
For example, consider a buffer hooked up to the stdout of a client library. You may (or may not, depending on state outside of your control) need to authenticate the client library.
You could do something like:
select {
case <-buffer.Detect("You are not logged in"):
//log in
case <-buffer.Detect("Success"):
//carry on
case <-time.After(time.Second):
//welp
}
buffer.CancelDetects()
You should always call CancelDetects after using Detect. This will close any channels that have not detected and clean up the goroutines that were spawned to support them.
Finally, you can pass detect a format string followed by variadic arguments. This will construct the regexp using fmt.Sprintf.
*/
func (b *Buffer) Detect(desired string, args ...interface{}) chan bool {
formattedRegexp := desired
if len(args) > 0 {
formattedRegexp = fmt.Sprintf(desired, args...)
}
re := regexp.MustCompile(formattedRegexp)
b.lock.Lock()
defer b.lock.Unlock()
if b.detectCloser == nil {
b.detectCloser = make(chan interface{})
}
closer := b.detectCloser
response := make(chan bool)
go func() {
ticker := time.NewTicker(10 * time.Millisecond)
defer ticker.Stop()
defer close(response)
for {
select {
case <-ticker.C:
b.lock.Lock()
data, cursor := b.contents[b.readCursor:], b.readCursor
loc := re.FindIndex(data)
b.lock.Unlock()
if loc != nil {
response <- true
b.lock.Lock()
newCursorPosition := cursor + uint64(loc[1])
if newCursorPosition >= b.readCursor {
b.readCursor = newCursorPosition
}
b.lock.Unlock()
return
}
case <-closer:
return
}
}
}()
return response
}
/*
CancelDetects cancels any pending detects and cleans up their goroutines. You should always call this when you're done with a set of Detect channels.
*/
func (b *Buffer) CancelDetects() {
b.lock.Lock()
defer b.lock.Unlock()
close(b.detectCloser)
b.detectCloser = nil
}
func (b *Buffer) didSay(re *regexp.Regexp) (bool, []byte) {
b.lock.Lock()
defer b.lock.Unlock()
unreadBytes := b.contents[b.readCursor:]
copyOfUnreadBytes := make([]byte, len(unreadBytes))
copy(copyOfUnreadBytes, unreadBytes)
loc := re.FindIndex(unreadBytes)
if loc != nil {
b.readCursor += uint64(loc[1])
return true, copyOfUnreadBytes
} else {
return false, copyOfUnreadBytes
}
}

105
vendor/github.com/onsi/gomega/gbytes/say_matcher.go generated vendored Normal file
View File

@ -0,0 +1,105 @@
package gbytes
import (
"fmt"
"regexp"
"github.com/onsi/gomega/format"
)
//Objects satisfying the BufferProvider can be used with the Say matcher.
type BufferProvider interface {
Buffer() *Buffer
}
/*
Say is a Gomega matcher that operates on gbytes.Buffers:
Ω(buffer).Should(Say("something"))
will succeed if the unread portion of the buffer matches the regular expression "something".
When Say succeeds, it fast forwards the gbytes.Buffer's read cursor to just after the succesful match.
Thus, subsequent calls to Say will only match against the unread portion of the buffer
Say pairs very well with Eventually. To asser that a buffer eventually receives data matching "[123]-star" within 3 seconds you can:
Eventually(buffer, 3).Should(Say("[123]-star"))
Ditto with consistently. To assert that a buffer does not receive data matching "never-see-this" for 1 second you can:
Consistently(buffer, 1).ShouldNot(Say("never-see-this"))
In addition to bytes.Buffers, Say can operate on objects that implement the gbytes.BufferProvider interface.
In such cases, Say simply operates on the *gbytes.Buffer returned by Buffer()
If the buffer is closed, the Say matcher will tell Eventually to abort.
*/
func Say(expected string, args ...interface{}) *sayMatcher {
formattedRegexp := expected
if len(args) > 0 {
formattedRegexp = fmt.Sprintf(expected, args...)
}
return &sayMatcher{
re: regexp.MustCompile(formattedRegexp),
}
}
type sayMatcher struct {
re *regexp.Regexp
receivedSayings []byte
}
func (m *sayMatcher) buffer(actual interface{}) (*Buffer, bool) {
var buffer *Buffer
switch x := actual.(type) {
case *Buffer:
buffer = x
case BufferProvider:
buffer = x.Buffer()
default:
return nil, false
}
return buffer, true
}
func (m *sayMatcher) Match(actual interface{}) (success bool, err error) {
buffer, ok := m.buffer(actual)
if !ok {
return false, fmt.Errorf("Say must be passed a *gbytes.Buffer or BufferProvider. Got:\n%s", format.Object(actual, 1))
}
didSay, sayings := buffer.didSay(m.re)
m.receivedSayings = sayings
return didSay, nil
}
func (m *sayMatcher) FailureMessage(actual interface{}) (message string) {
return fmt.Sprintf(
"Got stuck at:\n%s\nWaiting for:\n%s",
format.IndentString(string(m.receivedSayings), 1),
format.IndentString(m.re.String(), 1),
)
}
func (m *sayMatcher) NegatedFailureMessage(actual interface{}) (message string) {
return fmt.Sprintf(
"Saw:\n%s\nWhich matches the unexpected:\n%s",
format.IndentString(string(m.receivedSayings), 1),
format.IndentString(m.re.String(), 1),
)
}
func (m *sayMatcher) MatchMayChangeInTheFuture(actual interface{}) bool {
switch x := actual.(type) {
case *Buffer:
return !x.Closed()
case BufferProvider:
return !x.Buffer().Closed()
default:
return true
}
}

78
vendor/github.com/onsi/gomega/gexec/build.go generated vendored Normal file
View File

@ -0,0 +1,78 @@
package gexec
import (
"errors"
"fmt"
"io/ioutil"
"os"
"os/exec"
"path"
"path/filepath"
"runtime"
)
var tmpDir string
/*
Build uses go build to compile the package at packagePath. The resulting binary is saved off in a temporary directory.
A path pointing to this binary is returned.
Build uses the $GOPATH set in your environment. It passes the variadic args on to `go build`.
*/
func Build(packagePath string, args ...string) (compiledPath string, err error) {
return BuildIn(os.Getenv("GOPATH"), packagePath, args...)
}
/*
BuildIn is identical to Build but allows you to specify a custom $GOPATH (the first argument).
*/
func BuildIn(gopath string, packagePath string, args ...string) (compiledPath string, err error) {
tmpDir, err := temporaryDirectory()
if err != nil {
return "", err
}
if len(gopath) == 0 {
return "", errors.New("$GOPATH not provided when building " + packagePath)
}
executable := filepath.Join(tmpDir, path.Base(packagePath))
if runtime.GOOS == "windows" {
executable = executable + ".exe"
}
cmdArgs := append([]string{"build"}, args...)
cmdArgs = append(cmdArgs, "-o", executable, packagePath)
build := exec.Command("go", cmdArgs...)
build.Env = append([]string{"GOPATH=" + gopath}, os.Environ()...)
output, err := build.CombinedOutput()
if err != nil {
return "", fmt.Errorf("Failed to build %s:\n\nError:\n%s\n\nOutput:\n%s", packagePath, err, string(output))
}
return executable, nil
}
/*
You should call CleanupBuildArtifacts before your test ends to clean up any temporary artifacts generated by
gexec. In Ginkgo this is typically done in an AfterSuite callback.
*/
func CleanupBuildArtifacts() {
if tmpDir != "" {
os.RemoveAll(tmpDir)
}
}
func temporaryDirectory() (string, error) {
var err error
if tmpDir == "" {
tmpDir, err = ioutil.TempDir("", "gexec_artifacts")
if err != nil {
return "", err
}
}
return ioutil.TempDir(tmpDir, "g")
}

88
vendor/github.com/onsi/gomega/gexec/exit_matcher.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package gexec
import (
"fmt"
"github.com/onsi/gomega/format"
)
/*
The Exit matcher operates on a session:
Ω(session).Should(Exit(<optional status code>))
Exit passes if the session has already exited.
If no status code is provided, then Exit will succeed if the session has exited regardless of exit code.
Otherwise, Exit will only succeed if the process has exited with the provided status code.
Note that the process must have already exited. To wait for a process to exit, use Eventually:
Eventually(session, 3).Should(Exit(0))
*/
func Exit(optionalExitCode ...int) *exitMatcher {
exitCode := -1
if len(optionalExitCode) > 0 {
exitCode = optionalExitCode[0]
}
return &exitMatcher{
exitCode: exitCode,
}
}
type exitMatcher struct {
exitCode int
didExit bool
actualExitCode int
}
type Exiter interface {
ExitCode() int
}
func (m *exitMatcher) Match(actual interface{}) (success bool, err error) {
exiter, ok := actual.(Exiter)
if !ok {
return false, fmt.Errorf("Exit must be passed a gexec.Exiter (Missing method ExitCode() int) Got:\n%s", format.Object(actual, 1))
}
m.actualExitCode = exiter.ExitCode()
if m.actualExitCode == -1 {
return false, nil
}
if m.exitCode == -1 {
return true, nil
}
return m.exitCode == m.actualExitCode, nil
}
func (m *exitMatcher) FailureMessage(actual interface{}) (message string) {
if m.actualExitCode == -1 {
return "Expected process to exit. It did not."
} else {
return format.Message(m.actualExitCode, "to match exit code:", m.exitCode)
}
}
func (m *exitMatcher) NegatedFailureMessage(actual interface{}) (message string) {
if m.actualExitCode == -1 {
return "you really shouldn't be able to see this!"
} else {
if m.exitCode == -1 {
return "Expected process not to exit. It did."
} else {
return format.Message(m.actualExitCode, "not to match exit code:", m.exitCode)
}
}
}
func (m *exitMatcher) MatchMayChangeInTheFuture(actual interface{}) bool {
session, ok := actual.(*Session)
if ok {
return session.ExitCode() == -1
}
return true
}

53
vendor/github.com/onsi/gomega/gexec/prefixed_writer.go generated vendored Normal file
View File

@ -0,0 +1,53 @@
package gexec
import (
"io"
"sync"
)
/*
PrefixedWriter wraps an io.Writer, emiting the passed in prefix at the beginning of each new line.
This can be useful when running multiple gexec.Sessions concurrently - you can prefix the log output of each
session by passing in a PrefixedWriter:
gexec.Start(cmd, NewPrefixedWriter("[my-cmd] ", GinkgoWriter), NewPrefixedWriter("[my-cmd] ", GinkgoWriter))
*/
type PrefixedWriter struct {
prefix []byte
writer io.Writer
lock *sync.Mutex
atStartOfLine bool
}
func NewPrefixedWriter(prefix string, writer io.Writer) *PrefixedWriter {
return &PrefixedWriter{
prefix: []byte(prefix),
writer: writer,
lock: &sync.Mutex{},
atStartOfLine: true,
}
}
func (w *PrefixedWriter) Write(b []byte) (int, error) {
w.lock.Lock()
defer w.lock.Unlock()
toWrite := []byte{}
for _, c := range b {
if w.atStartOfLine {
toWrite = append(toWrite, w.prefix...)
}
toWrite = append(toWrite, c)
w.atStartOfLine = c == '\n'
}
_, err := w.writer.Write(toWrite)
if err != nil {
return 0, err
}
return len(b), nil
}

214
vendor/github.com/onsi/gomega/gexec/session.go generated vendored Normal file
View File

@ -0,0 +1,214 @@
/*
Package gexec provides support for testing external processes.
*/
package gexec
import (
"io"
"os"
"os/exec"
"reflect"
"sync"
"syscall"
. "github.com/onsi/gomega"
"github.com/onsi/gomega/gbytes"
)
const INVALID_EXIT_CODE = 254
type Session struct {
//The wrapped command
Command *exec.Cmd
//A *gbytes.Buffer connected to the command's stdout
Out *gbytes.Buffer
//A *gbytes.Buffer connected to the command's stderr
Err *gbytes.Buffer
//A channel that will close when the command exits
Exited <-chan struct{}
lock *sync.Mutex
exitCode int
}
/*
Start starts the passed-in *exec.Cmd command. It wraps the command in a *gexec.Session.
The session pipes the command's stdout and stderr to two *gbytes.Buffers available as properties on the session: session.Out and session.Err.
These buffers can be used with the gbytes.Say matcher to match against unread output:
Ω(session.Out).Should(gbytes.Say("foo-out"))
Ω(session.Err).Should(gbytes.Say("foo-err"))
In addition, Session satisfies the gbytes.BufferProvider interface and provides the stdout *gbytes.Buffer. This allows you to replace the first line, above, with:
Ω(session).Should(gbytes.Say("foo-out"))
When outWriter and/or errWriter are non-nil, the session will pipe stdout and/or stderr output both into the session *gybtes.Buffers and to the passed-in outWriter/errWriter.
This is useful for capturing the process's output or logging it to screen. In particular, when using Ginkgo it can be convenient to direct output to the GinkgoWriter:
session, err := Start(command, GinkgoWriter, GinkgoWriter)
This will log output when running tests in verbose mode, but - otherwise - will only log output when a test fails.
The session wrapper is responsible for waiting on the *exec.Cmd command. You *should not* call command.Wait() yourself.
Instead, to assert that the command has exited you can use the gexec.Exit matcher:
Ω(session).Should(gexec.Exit())
When the session exits it closes the stdout and stderr gbytes buffers. This will short circuit any
Eventuallys waiting fo the buffers to Say something.
*/
func Start(command *exec.Cmd, outWriter io.Writer, errWriter io.Writer) (*Session, error) {
exited := make(chan struct{})
session := &Session{
Command: command,
Out: gbytes.NewBuffer(),
Err: gbytes.NewBuffer(),
Exited: exited,
lock: &sync.Mutex{},
exitCode: -1,
}
var commandOut, commandErr io.Writer
commandOut, commandErr = session.Out, session.Err
if outWriter != nil && !reflect.ValueOf(outWriter).IsNil() {
commandOut = io.MultiWriter(commandOut, outWriter)
}
if errWriter != nil && !reflect.ValueOf(errWriter).IsNil() {
commandErr = io.MultiWriter(commandErr, errWriter)
}
command.Stdout = commandOut
command.Stderr = commandErr
err := command.Start()
if err == nil {
go session.monitorForExit(exited)
}
return session, err
}
/*
Buffer implements the gbytes.BufferProvider interface and returns s.Out
This allows you to make gbytes.Say matcher assertions against stdout without having to reference .Out:
Eventually(session).Should(gbytes.Say("foo"))
*/
func (s *Session) Buffer() *gbytes.Buffer {
return s.Out
}
/*
ExitCode returns the wrapped command's exit code. If the command hasn't exited yet, ExitCode returns -1.
To assert that the command has exited it is more convenient to use the Exit matcher:
Eventually(s).Should(gexec.Exit())
When the process exits because it has received a particular signal, the exit code will be 128+signal-value
(See http://www.tldp.org/LDP/abs/html/exitcodes.html and http://man7.org/linux/man-pages/man7/signal.7.html)
*/
func (s *Session) ExitCode() int {
s.lock.Lock()
defer s.lock.Unlock()
return s.exitCode
}
/*
Wait waits until the wrapped command exits. It can be passed an optional timeout.
If the command does not exit within the timeout, Wait will trigger a test failure.
Wait returns the session, making it possible to chain:
session.Wait().Out.Contents()
will wait for the command to exit then return the entirety of Out's contents.
Wait uses eventually under the hood and accepts the same timeout/polling intervals that eventually does.
*/
func (s *Session) Wait(timeout ...interface{}) *Session {
EventuallyWithOffset(1, s, timeout...).Should(Exit())
return s
}
/*
Kill sends the running command a SIGKILL signal. It does not wait for the process to exit.
If the command has already exited, Kill returns silently.
The session is returned to enable chaining.
*/
func (s *Session) Kill() *Session {
if s.ExitCode() != -1 {
return s
}
s.Command.Process.Kill()
return s
}
/*
Interrupt sends the running command a SIGINT signal. It does not wait for the process to exit.
If the command has already exited, Interrupt returns silently.
The session is returned to enable chaining.
*/
func (s *Session) Interrupt() *Session {
return s.Signal(syscall.SIGINT)
}
/*
Terminate sends the running command a SIGTERM signal. It does not wait for the process to exit.
If the command has already exited, Terminate returns silently.
The session is returned to enable chaining.
*/
func (s *Session) Terminate() *Session {
return s.Signal(syscall.SIGTERM)
}
/*
Terminate sends the running command the passed in signal. It does not wait for the process to exit.
If the command has already exited, Signal returns silently.
The session is returned to enable chaining.
*/
func (s *Session) Signal(signal os.Signal) *Session {
if s.ExitCode() != -1 {
return s
}
s.Command.Process.Signal(signal)
return s
}
func (s *Session) monitorForExit(exited chan<- struct{}) {
err := s.Command.Wait()
s.lock.Lock()
s.Out.Close()
s.Err.Close()
status := s.Command.ProcessState.Sys().(syscall.WaitStatus)
if status.Signaled() {
s.exitCode = 128 + int(status.Signal())
} else {
exitStatus := status.ExitStatus()
if exitStatus == -1 && err != nil {
s.exitCode = INVALID_EXIT_CODE
}
s.exitCode = exitStatus
}
s.lock.Unlock()
close(exited)
}