
Jekyll Documentation Theme
for Designers
version 3.0
Last generated: August 12, 2015

© 2015 Your company's copyright information...
All rights reserved. No part of this book may be reproduced in any form or by any
electronic or mechanical means, including information storage and retrieval
systems, without written permission from the author, except in the case of a
reviewer, who may quote brief passages embodied in critical articles or in a
review.

Trademarked names appear throughout this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, names are used in an
editorial fashion, with no intention of infringement of the respective owner’s
trademark.

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither
the author nor the publisher shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this book.

Table of Contents

Getting started
Introduction .. 1

Get started with this theme .. 3

Configuration options... 7

Theme customization ... 16

Supported features .. 19

Authoring
Pages ... 25

WebStorm Text Editor.. 32

Series.. 34

Collections.. 37

Navigation
Sidebar navigation.. 39

Top navigation.. 45

Tags.. 47

Formatting
Tooltips... 53

Alerts .. 54

Icons... 58

Images.. 64

Labels ... 66

Links ... 67

Navtabs .. 70

Video embeds .. 73

Tables... 76

Syntax highlighting ... 80

Single-sourcing

Jekyll Documentation Theme for Designers User Guide PDF last generated: August 12, 2015

youremail@domain.com i

Conditional logic... 82

Content reuse... 87

Publishing
Build arguments ... 89

Themes... 92

Generating PDFs .. 93

Exclude files ... 104

Help API and UI tooltips ... 107

Search configuration .. 117

iTerm profiles.. 120

Pushing builds to server... 122

Special layouts
Knowledge-base layout.. 123

Scroll layout.. 126

Shuffle layout.. 132

FAQ layout.. 135

Glossary layout... 136

Tag archives
Tag archives overview.. 139

Jekyll Documentation Theme for Designers User Guide PDF last generated: August 12, 2015

youremail@domain.com ii

Introduction

Overview
This site provides documentation, training, and other notes for the Jekyll
Documentation theme. There's a lot of information about how to do a variety of
things here, and it's not all unique to this theme. But by and large, understanding
how to do things in Jekyll depends on how your theme is coded.

Survey of features
Some of the more prominent features of this theme include the following:

• Bootstrap framework

• Sidebar with page hierarchy

• PDF generation (with Prince XML utility)

• Notes, tips, and warning information notes

• Tags

• Single sourced outputs

• Emphasis on pages, not posts

• Relative (rather than absolute) link structure

I'm using this theme for my documentation projects, building about 15 different
outputs for various products, versions, languages, and audiences from the same
set of files. This single sourcing requirement has influenced how I constructed this
theme.

For more discussion about the available features, see Supported features (page
19).

Getting started
To get started, see these three topics:

1. Getting started with this theme (page 3)

2. Configuration settings (page 7)

Introduction PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 1

3. Customizing the theme (page 16)

PDF Download
If you would like to download this help file as a PDF, you can do so here. The PDF
most of the same content as the online help, except that some elements (such as
video or special layouts) don't translate the the print medium, so they're excluded.

 PDF Download

The PDF contains a timestamp in the header indicating when it was last
generated. If you download a PDF, keep in mind that it may go out of date quickly.
Always compare your PDF timestamp against the online help timestamp (which
you can find in the footer).

Introduction PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 2

http://127.0.0.1:4002/doc_designers/doc_designers_pdf.pdf
http://127.0.0.1:4002/doc_designers/doc_designers_pdf.pdf

Getting started with this theme
Summary: To get started with this theme, first make sure you
have all the prerequisites in place; then build the theme following
the sample build commands. Because this theme is set up for
single sourcing projects, it doesn't follow the same pattern as
most Jekyll projects (which have just a _config.yml file in the root
directory).

Step 1: Set up the prerequisites
Before you start installing the theme, make sure you have all of these prerequisites
in place.

• Mac computer (recommended). If you have a PC, you need to see
Jekyll on Windows (http://jekyllrb.com/docs/windows/). Make sure you
can get Jekyll working on Windows before proceeding.

• Ruby (https://www.ruby-lang.org/en/). On a Mac, this should already
be installed. Open your Terminal and type which ruby to confirm.

• Rubygems (https://rubygems.org/pages/download). This is a package
manager for Ruby. Type which gem to confirm.

• Jekyllrb (http://jekyllrb.com/). To install: gem install jekyll . Type
which jekyll to confirm that Jekyll is installed.

• Text editor (some examples: Sublime Text, Atom, WebStorm, IntelliJ)

• iTerm (http://iterm.sourceforge.net/) - Optional but recommended
instead of Terminal.

• pygments (http://pygments.org/download/) - Pygments handles syntax
highlighting. In my experiments, the Pygments highlighter seemed better
than the default rouge highlighter. To install Pygments, you will need
Python installed. (If you don't install pygments, you'll get an error when
you build the theme.) To check if Python is installed, type
which python . To install Pygments: gem install pygments.rb . If you

want to use rouge instead, change pygments to rouge in the
configuration files.

Getting started with this theme PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 3

http://jekyllrb.com/docs/windows/
https://www.ruby-lang.org/en/
https://rubygems.org/pages/download
http://jekyllrb.com/
http://iterm.sourceforge.net/
http://pygments.org/download/

Step 2: Build the theme
Before you start customizing the theme, make sure you can build the theme with
the default content and settings first.

1. Download the theme from the documentation-theme-jekyll Github
repository (https://github.com/tomjohnson1492/documentation-theme-
jekyll) and unzip it into your ~username/projects folder.

You can either download the theme files directly by clicking the
Download Zip button on the right of the repo, or use git to clone the
repository to your local machine. Note, however, that you won't be using
the pull command to update the theme since you'll be customizing it with
your own content and won't want to overwrite those customizations, so
there isn't a need to clone it.

2. After downloading the theme, note some unique aspects of the file
structure:

◦ Although there's a _config.yml file in the root directory, it's there
only so that Github Pages will build the theme. Because the
theme is set up for single sourcing, there's a separate
configuration file for each unique output you're building.

◦ All the configuration files are stored in the configs directory. Each
configuration file has a different preview port.

◦ Each configuration file specifies a different project and potentially
a different audience, product, platform, and version. By setting
unique values for these properties in the includes/custom/
conditions.html file, you determine how the sidebar and top
navigation get constructed.

◦ You can build all the outputs in your configs directory by running
the doc_multibuild_web.sh file in the root directory.

 Tip: The main goal of this theme is to enable single sourcing. With
single sourcing, you build multiple outputs from the same source,
with somewhat different content in each site based on the particular
product, platform, version, and audience. You don't have to use this
theme for single sourcing, but most tech writing projects involve this
requirement.

Getting started with this theme PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 4

https://github.com/tomjohnson1492/documentation-theme-jekyll
https://github.com/tomjohnson1492/documentation-theme-jekyll
https://github.com/tomjohnson1492/documentation-theme-jekyll

There are four configuration files in this project: config_writer.yml and
config_designer.yml as well as their PDF equivalents. The idea is that
there's an output specific to writers, and an output specific to designers.

In reality, both of these outputs are pretty much the same. However, for
the writers output, I've conditionally excluded more lengthy explanations
about how the theme works. The idea is that writers just want to create
and publish content; in contrast, designers want to understand and
modify the theme itself. Also, the configuration files use different themes.

3. Build the writer's output:

jekyll serve --config configs/config_writers.yml

The --config parameter specifies the location of the configuration file
to be used in the build. The configuration file itself contains the
destination location for where the site gets built.

Open a new tab in your browser and preview the site at the preview URL
shown.

4. Press Ctrl+C in Terminal to shut down the writer's output.

5. Build the designers output:

jekyll serve --config configs/config_designers.yml

Open a new tab in your browser and preview the site at the preview URL
shown. Notice how the themes differ (designers is blue, writers is green).

6. Press Ctrl+C in Terminal to shut down the designer's output.

7. Build both themes by running the following command:

. doc_multibuild_web.sh

The themes build in the ../doc_designers and ../doc_writers folders. Use
finder and browse to one level above where you installed the project
(probably username/projects).

Getting started with this theme PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 5

Open the writers and designers folders and click the index.html file. The
themes should launch and appear similar to their appearance in the
preview folder. This is because the themes are build using a relative link
structure, so you can move the theme to any folder you want without
breaking the links.

If the theme builds both outputs successfully, great. You can move on to
the other sections. If you run into errors building the themes, try to solve
them before moving on. See Troubleshooting (page 0) for more
information.

 Tip: You can set up profiles in iTerm to initiate all your builds with one
selection. See iTerm profiles (page 120) for details.

More information about building the PDF versions is provided i
n Generating PDFs.

Questions
If you have questions, contact me at tomjohnson1492@gmail.com. My regular site
is http://idratherbewriting.com (page 0). I'm eager to make these installation
instructions as clear as possible, so please let me know if there are areas of
confusion that need clarifying.

Getting started with this theme PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 6

http://127.0.0.1:4002/doc_designers/doc_troubleshooting.html
mailto:tomjohnson1492@gmail.com
http://127.0.0.1:4002/doc_designers/idratherbewriting.com

Configuration settings
Summary: The configuration file contains important settings for
your project. Some of the values you set here affect — especially
the product, platform, audience, and version — the display and
functionality of the theme.

Importance of Configuration File
The configuration file serves important functions with single sourcing. For each
site output, you create a unique configuration file for that output.

The configuration file contains all the settings and other details unique to that site
output, such as variables, titles, output directories, build folders, and more.

 Warning: This theme is coded to look for specific values set by the
configuration file. If something isn't working correctly, check to make sure
that you have the configuration values that are defined here.

Configuration file options
Some of the options you can set in the configuration file determine theme settings.

Note that you can define arbitrary key-value pairs in the configuration file, and
then you can access them through site.yourkey , where yourkey is the name
of the key. However, the values in these tables are used to control different
aspects of the theme and are not arbitrary key-value pairs.

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 7

Configuration settings for web outputs
FIELD REQUIRED? DESCRIPTION

project Required A unique name for the project. The _in-
cludes/cus-
tom/{project}/conditions.html file will
use this project name to determine
what sidebar and top nav data files to
use. Make this value unique.

audience Required The audience for the output. Each entry
in _data/sidebar_doc.yml and _data/
topnav_doc.yml needs to have an audi-
ence attribute that matches the value
here in order for the sidebar or topnav
item to be included.

platform Required The platform for the output. See addi-
tional information in audience.

product Required The product for the output. See addi-
tional information in audience.

version Required The version for the output. See addi-
tional information in audience.

destination Required The folder where the site is built. If you
put this into your same folder as your
other files, Jekyll may start building and
rebuilding in an infinite loop because it
detects more files in the project folder.
Make sure you specify a folder outside
your project folder, by using ../ or by
specifying the absolute path, such as
/Applications/XAMPP/xamppfiles/ht-
docs/myfolder.

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 8

FIELD REQUIRED? DESCRIPTION

sidebar_tagline Optional Appears above the sidebar. Usually you
put some term related to the site spe-
cific build, such as the audience. In the
sample theme files, the taglines are
"writers" and "designers."

sidebar_version Optional Appears below the sidebar_tagline in a
smaller font, usually specifying the ver-
sion of the documentation. In the sam-
ple theme files, the version is "3.0."

topnav_title Required Appears next to the home button in the
top nav bar. In the sample theme files,
the topnav_title is "Jekyll Documenta-
tion Theme."

homepage_title Required You set the title for your homepage via
this setting. This is because multiple
projects are all using the same in-
dex.md as their homepage. Because in-
dex.md has homepage: true in the
frontmatter, the "page" layout will use
the homepage_title property from the
configuration file instead of the tradi-
tional title in the frontmatter. In the
sample theme files, the homepage title
is "Jekyll Documentation Theme -- {au-
dience}."

site_title Appears in
the webpage
title area (on
the browser
tab, not in
the page
viewing
area). In the
sample
theme files,
the site title
is the "page
name

homepage title."

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 9

FIELD REQUIRED? DESCRIPTION

port Required The port used in the preview mode.
This is only for the live preview and
doesn't affect the published output. If
you serve multiple outputs simultane-
ously, the port must be unique.

feedback_email Gets config-
ured as the
email ad-
dress in the
Send Feed-
back button
in the top
navigation
bar.

sidebar_accordion Optional Boolean. The default value is true.
Whether you want the navigation side-
bar to use the accordion effect or not.
The accordion effect means when you
expand a section, the other sections
automatically collapse. If you put
false , then you can expand multiple

sections at once. At the bottom of the
navigation sidebar, two links will ap-
pear: Collapse All and Expand All.

disqus_shortname Optional The disqus site shortname, which is
used for comments. If you don't want
comment forms via disqus, leave this
blank or omit it altogether and Disqus
won't appear.

markdown Required The processor to use for Markdown.
This is a Jekyll-specific setting.

redcarpet Required Extensions used with redcarpet. You
can read more about them by searching
for redcarpet extensions online.

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 10

FIELD REQUIRED? DESCRIPTION

highlighter Optional The syntax highlighter used. rouge is
also an option. I think Pygments does a
better job. You will need to install Pyg-
ments (http://pygments.org/download/)
on your machine or else you will see an
error.

exclude Optional A list of files and directories that you
want excluded from the build. By de-
fault, all the content in your project is
included in the output.

defaults Optional Here you can set default values for
frontmatter based on the content type
(page, post, or collection).

collections Optional Any specific collections (custom con-
tent types that extend beyond pages or
posts) that you want to define. This
theme defines a collection called
tooltips. You access this collection by
using site.tooltips instead of site.pages
or site.posts. Put the tooltip content
types inside a folder in your project
called _tooltips.

print Optional Boolean. Whether this build is a print
build or not. This setting allows you to
run conditions in your content such as
{% if site.print == true %} do this... {%
endif %} .

suffix Optional If you publish on Salesforce's site.com,
you have to add index.html to the
permalink or else the page won't ren-
der. If you add suffix: index.html
in your config file, this suffix will be ap-
pended in the homepage URL. If you're
not publishing to Salesforce, don't add
this property to your configuration file.

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 11

http://pygments.org/download/
http://pygments.org/download/

Where to store configuration files
In this theme, the configuration files are listed in the configs directory. There are
some build scripts in the root directory that simply reference the configuration
files.

The conditional attributes
Each configuration file must specify values for the conditional attributes:

• project

• product

• platform

• audience

• version

The sidebar.html and topnav.html files apply conditional logic based on the values
for these conditional attributes.

For example, you will see this kind of logic in the sidebar and topnav files:

{% if item.audience contains audience and item.product contain
s product and item.platform contains platform and item.version
contains version and item.web != false %}

If all of these conditions are met, then the item will qualify to be included in the
sidebar or top navigation file. That is why each item in the sidebar_doc.yml or
topnav_doc.yml file includes similar properties to match:

- title: Pages
url: /doc_pages.html
audience: writers, designers
platform: all
product: all
version: all

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 12

The file in _includes/custom/doc/conditions.html contains a project setting and
also assigns general names for each of these specific values. This way the same
theme files can be used interchangeably depending on the assignments, whose
values are specified in the configuration file.

It's a little complicated to describe, but it works. Once you configure your project
correctly, you don't even think about how the theme is processing all of this on
the backend.

Configuration settings for PDF output
The PDF configuration files build on all the settings in the web configuration files,
but they add a few more options.

When you build the PDF output (such as for the writers output), the command will
look like this:

jekyll serve --detach --config configs/config_writers.yml,confi
gs/config_writers_pdf.yml

First Jekyll will read the config_writers.yml file, and then Jekyll will read the
config_writers_pdf.yml file.

More detail about generating PDFs is provided in Generating PDFs (page 93), but
the configuration settings used for the PDFs are described here.

The process for creating PDFs relies on two steps:

1. First you build a printer-friendly web version of the content.

2. Then you run PrinceXML to get all the printer-friendly web pages and
package them into a PDF.

Thus, you actually build a web version for the PDF first before generating the PDF.
(You might be able to remove this first step by doing more coding, but I found it
easier just to strip out components I didn't want included and make other
adjustments.)

FIELD REQUIRED? DESCRIPTION

destination Where the PDF web version should
be served so that Prince XML can
find it. By default, this is in
../doc_designers-pdf, so just one lev-
el above where your project is.

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 13

FIELD REQUIRED? DESCRIPTION

url The URL where the files can be
viewed. This is
http://127.0.0.1:4002 in the

sample theme files for the designers
output. Prince XML requires a URL to
access the file. (My attempts to use
local file paths didn't work.)

baseurl The subdirectory after the url where
the content is stored. In the sample
theme files for the designers output,
this is /designers .

port The port required by the preview
server.

print A boolean so that you can construct
conditional statements in your con-
tent to check whether print is true or
not. This setting can help you filter
out content that doesn't fit well into a
PDF (such as dynamic web ele-
ments).

print_title The title for the PDF. In the sample
theme files for designers output, the
print title is "Jekyll Documentation
Theme for Designers"

print_subtitle The subtitle for the PDF. In the sam-
ple theme files, the subtitle is "ver-
sion 3.0."

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 14

FIELD REQUIRED? DESCRIPTION

defaults See the sample settings in the con-
fig_designers_pdf.yml file. The only
difference between this file and con-
fig_designers.yml is that the layout
used for pages is page_print in-
stead of page . The page_print
layout also used head_print in-
stead of head . This layout strips out
components such as the sidebar and
top navigation. It also leverages
printstyles.css and includes some
JavaScript for Prince XML.

Configuration settings PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 15

Theme customization
Summary: You start customizing the theme by gutting the existing
content in this theme and replacing it with your own content. Start
with the configuration files, then customize the data files, and add
your own markdown pages in the root directory.

About customizing the theme
The theme shows two build outputs: one for designers, and one for writers. The
dual outputs is an example of the single sourcing nature of the theme. The
designers output is comprehensive, whereas the writers output is a subset of the
information. Follow these steps to customize the theme with your own content.

 Important: In these instructions, I'll assume your project's name is
"acme." I'll also assume you have two audiences you're building your acme
project for: marketers and developers.

To customize the theme:

1. In the theme's root directory, rename config_writer.yml to
config_marketer.yml and customize all the values inside that file based on
the instructions in Configuration settings (page 7). Do the same with
config_designer.yml (changing it to config_developer.yml) and continue to
clone and customize the config file for other audiences you need.

In this theme, each output requires a separate config file. If you have 10
audiences and you want separate sites for each, then then you'll have 10
config files in this directory.

2. Make similar customizations to the PDF configuration files. You will later
use these files when you create PDFs.

 Tip: As you customize the config files, make the port values
unique so that you don't run into "Address already in use" issues
when you build multiple sites and want to preview them at the same
time.

Theme customization PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 16

3. In the _includes/custom directory, open conditions.html and customize
the values there specific to your outputs. (Basically, replace writer with
developer , and designer with marketer .)

The conditions.html file is used to apply different requirements to the
sidebar and other files. The conditions.html file is included in various
parts of the theme — the sidebar.html, the topnav.html, and some of the
print files. conditions.html is sort of the brains of the theme. If you don't
have a specific value for audience, version, platform, or product, just put
all .

4. Remove the pages that begin with "doc_" in the root directory, and then
add your own pages here. Leave all the files flat in the root directory.

If you nest files inside folders, you'll create problems for the links and the
theme will break. Yes, this will result in a lot of files in the root directory,
but you can get around this issue with some viewing strategies in your
text editor.

For example, with WebStorm, if you press Shift twice and type the file
name you want, the editor finds it. I usually have the preview mode open
in another browser and navigate the content that way. When I want to edit
a specific file, I copy the filename path from the preview browser, press
Shift twice, and then it opens. You can also create a favorites section that
just shows files you've added to Favorites (an option in the context
menu).

5. Inside _data, open sidebar_doc.yml and topnav_doc.yml and customize
the navigation.

 Warning: Don't mess up the spacing or change any of the YML
level names or the site or sidebar won't appear. Each new YML level
is indented with two spaces. Sometimes getting this spacing right is
tricky. I recommend you save the sample template here that shows
the various levels, and then just copy and paste the levels where you
need them. YML is very picky and it can be frustrating sorting out
spacing and level issues.

6. In the root directory, customize the index.md file. This file will be the
homepage for all of your projects.

Use conditional tags (for example,
{% if site.project == "writers" %} ... {% endif %}) to change

the content for different builds of your site. Store the content of the
homepage in your _includes/custom/{project_name} folder. See for more
information on applying conditions.

Theme customization PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 17

7. For each of your pages where you want to insert a note or callout, add
{% include linkrefs.html %} directly below the frontmatter.

 Tip: If you're using WebStorm, you can create a Jekyll template
so that the frontmatter is auto-populated when you create a new
Jekyll file. Ctrl + click the file area and choose New > Edit File
Templates.

8. In the _includes folder, open footer.html and customize the content
(namely the footer image). If you have different footers for different
outputs, use conditional tags as you did with index.md.

9. Build your site with a command such as
jekyll serve --config configs/config_writers.yml etc., and

preview it at the URLs provided.

Publishing to web hosts: If you have multiple outputs, you probably don't
want to use Github Pages to publish your site, since Github Pages looks
for a _config.yml file in the root directory and uses that to build a site in the
gh-pages branch of your repository. You can't instruct Github pages to
look in another directory for the right configuration file. Instead, you'll
probably have a better experience publishing to a Amazon Web Services
S3 bucket or some other web host. See Pushing builds to the server (page
122) for more information.

Theme customization PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 18

Supported features
Summary: If you're not sure whether Jekyll and this theme will
support your requirements, this list provides a semi-
comprehensive overview of available features.

Before you get into exploring Jekyll as a potential platform for help content, you
may be wondering if it supports some basic features. The following table shows
what is supported in Jekyll and this theme.

FEATURES SUPPORTED NOTES

Content re-use Yes Supports re-use through Liquid. You
can re-use variables, snippets of code,
entire pages, and more. In DITA speak,
this includes conref and keyref.

Markdown Yes You can author content using Mark-
down syntax. This is a wiki-like syntax
for HTML that you can probably pick
up in 10 minutes. Where Markdown
falls short, you can use HTML. Where
HTML falls short, you use Liquid,
which is a scripting that allows you to
incorporate more advanced logic.

Responsive design Yes Uses Bootstrap framework.

Translation Yes I haven't done a translation project yet
(just a pilot test). Here's the basic ap-
proach: Export the pages and send
them to a translation agency. Then
create a new project for that language
and insert the translated pages. Every-
thing will be translated.

Supported features PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 19

FEATURES SUPPORTED NOTES

PDF Yes You can generate PDFs from your
Jekyll site. This theme uses Prince
XML (costs $495) to do the PDF con-
version task. You basically set up a
page that uses Liquid logic to get all
the pages you want, and then you use
PrinceXML (not part of Jekyll) to con-
vert that page into a PDF.

Collaboration Yes You collaborate with Jekyll projects
the same way that developers collabo-
rate with software projects. (You don't
need a CMS.) Because you're working
with text file formats, you can use any
version control software (Git, Mercur-
ial, Perforce, Bitbucket, etc.) as a CMS
for your files.

Scalability Yes Your site can scale to any size. It's up
to you to determine how you will de-
sign the information architecture for
your thousands of pages. You can
choose what you display at first, sec-
ond, third, fourth, and more levels, etc.
Note that when your project has thou-
sands of pages, the build time will be
longer (maybe 1 minute per thousand
pages?). It really depends on how
many for loops you have iterating
through the pages.

Lightweight architec-
ture

Yes You don't need a LAMP stack (Linux,
Apache, MySQL, PHP) architecture to
get your site running. All of the building
is done on your own machine, and you
then push the static HTML files onto a
server.

Supported features PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 20

FEATURES SUPPORTED NOTES

Multichannel output Yes This term can mean a number of
things, but let's say you have 10 differ-
ent sites you want to generate from the
same source. Maybe you have 7 differ-
ent versions of your product, and 3 dif-
ferent locations. You can assemble
your Jekyll site with various configura-
tions, variants, and more. Jekyll actual-
ly does all of this quite well. Just speci-
fy a different config file for each unique
build.

Skinnability Yes You can skin your Jekyll site to look
identical to pretty much any other site
online. If you have a UX team, they can
really skin and design the site using all
the tools familiar to the modern de-
signer -- JavaScript, HTML5, CSS,
jQuery, and more. Jekyll is built on the
modern web development stack rather
than the XML stack (XSLT, XPath,
XQuery).

Support Yes The community for your Jekyll site isn't
so much other tech writers (as is the
case with DITA) but rather the wider
web development community. Jekyll
Talk (http://talk.jekyllrb.com) is a great
resource. So is Stack Overflow.

Blogging features No This theme just uses pages, not posts.
I may integrate in post features in the
future, but the theme really wasn't de-
signed with posts in mind. If you want
a post version of the site, you can
clone my blog theme
(https://github.com/tomjohnson1492/
tomjohnson1492.github.io), which is
highly similar in that it's based on
Bootstrap, but it uses posts to drive
most of the features. I wanted to keep
the project files simple.

Supported features PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 21

http://talk.jekyllrb.com
http://talk.jekyllrb.com
https://github.com/tomjohnson1492/tomjohnson1492.github.io
https://github.com/tomjohnson1492/tomjohnson1492.github.io
https://github.com/tomjohnson1492/tomjohnson1492.github.io

FEATURES SUPPORTED NOTES

CMS interface No Unlike with WordPress, you don't log
into an interface and navigate to your
files. You work with text files and pre-
view the site dynamically in your
browser. Don't worry -- this is part of
the simplicy that makes Jekyll awe-
some. I recommend using WebStorm
as your text editor.

WYSIWYG interface No, but ... As noted in the previous point, I use
WebStorm to author content, because
I like working in text file formats. But
you can use any Markdown editor you
want (e.g., Lightpaper for Mac,
Marked) to author your content.

Versioning Yes, but... Jekyll doesn't version your files. You
upload your files to a version control
system such as Git. Your files are ver-
sioned there.

PC platform Yes, but ... Jekyll isn't officially supported on Win-
dows, and since I'm on a Mac, I
haven't tried using Jekyll on Windows.
See this page in Jekyllrb help
(http://jekyllrb.com/docs/windows/) for
details about installing and running
Jekyll on a Windows machine. A cou-
ple of Windows users who have con-
tacted me have been unsuccessful in
installing Jekyll on Windows, so be-
ware. In the configuration files, use
rouge instead of pygments (which is

Python-based) to avoid conflicts.

Supported features PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 22

http://jekyllrb.com/docs/windows/
http://jekyllrb.com/docs/windows/

FEATURES SUPPORTED NOTES

jQuery plugins Yes You can use any jQuery plugins you
and other JavaScript, CMS, or tem-
plating tools. However, note that if you
use Ruby plugins, you can't directly
host the source files on Github Pages
because Github Pages doesn't allow
Ruby plugins. Instead, you can just
push your output to any web server. If
you're not planning to use Github
Pages, there are no restrictions on any
plugins of any sort. Jekyll makes it su-
per easy to integrate every kind of plu-
gin imaginable. This theme doesn't ac-
tually use any plugins, so you can pub-
lish on Github if you want.

Bootstrap integration Yes This theme is built on Bootstrap
(http://getbootstrap.com/). If you don't
know what Bootstrap is, basically this
means there are hundreds of pre-built
components, styles, and other ele-
ments that you can simply drop into
your site. For example, the responsive
quality of the site comes about from
the Bootstrap code base.

Fast-loading pages Yes This is one of the Jekyll's strengths.
Because the files are static, they load-
ing extremely fast, approximately 0.5
seconds per page. You can't beat this
for performance. (A typically database-
driven site like WordPress averages
about 2.5 + seconds loading time per
page.) Because the pages are all stat-
ic, it means they are also extremely se-
cure. You won't get hacked like you
might with a WordPress site.

Supported features PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 23

http://getbootstrap.com/
http://getbootstrap.com/

FEATURES SUPPORTED NOTES

Relative links Yes This theme is built entirely with relative
links, which means you can easily
move the files from one folder to the
next and it will still display. You don't
need to view the site on a web server
either -- you can view it locally just
clicking the files. This relative link
structure facilitates scenarios where
you need to archive versions of con-
tent or move the files from one directo-
ry (a test directory) to another (such as
a production directory).

Themes Yes You can have different themes for dif-
ferent outputs. If you know CSS, them-
ing both the web and print outputs is
pretty easy.

Open source Yes This theme is entirely open source.
Every piece of code is open, viewable,
and editable. Note that this openness
comes at a price — it's easy to make
changes that break the theme or other-
wise cause errors.

Supported features PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 24

Pages
Summary: This theme uses pages only, not posts. You need to
make sure your pages have the appropriate frontmatter. One
frontmatter tag your users might find helpful is the summary tag.
This functions similar in purpose to the shortdesc element in DITA.

Where to author content
Use a text editor such as Sublime Text, WebStorm, IntelliJ, or Atom to create
pages.

My preference is IntelliJ/WebStorm, since it will treat all files in your project as
belonging to a project. This allows you to easily search for instances of keywords,
do find-and-replace operations, or do other actions that apply across the whole
project.

Page names and excluding files from outputs
By default, everything in your project is included in the output. This is problematic
when you're single sourcing and need to exclude some files from an output.

Here's the approach I've taken. Put all files in your root directory, but put the
project name first and then any special conditions. For example,
doc_writers_intro.md.

In your configuration file, you can exclude all files that don't belong to that project
by using wildcards such as the following:

exclude:

• doc_*

• doc_writers_*

These wildcards will exclude every match after the * .

Frontmatter
Make sure each page has frontmatter at the top like this:

Pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 25

title: Your page title
tags: [formatting, getting-started]
keywords: overview, going live, high-level
last_updated: August 12, 2015
summary: "Deploying DeviceInsight requires the following step
s."

Frontmatter is always formatted with three hyphens at the top and bottom. Your
frontmatter must have a title value. All the other values are optional.

The following table describes each of the frontmatter that you can use with this
theme:

FRONTMATTER REQUIRED? DESCRIPTION

title Required The title for the page

tags Optional Tags for the page. Make all tags single
words, with hyphens if needed. Sepa-
rate them with commas. Enclose the
whole list within brackets. Also, note
that tags must be added to _data/
tags_doc.yml to be allowed entrance
into the page.

keywords Optional Synonyms and other keywords for the
page. This information gets stuffed into
the page's metadata to increase SEO.
The user won't see the keywords, but if
you search for one of the keywords, it
will be picked up by the search engine.

last_updated Optional The date the page was last updated.
This information could helpful for read-
ers trying to evaluate how current and
authoritative information is. If included,
the last_updated date appears in the
footer of the page.

Pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 26

FRONTMATTER REQUIRED? DESCRIPTION

summary Optional A 1-2 word sentence summarizing the
content on the page. This gets format-
ted into the summary section in the
page layout. Adding summaries is a key
way to make your content more
scannable by users (check out Jakob
Nielsen's site
(http://www.nngroup.com/articles/
corporate-blogs-front-page-structure/)
for a great example of page sum-
maries.)

datatable Optional Boolean. If you add true , then scripts
for the jQuery datatables plugin
(https://www.datatables.net/) get in-
cluded on the page.

video Optional If you add true , then scripts for Video
JS: The HTML5 video player
(http://www.videojs.com/) get included
on the page.

 Tip: You can see the scripts that conditionally appear by looking in the
_layouts/default.html page. Note that these scripts are served via a CDN, so
the user must be online for the scripts to work. However, if the user isn't
online, the tables and video still appear. In other words, they degrade
gracefully.

What about permalinks?
What about permalinks? This theme isn't build using permalinks because it makes
linking and directory structures problematic. Permalinks generate an index file
inside a folder for each file in the output. This makes it so links (to other pages as
well as to resources such as styles and scripts) need to include ../ depending
upon where the other assets are located. But for any pages outside folders, such
as the index.html page, you wouldn't use the ../ structure.

Pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 27

http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
https://www.datatables.net/
https://www.datatables.net/
http://www.videojs.com/
http://www.videojs.com/
http://www.videojs.com/

Basically, permalinks complicate the linking structure significantly, so they aren't
used here. As a result, page URLs have an .html extension. If you include
permalink: something in your frontmatter, your link to the page will break

(actually, you could still go to sample instead of sample.html, but none of the
styles or scripts will be correctly referenced).

Colons in page titles
If you want to use a colon in your page title, you must enclose the title's value in
quotation marks.

Saving pages as drafts
If you add published: false in the frontmatter, your page won't be published.
You can also move draft pages into the _drafts folder to exclude them from the
build.

 Tip: You can create file templates in WebStorm that have all your common
frontmatter, such as all possible tags, prepopulated. See WebStorm Text
Editor (page 32) for details.

Markdown or HTML format
Pages can be either Markdown or HTML format (specified through either an .md
or .html file extension).

If you use Markdown, you can also include HTML formatting where needed. But
not vice versa — if you use HTML (as your file extension), you can't insert
Markdown content.

Also, if you use HTML inside a Markdown file, you cannot use Markdown inside of
HTML. But you can use HTML inside of Markdown.

For your Markdown files, note that a space or two indent will set text off as code
or blocks, so avoid spacing indents unless intentional.

Where to save pages
Store all your pages inside the root directory. This is because the site is built with
relative links. There aren't any permalinks or baseurls used in the link architecture.
This relative link nature of the site allows you to easily move it from one folder to
another without invalidating the links.

Pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 28

If this approach creates too many files in one long list, consider grouping files into
Favorites sections using WebStorms Add to Favorites feature.

Github-flavored Markdown
You can use standard Multimarkdown syntax for tables. You can also use fenced
code blocks. The configuration file shows the Markdown processor and
extensiosn:

markdown: redcarpet

redcarpet:
extensions: ["no_intra_emphasis", "fenced_code_blocks", "tabl

es", "with_toc_data"]

These extensions mean the following:

REDCARPET
EXTENSION DESCRIPTION

no_intra_emphasis don't italicize words with underscores

fenced_code_blocks allow three backticks before and after code blocks in-
stead of <pre> tags

tables allow table syntax

with_toc_data add ID tags to headings automatically

You can also add "autolink" as an option if you want links such as
http://google.com to automatically be converted into links.

 Note: Make sure you leave the with_toc_data option included. This auto-
creates an ID for each Markdown-formatted heading, which then gets
injected into the mini-TOC. Without this auto-creation of IDs, the mini-TOC
won't include the heading. If you ever use HTML formatting for headings, you
need to manually add an ID attribute to the heading in order for the heading
to appear in the mini-TOC.

Pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 29

Automatic mini-TOCs
By default, a mini-TOC appears at the top of your pages and posts. If you don't
want this, you can remove the {% include toc.html %} from the layouts/
page.html file.

If you don't want the TOC to appear for a specific page, add toc: false in the
frontmatter of the page.

The mini-TOC requires you to use the ## syntax for headings. If you use <h2>
elements, then you must add an ID attribute for the h2 element in order for it to
appear in the mini-TOC.

Specify a particular page layout
The configuration file sets the default layout for pages as the "page" layout.

You can create other layouts inside the layouts folder. If you create a new layout,
you can specify that your page use your new layout by adding
layout: mylayout.html in the page's frontmatter. Whatever layout you specify

in the frontmatter of a page will override the layout default set in the configuration
file.

Comments
Disqus, a commenting system, is integrated into the theme. In the configuration
file, specify the Disqus code for the universal code, and Disqus will appear. If you
don't add a Disqus value, the Disqus code isn't included.

Posts
This theme isn't coded with any kind of posts logic. For example, if you wanted to
add a blog to your project that leverages posts, you couldn't do this with the
theme. However, you could easily take the post logic from another site and
integrate it into this theme. I've just never had a strong need to integrate blog
posts into documentation.

Custom keyboard shortcuts
Some of the Jekyll syntax can be slow to create. Using a utility such as aText
(https://www.trankynam.com/atext/) can make creating content a lot of faster.

Pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 30

https://www.trankynam.com/atext/
https://www.trankynam.com/atext/

For example, when I type jif , aText replaces it with
{% if site.platform == "x" %} . When I type jendif , aText replaces it with
{% endif %} .

You get aText from the App Store on a Mac for about $5.

There are alternatives to aText, such as Typeitforme. But aText seems to work the
best. You can read more about it on Lifehacker (http://lifehacker.com/5843903/
the-best-text-expansion-app-for-mac).

Pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 31

http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac
http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac

WebStorm Text editor
Summary: You can use a variety of text editors when working with
a Jekyll project. WebStorm from IntelliJ offers a lot of project-
specific features, such as find and replace, that make it ideal for
working with tech comm projects.

About text editors and WebStorm
There are a variety of text editors available, but I like WebStorm the best because
it groups files into projects, which makes it easy to find all instances of a text
string, to do find and replace operations across the project, and more.

If you decide to use WebStorm, here are a few tips on configuring the editor.

Remove unnecessary plugins
By default, WebStorm comes packaged with a lot more functionality than you
probably need. You can lighten the editor by removing some of the plugins. Go to
WebStorm > Preferences > Plugins and clear the check boxes of plugins you
don't need.

Add the Markdown Support plugin
Since you'll be writing in Markdown, having color coding and other support for
Markdown is key. Install the Markdown Support plugin by going to WebStorm >
Preferences > Plugins and clicking Install JetBrains Plugin. Search for
Markdown Support.

Learn a few key commands
COMMAND SHORTCUTS

Shift + Shift Allows you to find a file by searching for its name.

Ctrl + H Find in whole project. (WebStorm uses the term "Find
in "path".)

WebStorm Text editor PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 32

COMMAND SHORTCUTS

Edit > Find > Re-
place in Path

Replace in whole project. (Unfortunately, I can't find a
keyboard shortcut for this common operation.)

Right-click > Refac-
tor > Safe Delete

Allows you to delete a file.

Right-click > Add to
Favorites

Allows you to add files to a Favorites section, which ex-
pands below the list of files in the project pane.

Identifying changed files
When you have the Git and Github integration, changed files appear in blue. This
lets you know what needs to be committed to your repository.

Creating file templates
Rather than insert the frontmatter by hand each time, it's much faster to simply
create a Jekyll template. To create a Jekyll template in WebStorm:

1. Right-click a file in the list of project files, and select New > Edit File
Templates.

If you don't see the Edit File Templates option, you may need to create a
file template first. Go to File > Default Settings > Editor > File and Code
Templates. Create a new file template with an md extension, and then
close and restart WebStorm. Then repeat this step and you will see the
File Templates option appear in the right context menu.

2. In the upper-left corner of the dialog box that appears, click the + button
to create a new template.

3. Name it something like Jekyll page. Insert the frontmatter you want, and
save it.

To use the Jekyll template, when you create a new file in your WebStorm
project, you can select your Jekyll file template.

Disable pair quotes
By default, each time you type ' , WebStorm will pair the quote. You can disable
this by going to WebStorm > Preferences > Editor > Smartkeys. Clear the
Insert pair quotes check box.

WebStorm Text editor PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 33

Series pages
Summary: You can automatically link together topics belonging to
the same series. This helps users know the context within a
particular process.

Using series for pages
You create a series by looking for all pages within a tag namespace that contain
certain frontmatter. Here's a demo: Series demo (page 0).

1. Create the series button
First create an include that contains your series button:

<div class="seriesContext">
<div class="btn-group">

<button type="button" data-toggle="dropdown" class="bt
n btn-primary dropdown-toggle">Series Demo <span class="care
t"></button>

<ol class="dropdown-menu">
{% assign pages = site.pages | sort:"weight" %}
{% for p in pages %}
{% if p.series == "ACME series" %}
{% if p.url == page.url %}
<li class="active"> → {{p.weight}}. {{p.title}}</l

i>
{% else %}

{{p.weight}}. {{p.titl
e}}

{% endif %}
{% endif %}
{% endfor %}

</div>

</div>

Series pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 34

http://127.0.0.1:4002/doc_designers/doc_seriesdemo1_1.html

Change "ACME series" to the name of your series.

Save this in your _includes folder as something like series_acme.html.

Note that with pages, there isn't a universal namespace created from tags or
categories like there is with Jekyll posts. As a result, you have to loop through all
pages. If you have a lot of pages in your site (e.g., 1,000+), then this looping will
create a slow build time. If this is the case, you will need to rethink the approach
to looping here.

2. Create the "next" include
This will be the next button at the bottom of the page:

<p>{% assign series_pages = site.tags.series_acme %}
{% for p in pages %}
{% if p.series == "ACME series" %}
{% assign nextTopic = page.weight | plus: "0.1" %}
{% if p.weight == nextTopic %}
<button type="button" class="btn btn-pr

imary">Next: {{p.weight}} {{p.title}}</button>
{% endif %}
{% endif %}
{% endfor %}

</p>

Change "acme" to the name of your series.

Save this in your _includes folder as series_acme_next.html.

3. Add the correct frontmatter to each of your
series pages
Now add the following frontmatter to each page in the series:

series: "ACME series"
weight: 1.0

With weight, you could use 1, 2, 3, etc.., but Jekyll will treat 10 as coming after 1.
This is why I use 1.0 and 1.1, 1.2, etc.

If you do use whole numbers, change the plus: "0.1" to plus: "1" .

Series pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 35

4. Add links to the series button and next
button on each page.
On each series page, add a link to the series button at the top and a link to the
next button at the bottom.

<!-- your frontmatter goes here -->

{% include custom/doc/series_acme.html %}

<!-- your page content goes here ... -->

{% include custom/doc/series_acme_next.html %}

Changing the series drop-down color
The Bootstrap menu uses the primary class for styling. If you change this class
in your theme, the Bootstrap menu should automatically change color as well. You
can also just use another Bootstrap class in your button code. Instead of
btn-primary , use btn-info or btn-warning . See Labels (page 66) for more

Bootstrap button classes.

Series pages PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 36

Collections
Summary: Collections are useful if you want to loop through a
special folder of pages that you make available in a content API.
You could also use collections if you have a set of articles that you
want to treat differently from the other content, with a different
layout or format.

What are collections
Collections are custom content types different from pages and posts. You might
create a collection if you want to treat a specific set of articles in a unique way,
such as with a custom layout or listing. For more detail on collections, see Ben
Balter's explanation of collections here (http://ben.balter.com/2015/02/20/jekyll-
collections/).

Create a collection
To create a collection, add the following in your configuration file:

collections:
tooltips:

output: true

In this example, "tooltips"" is the name of the collection.

Interacting with collections
You can interact with collections by using the site.collectionname
namespace, where collectionname is what you've configured. In this case, if I
wanted to loop through all tooltips, I would use site.tooltips instead of
site.pages or site.posts .

See Collections in the Jekyll documentation (http://jekyllrb.com/docs/collections/)
for more information.

Collections PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 37

http://ben.balter.com/2015/02/20/jekyll-collections/
http://ben.balter.com/2015/02/20/jekyll-collections/
http://ben.balter.com/2015/02/20/jekyll-collections/
http://jekyllrb.com/docs/collections/

How to use collections
I haven't found a huge use for collections in normal documentation. However, I did
find a use for collections in generating a tooltip file that would be used for
delivering tooltips to a user interface from text files in the documentation. See
Help API and UI tooltips (page 107) for details.

Collections PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 38

Sidebar navigation
Summary: The sidebar and top navigation bar read their values
from yml files. The navigation components are one of the most
unique parts of this theme, since the navigation components are
only included if they meet all of the product, audience, version,
etc., values as specified in the project settings.

Sidebar overview
To configure the sidebar, edit the values in the _data/sidebar_doc.yml file. Follow
the example in this theme. Note that YML spacing is picky. Each new level is two
spaces indented. I usually just keep a template that shows all three levels and
then copy and paste from it as needed.

Sidebar levels
You can add three levels of nesting in the sidebar nav. For example, three levels
looks like this:

Introduction
-> Getting started
-> Features
-> Configuration

-> Options
-> Automation

You can't add more than three levels. In general, it's a best practice not to create
more than three levels of navigation anyway, since it creates a paralysis of choice
for the user.

If you need deeper sublevels, I recommend creating different sidebars for different
pages, which is logic that I haven't coded into the theme but which could
probably be added fairly easily.

Sidebar navigation PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 39

External links
If you want the URL to point to an external site, use external_url instead of
url in the data file. Then just enter the full HTTP URL. When you use
external_url , the sidebar.html will apply this logic:

{% if item.external_url %}
{{subcatego
ry.title}}

How it works
The values in the sidebar_doc.yml file are coded to match the logic in includes/
sidebar.html.

Each of the items in the sidebar needs to have the attributes shown here:

- title: Getting started
url: /doc_getting_started.html
audience: writers, designers
platform: all
product: all
version: all

The audience, platform, product, and version are specified in the includes/custom/
conditions.html file:

Sidebar navigation PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 40

{% ifif site.project ==== "doc" %}
{% assign audience == "designers" %}
{% assign sidebar == site.data.sidebar_doc.entries %}
{% assign topnav == site.data.topnav_doc.topnav %}
{% assign topnav_dropdowns == site.data.topnav_doc.topnav_dropdo
wns %}
{% assign version == "all" %}
{% assign product == "all" %}
{% assign platform == "all" %}
{% assign link == "custom/doc/links_doc.html" %}
{% assign projectTags == site.data.tags_doc.allowed-tags %}
{% assign searchGroup == "doc" %}
{% endifendif %}

Additionally, note how some assignments are set here as well. The conditions.html
file set things like sidebar = site.data.sidebar_doc.entries .

When the sidebar.html file runs the logic, it includes these statements:

{% include custom/conditions.html %}

{% for entry in sidebar %}
...

The assignment of the sidebar value through the conditions.html file means this
is really what's happening:

{% include custom/conditions.html %}

{% for entry in site.data.sidebar_doc.entries %}

Since different projects will use different data files, I had to make the logic run
using the standard sidebar variable, but change the meaning of that variable
based on the project.

Sidebar navigation PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 41

Sidebar accordion
The configuration file (configs/config_writers.yml) file includes a value
(sidebar_accordion) that lets you choose whether to use the accordion feature
in the sidebar or not. The accordion feature collapses other sections when a
section is opened, which conserves space on the screen. Put true or false for
the value.

Sidebar fixed or moving
If you scroll up, the sidebar usually remains fixed in place. This is so that users
can keep the context of the table of contents in place while they move down the
page.

However, if the user's viewport is really small, you don't want the TOC to remain
fixed in place because expanding one section may extend past what is visible. In
the js/customscripts.js file, I inserted some logic to check the viewport size.

$(document).ready(functionfunction() {

//
varvar h == $(window).height();
console.log (h);
ifif (h >> 800) {

$("#mysidebar").attr("class", "nav affix");
}
// activate tooltips. although this is a bootstrap js funct

ion, it must be activated this way in your theme.
$('[data-toggle="tooltip"]').tooltip({

placement :: 'top'
});

});

The script says, if the height of the viewport is greater than 800px, then insert
affix class, which makes the nav bar fixed as your scroll. If you have a lot of

nav items, this fixed position may not work for you.

Sidebar accordion PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 42

For example, if your sidebar has a lot of items and the fixed position makes it so
the user can't see all the items when expanded, you may want to adjust the
height. If viewing the sidebar is ap roblem, increase the height value from 800 to
1000 or more.

Navgoco foundation
The sidebar uses the Navgoco jQuery plugin (https://github.com/tefra/navgoco) as
its basis. Why not use Bootstrap? Navgoco provides a few features that I couldn't
find in Bootstrap:

• Navgoco sets a cookie to remember the user's position in the sidebar. If
you refresh the page, the cookie allows the plugin to remember the state.

• Navgoco inserts an active class based on the navigation option that's
open. This is essential for keeping the accordion open.

• Navgoco includes the expand and collapse features of a sidebar.

In short, the sidebar has some complex logic here. I've integrated Navgoco's
features with the sidebar.html and sidebar_doc.yml to build the sidebar. It's
probably the most impressive part of this theme. (Other themes usually aren't
focused on creating hierarchies of pages, but this kind of hierarchy is important in
a documentation site.)

Highlighting the active item
Here's how the highlighting of the currently viewed page works. In the
sidebar.html file, you'll see this:

{% elsifelsif page.url ==== item.url %}
<li class="active"><a href="{{item.url | replacereplace:

"/",""}}">{{item.title}}">{{item.title}}

The page.url is a universal Jekyll tag that returns the end path of the page,
prepended with / . For example, /sample.html . If this page.url matches the
item.url specified in the sidebar_doc.yml file, then an active class gets

applied.

Note that I've added a filter to the item.url in the sidebar.html file:

{{item.url | replacereplace: "/",""}}

Sidebar accordion PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 43

https://github.com/tefra/navgoco

Ideally, in the sidebar_doc.yml file, you could just write the URL you want to go to:
sample.html instead of /sample.html . However, page.url always returns the

forward slash before the URL. In order to match the page.url with the item.url, you
have to use the forward slash before item.url in the doc_sidebar.yml file.

However, if you set up your relative link as /sample.html instead of
sample.html , then the browser will go to the directory root instead of any

baseurl.

For example, if your site is deployed at http://mydomain.com/doc/, then going to
/sample.html in the link will take you to http://mydomain.com/sample.html

instead of http://mydomain.com/doc/sample.html .

In contrast, going to sample.html in the link will take you to
http://mydomain.com/doc/sample.html . Hence the filter to remove the

forward slash in the link.

That logic handles the highlighting of the active item, but in order for the sidebar
to remain open, the parent level needs to also have the active class. To
accomplish this, I inserted this script below the sidebar code in the sidebar.html
file:

<<script>>$("li.active").parents('li').toggleClass("active");<</sc
ript>

This script has to come after the sidebar code. Otherwise, if placed inside
customscripts.js, the script runs before the sidebar code runs and the class never
gets inserted.

Sidebar accordion PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 44

Top navigation
Summary: The top navigation provides either single links or a
drop-down menu. There are some other features, such as a
feedback email, custom menu, and popout link.

Changing the top navigation
The top navigation reads from the _data/topnav_doc.yml file. There are two
separate sections:

• topnav

• topnav_dropdowns

Items in the topnav section are rendered as single links. In contrast, items in the
topnav_dropdowns section are rendered as a drop-down menu.

The Feedback email
If you click the Feedback link, it inserts the link to the current page along with a
subject header and body. The topnav.html file contains an include to
feedback.html. This file contains the JavaScript that gets the current page URL
and inserts it into the message body.

You configure the email in the configuration file with this property:
site.feedback_email .

Custom Menu
It's common to publish multiple sites. If you want to link them together, you could
simply list links to the other doc sites in a drop-down menu configured in the
topnav_dropdowns section in the topnav_doc.yml file. However, suppose you
want to do something more fancy.

Included in the topnav.html file is an include to /doc/customMenu.html. The code
there is as follows:

Top navigation PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 45

Writer d
ocs

<li class="dropdownActive"><a href=" ../doc_designers/doc_top_n
avigation.html">Designer docs

The current doc site is highlighted. If you select another doc site, the site switches
to that doc site and goes to the same page on that doc site. This way, if you have
a task such as "Configuring the license" in several different programming
languages, users can switch to other programming languages to see the same
page.

You need to have both the designers and writers sites deployed on a web server
to see this in action. Go to the following link: idratherbetellingstories.com/
documentation-theme-jekyll/doc_designers/ (http://idratherbetellingstories.com/
documentation-theme-jekyll/doc_designers/).

Browse to any page in the navigation. Then go to the Custom Menu and select
the Writers site. You'll go to the exact same page but on the Writers site.

If your current page doesn't have an equivalent in your other outputs, then put this
in the frontmatter of the page:

switch: false

This Custom Menu may not be something you want, and if so, just remove the
include from the sidebar.html file. But if you're outputting multiple sites, it may be
something valuable.

Pop-out link
The top navigation bar also has an include to frameescape.html. If the site is
embedded inside a frame, a link on the top navigation bar appears that says Pop-
out, and it will open the site in a new window.

In most cases, you'll want to simply remove this include. I added this because
some of my doc sites are delivered through a Salesforce Community and are
embedded inside another page in a small area. This pop-out link is a way of
liberating the site from these embedded page scenarios. If your site isn't
embedded in an iframe, the Pop-out link is removed.

Top navigation PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 46

http://idratherbetellingstories.com/documentation-theme-jekyll/doc_designers/
http://idratherbetellingstories.com/documentation-theme-jekyll/doc_designers/
http://idratherbetellingstories.com/documentation-theme-jekyll/doc_designers/

Tags
Summary: Tags provide another means of navigation for your
content. Unlike the table of contents, tags can show the content in
a variety of arrangements and groupings. Implementing tags in
this Jekyll theme is somewhat of a manual process.

Add a tag to a page
You can add tags to pages by adding tags in the frontmatter with values inside
brackets, like this:

title: 2.0 Release Notes
permalink: /release_notes_2_0/
tags: [formatting, single-sourcing]

Tags overview

 Note: With posts, tags have a namespace that you can access with
posts.tags.tagname, where tagname is the name of the tag. You can then
list all posts in that tag namespace. But pages don't off this same tag
namespace, so you could actually use another key instead of tags.
Nevertheless, I'm using the same tags name here.

To prevent tags from getting out of control and inconsistent, first make sure the
tag appears in the \date/tags_doc.yml file. If it's not there, the tag you add to a
page won't be read. I added this check just to make sure I'm using the same tags
consistently and not adding new tags that don't have tag archive pages.

 Note: Unlike with WordPress, you have to build out the functionality for
tags so that clicking a tag name shows you all pages with that tag. Tags in
Jekyll are much more manual.

Tags PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 47

Additionally, you must create a tag archive page similar to the other pages named
doc_tag-{tagname}.html folder. This theme doesn't auto-create tag archive pages.

For simplicity, make all your tags single words (connect them with hyphens if
necessary).

Setting up tags
Tags have a few components.

1. First make sure you configure a few details in the conditions.html file. In
particular, see this setting:

{% assign projectTags == site.data.tags_doc.allowed-tags
%}

The tags_doc name must correspond with how you label your tags file.
Here, "doc" should be your project name.

2. In the _data file, add a yml file similar to tags_doc.yml. The YML file lists
the tags that are allowed:

allowed-tags:
- getting-started
- overview
- formatting
- publishing
- single-sourcing
- special-layouts
- content types

3. Create a tag archive file for each tag in your tags_doc.yml list. Name the
file like this: doc_tag-getting-started.html, where doc is your project
name. (Again, tags with multiple words need hyphens in them.)

Each tag archive file needs only this:

title: "Getting Started Pages"
tagName: getting-started

{% include taglogic.html %}

Tags PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 48

<div class="alert alert-info" role="alert"><i class="fa
fa-info-circle"></i> Note: In the _includes fold
er, there's a taglogic.html file. This file (included i
n each tag archive file) has common logic for getting th
e tags and listing out the pages containing the tag in
a table with summaries or truncated excerpts. You don't
have to do anything with the file — just leave it
there because the tag archive pages reference it.</div>

4. Adjust button color or tag placement as desired.

By default, the _layouts/page.html file will look for any tags on a page and
insert them at the bottom of the page using this code:

<div class="tags">
{% if page.tags != null %}
Tags:
{% include custom/conditions.html %}
{% for tag in page.tags %}
{% if projectTags contains tag %}
<button

type="button" class="btn btn-info navbar-btn cursorNor
m">{{page.tagName}}{{tag}}</button>{% unless forloo
p.last %}{% endunless%}

{% endif %}
{% endfor %}
{% endif %}

</div>

Here's an example of what the code does:

Tags:

navigation (page 0)

Because this code appears on the _layouts/page.html file by default, you don't
need to do anything. However, if you want to alter the placement or change the
button color, you can do so.

You can change the button color by changing the class on the button from
btn-info to one of the other button classes bootstrap provides. See Labels

(page 66) for more options on button class names.

Tags PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 49

http://127.0.0.1:4002/doc_designers/doc_tag-navigation.html
http://127.0.0.1:4002/doc_designers/doc_tag-navigation.html

Retrieving pages for a specific tag
If you want to retrieve pages outside of a particular doc_tag-archive page, you
could use this code:

Getting started pages:

{% for page in site.pages %}
{% for tag in page.tags %}
{% if tag == "getting-started" %}
{{page.title}}
{% endif %}
{% endfor %}
{% endfor %}

Here's how that code renders:

Getting started pages:

• About this theme (page 0)

• Getting started with this theme (page 0)

• Pages (page 0)

• Support (page 0)

• Supported features (page 0)

• Theme customization (page 0)

• Troubleshooting (page 0)

• WebStorm Text editor (page 0)

• Introduction (page 0)

If you want to sort the pages alphabetically, you have to apply a sort filter:

Tags PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 50

http://127.0.0.1:4002/doc_about.html
http://127.0.0.1:4002/doc_getting_started.html
http://127.0.0.1:4002/doc_pages.html
http://127.0.0.1:4002/doc_support.html
http://127.0.0.1:4002/doc_supported_features.html
http://127.0.0.1:4002/doc_theme_customization.html
http://127.0.0.1:4002/doc_troubleshooting.html
http://127.0.0.1:4002/doc_webstorm_text_editor.html
http://127.0.0.1:4002/index.html

Getting started pages:

{% assign sorted_pages == (site.pages | sort:: 'title') %}
{% for page in sorted_pages %}
{% for tag in page.tags %}
{% ifif tag ==== "getting-started" %}
{{page.title}}
{% endifendif %}
{% endfor %}
{% endfor %}

Here's how that code renders:

Getting started pages:

• About this theme (page 0)

• Getting started with this theme (page 0)

• Introduction (page 0)

• Pages (page 0)

• Support (page 0)

• Supported features (page 0)

• Theme customization (page 0)

• Troubleshooting (page 0)

• WebStorm Text editor (page 0)

Efficiency
Although the tag approach here uses for loops, these are somewhat inefficient
on a large site. Most of my tech doc projects don't have hundreds of pages (like
my blog does). If your project does have hundreds of pages, this for loop
approach with tags is going to slow down your build times.

Without the ability to access pages inside a universal namespace with the page
type, there aren't many workarounds here for faster looping.

With posts (instead of pages), since you can access just the posts inside
posts.tag.tagname , you can be a lot more efficient with the looping.

Still, if the build times are getting long (e.g., 1 or 2 minutes per build), look into
reducing the number of for loops on your site.

Tags PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 51

http://127.0.0.1:4002/doc_about.html
http://127.0.0.1:4002/doc_getting_started.html
http://127.0.0.1:4002/index.html
http://127.0.0.1:4002/doc_pages.html
http://127.0.0.1:4002/doc_support.html
http://127.0.0.1:4002/doc_supported_features.html
http://127.0.0.1:4002/doc_theme_customization.html
http://127.0.0.1:4002/doc_troubleshooting.html
http://127.0.0.1:4002/doc_webstorm_text_editor.html

Empty tags?
If your page shows "tags:" at the bottom without any value, it could mean a
couple of things:

• You're using a tag that isn't specified in your allowed tags list in your
doc_tags.yml file.

• You have an empty tags: [] property in your frontmatter.

If you don't want tags to appear at all on your page, remove the tags property
from your frontmatter.

Remembering the right tags
Since you may have many tags and find it difficult to remember what tags are
allowed, I recommend creating a template that prepopulates all your frontmatter
with all possible tags. Then just remove the tags that don't apply.

See WebStorm Text Editor (page 32) for tips on creating file templates in
WebStorm.

Tags PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 52

Tooltips
Summary: You can add tooltips to any word, such as an acronym
or specialized term. Tooltips work well for glossary definitions,
because you don't have to keep repeating the definition, nor do
you assume the reader already knows the word's meaning.

Creating tooltips
Because this theme is built on Bootstrap, you can simply use a specific attribute
on an element to insert a tooltip.

Suppose you have a glossary.yml file inside your _data folder. You could pull in
that glossary definition like this:

<a href="#" data-toggle="tooltip" data-original-title="{{site.d
ata.glossary.jekyll_platform}}">Jekyll is my favorite tool
for building websites.

This renders to the following:

Jekyll is my favorite tool for building websites.

Tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 53

Alerts
Summary: You can insert notes, tips, warnings, and important
alerts in your content. These notes are stored as shortcodes made
available through the linksrefs.hmtl include.

About alerts
Alerts are little warnings, info, or other messages that you have called out in
special formatting. In order to use these alerts or callouts, put this include at the
top of your page, just below your frontmatter:

{% include linkrefs.html %}

Then insert any an alert or callout as described in the following sections.

Alerts
You can insert an alert by using any of the following code.

ALERT CODE

note {{note}} your note {{end}}

tip {{tip}} your tip {{end}}

warning {{warning}} your warning {{end}}

important {{important}} your important info {{end}}

The following demonstrate the formatting associated with each alert.

 Tip: Lorem Ipsum has been the industry's standard dummy text ever since
the 1500s, when an unknown printer took a galley of type and scrambled it to
make a type specimen book.

Alerts PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 54

 Note: Lorem Ipsum has been the industry's standard dummy text ever
since the 1500s, when an unknown printer took a galley of type and
scrambled it to make a type specimen book.

 Important: Lorem Ipsum has been the industry's standard dummy text
ever since the 1500s, when an unknown printer took a galley of type and
scrambled it to make a type specimen book.

 Warning: Lorem Ipsum has been the industry's standard dummy text ever
since the 1500s, when an unknown printer took a galley of type and
scrambled it to make a type specimen book.

Callouts
In contrast to the alerts, the callouts don't have a pre-coded bold-formatted
preface such as note or tip. You just add one (if desired) in the callout text itself.

CALLOUT CODE

callout_default {{callout_default}} your callout_default content {{end}}

callout_primary {{callout_primary}} your callout_primary content {{end}}

callout_success {{callout_success}} your callout_success content
{{end}}

callout_primary {{callout_primary}} your callout_primary content {{end}}

callout_warning {{callout_warning}} your callout_warning content {{end}}

callout_info {{callout_info}} your callout_info content {{end}}

The following demonstrate the formatting for each callout.

callout_danger: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

Alerts PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 55

callout_default: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

calloutprimary: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

calloutsuccess: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

calloutinfo: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

calloutwarning: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

Blast a warning to users
If you want to blast a warning to users on every page, add the alert or callout to
the layouts/page.html page right below the frontmatter. Every page using the page
layout (all, by defaut) will show this message.

Alerts PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 56

Using Markdown inside of notes
You can't use Markdown formatting inside notes.

Alerts PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 57

Icons
Summary: You can integrate font icons through the Font
Awesome and Glyphical Halflings libraries. These libraries allow
you to embed icons through their libraries delivered as a link
reference. You don't need any image libraries downloaded in your
project.

Font icon options
The theme has two font icon sets integrated: Font Awesome and Glyphicons
Halflings. The latter is part of Bootstrap, while the former is independent. Font
icons allow you to insert icons drawn as vectors from a CDN (so you don't have
any local images on your own site).

See Font Awesome icons available
Go to the Font Awesome library (http://fortawesome.github.io/Font-Awesome/
icons/) to see the available icons.

The Font Awesome icons allow you to adjust their size by simply adding fa-2x ,
fa-3x and so forth as a class to the icon to adjust their size to two times or three

times the original size. As vector icons, they scale crisply at any size.

Here's an example of how to scale up a camera icon:

<i class="fa fa-camera-retro"></i> normal size (1x)
<i class="fa fa-camera-retro fa-lg"></i> fa-lg
<i class="fa fa-camera-retro fa-2x"></i> fa-2x
<i class="fa fa-camera-retro fa-3x"></i> fa-3x
<i class="fa fa-camera-retro fa-4x"></i> fa-4x
<i class="fa fa-camera-retro fa-5x"></i> fa-5x

Here's what they render to:

 1x fa-lg fa-2x fa-3x fa-4x fa-5x

Icons PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 58

http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/

With Font Awesome, you always use the i tag with the appropriate class. You
also implement fa as a base class first. You can use font awesome icons inside
other elements. Here I'm using a Font Awesome class inside a Bootstrap alert:

<div class="alert alert-danger" role="alert"><i class="fa fa-ex
clamation-circle"></i> Warning: This is a special warnin
g message.

Here's the result:

 This is a special warning message.

The notes, tips, warnings, etc., are pre-coded with Font Awesome and stored in
the linkrefs.html file in capture tags. That file includes the following:

{% capture tip %}<div class="alert alert-success" role="aler
t"><i class="fa fa-check-square-o"></i> Tip: {% endcaptu
re %}
{% capture note %}<div class="alert alert-info" role="aler
t"><i class="fa fa-info-circle"></i> Note: {% endcaptur
e %}
{% capture important %}<div class="alert alert-warning" role="a
lert"><i class="fa fa-warning"></i> Important: {% endcap
ture %}
{% capture warning %}<div class="alert alert-danger" role="aler
t"><i class="fa fa-exclamation-circle"></i> Warning: {%
endcapture %}
{% capture end %}</div>{% endcapture %}

This means you can insert a tip, note, warning, or important alert simply by using
these tags:

{{note}} Add your note here. {{end}}

Here's the result:

 Note: Add your note here.

Icons PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 59

 Tip: Here's my tip.

 Important: This information is very important.

 Warning: If you overlook this, you may die.

The color scheme is the default colors from Bootstrap. You can modify the icons
or colors as needed.

Creating your own combinations
You can innovate with your own combinations. Here's a similar approach with a
file download icon:

<div class="alert alert-success" role="alert"><i class="fa fa-d
ownload fa-lg"></i> This is a special tip about some file to do
wnload....</div>

And the result:

 This is a special tip about some file to download....

Grab the right class name from the Font Awesome library
(http://fortawesome.github.io/Font-Awesome/icons/) and then implement it by
following the pattern shown previously.

If you want to make your fonts even larger than the 5x style, add a custom style to
your stylesheet like this:

.fa-10x.fa-10x{font-sizefont-size::1700%;}

Then any element with the attribute fa-10x will be enlarged 1700%.

Glyphicon icons available
Glyphicons work similarly to Font Awesome. Go to the Glyphicons library
(http://getbootstrap.com/components/#glyphicons) to see the icons available.

Icons PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 60

http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
http://getbootstrap.com/components/#glyphicons
http://getbootstrap.com/components/#glyphicons

Although the Glyphicon Halflings library doesn't provide the scalable classes like
Font Awesome, there's a StackOverflow trick (http://stackoverflow.com/
questions/24960201/how-do-i-make-glyphicons-bigger-change-size) to make the
icons behave in a similar way. This theme's stylesheet (customstyles.css) includes
the following to the stylesheet:

.gi-2x.gi-2x{font-sizefont-size:: 2em;}

.gi-3x.gi-3x{font-sizefont-size:: 3em;}

.gi-4x.gi-4x{font-sizefont-size:: 4em;}

.gi-5x.gi-5x{font-sizefont-size:: 5em;}

Now you just add gi-5x or whatever to change the size of the font icon:

And here's the result:

Glypicons use the span element instead of i to attach their classes.

Here's another example:

And magnified:

You can also put glyphicons inside other elements:

Icons PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 61

http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size
http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size

<div class="alert alert-danger" role="alert">
<span class="glyphicon glyphicon-exclamation-sign" aria-hidde

n="true">
Error: Enter a valid email address

</div>

 Error: Enter a valid email address

Callouts
The previously shown alerts might be fine for short messages, but with longer
notes, the solid color takes up a bit of space. In this theme, you also have the
option of using callouts, which are pretty common in Bootstrap's documentation
but surprisingly not offered as an explicit element. Their styles have been copied
into this theme, in a way similar to the alerts:

<div class="bs-callout bs-callout-info">
This is a special info message. This is a special info messag

e. This is a special info message. This is a special info messa
ge. This is a special info message. This is a special info mess
age. This is a special info message. This is a special info mes
sage. This is a special info message. </div>

 This is a special info message. This is a special info message. This is a
special info message. This is a special info message. This is a special info
message. This is a special info message. This is a special info message. This
is a special info message. This is a special info message.

And here's the shortcode:

{{callout_info}}<div class="bs-callout bs-callout-info">{{end}}

You can use any of the following:

Icons PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 62

{{callout_danger}}
{{callout_default}}
{{callout_primary}}
{{callout_success}}
{{callout_info}}
{{callout_warning}}

Callouts are explained in a bit more detail here: Alerts (page 54).

Icons PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 63

Images
Summary: You embed images using traditional HTML or
Markdown syntax for images. Unlike pages, you can store images
in subfolders (in this theme). This is because when pages
reference the images, the references are always as subpaths,
never requiring the reference to move up directories.

You embed an image the same way you embed other files or assets: you put the
file into a folder, and then link to that file.

Put images inside the images folder in your root directory. You can create
subdirectories inside this directory. Although you could use Markdown syntax for
images, the HTML syntax is probably easier:

And the result:

Here's the same Markdown syntax:

![My sample page](images/jekyll.png)

And the result:

SVG Images
You can also embed SVG graphics. If you use SVG, you need to use the HTML
syntax so that you can define a width/container for the graphic. Here's a sample
embed:

Images PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 64

Here's the result:

sample help text sample help
text sample help text sample
help text sample help text
sample help text sample help

Getting Started
text sample help text
sample help text sample
help text sample help
text sample help text
sample help text sample

Learning Course
sample help text sample help
text sample help text sample
help text sample help text
sample help text sample help

sample help
text sample
help text
sample help
text sample
help text
sample help
text sample

Help API

 pullin
g fr

om A
PI

 p
ul

lin
g

fr
om

 A
PI

 pulling from API

 pulling from
 A

PI

website #1

website #2

website #4

website #3

SVG images will expand to the size of their artboard, so you can either set the
artboard the right size when you create the graphic in Illustrator, or you can set an
inline style that confines the size to a certain width as shown in the code above.

Images PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 65

Labels
Summary: Labels are just a simple Bootstrap component that you
can include in your pages as needed. They represent one of many
Bootstrap options you can include in your theme.

About labels
Labels might come in handy for adding button-like tags next to elements, such as
POST, DELETE, UPDATE methods for endpoints. You can use any classes from
Bootstrap in your content.

Default
Primary
Success
Info
Warning
Danger

Default Primary Success Info Warning Danger

You can have a label appear within a heading simply by including the span tag in
the heading. However, you can't mix Markdown syntax with HTML, so you'd have
to hard-code the heading ID for the auto-TOC to work.

Labels PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 66

Links
Summary: When creating links, although you can use standard
HTML or Markdown, a better way to handle links is to store them
as captured variables in an include file, and then reference the
capture keywords for the links. This way you can update titles in
one place, more easily identify broken links, and better manage
your links. This approach is simliar to the keyref-style links in DITA.

Link strategies
One of the more difficult parts of a documentation site is keeping all the internal
links accurate and valid. Although there are many ways to create links, I'll just
describe what I've found to work well.

Create an external link
When linking to an external site, use Markdown formatting:

[Google](http://google.com)

If you need to use HTML, use the normal syntax:

Google

Linking to internal pages
When linking to internal pages, you could use this same syntax:

[Sample](sample.html)

OR

Links PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 67

Sample

However, what happens when you change the page's title or link? Jekyll doesn't
automatically pull in the page's title when you create links.

In my experience, coding links like this results in a lot of broken links.

Managed links
For internal links, I've found that it's a best practice to store the link in an internal
file so that I can easily update all references to the link.

In this theme, the _includes folder contains a links_doc.html file where the capture
tags are stored. For each link, I create the follow pair of capture tags:

{% capture sample %}Sample{% endcaptu
re %}
{% capture sample_i %}{% endcapture %}

The linksref.html file includes the links_doc.html, so when you add
{% include linkrefs.html %} at the top of a page, it includes all of the link

variables captured here.

To insert a link to sample, do this:

{{sample}}

If you want to insert the link with custom anchor text, use this:

See the {{sample_i}}sample page here{{end_i}}.

Make sure that the links_doc.html file also includes this capture at least once:

{% capture end_i %}{% endcapture %}

Otherwise, your link won't close.

Links PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 68

Relative link paths
The site is coded with relative links. There aren't any permalinks, urls, or baseurls.
The folder structure you see in the project directory is the same folder directory
that gets built in the site output.

Author all pages in your root directory. This greatly simplifies linking. However,
when you're linking to images, files, or other content, you can put them in
subfolders.

For example, to link to a file stored in files/doc/myguide.pdf, you would use "files/
doc/myguide.pdf" as the link.

Why not put pages into subfolders? If you put a page into a subfolder, then links
to the stylesheets, JavaScript, and other sources will fail. On those sub-folder
pages, you'd need to use ../ to move up a level in the directory. But if you have
some pages in some folders, others in sub-sub-folders, and others in the root,
trying to guess which files should contain ../ or ../../ or nothing at all and
which shouldn't will be a nightmare.

Jekyll gets around some of this link path variation by using baseurl and
including code that prepends the baseurl before a link. This converts the links
into absolute rather than relative links.

With absolute links, the site only displays at the baseurl you configured. This is
problematic for tech docs because you usually need to move files around from
one folder to another based on versions you're archiving or when you're moving
your documentation from draft to testing to production folders.

Limitations with links
One of the shortcomings in this theme is that your links_doc.html file and your
sidebar.yml file aren't generated from the same source. If you change a link title,
you have to change it in both of these locations.

Another limitation is that a link to the page never gets the title of the page
automatically.

If you have solutions for either of these issues, please let me know.

Links PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 69

NavTabs
Summary: Navtabs provide a tab-based navagation directly in
your content, allowing users to click from tab to tab to see
different panels of content. Navtabs are especially helpful for
showing code samples for different programming languages. The
only downside to using navtabs is that you must use HTML
instead of Markdown.

Common uses
Navtabs are particularly useful for scenarios where you want to show a variety of
options, such as code samples for Java, .NET, or PHP, on the same page.

While you could resort to single-source publishing to provide different outputs for
each unique programming language or role, you could also use navtabs to allow
users to select the content you want.

Navtabs are better for SEO since you avoid duplicate content and drive users to
the same page.

Navtabs demo
The following is a demo of a navtab. Refresh your page to see the tab you
selected remain active.

Profile
Praesent sit amet fermentum leo. Aliquam feugiat, nibh in u ltrices mattis, felis
ipsum venenatis metus, vel vehicula libero mauris a enim. Sed placerat est ac
lectus vestibulum tempor. Quisque ut condimentum massa. Proin venenatis
leo id urna cursus blandit. Vivamus sit amet hendrerit metus.

Profile (page 70) About (page 0) Match (page 0)

NavTabs PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 70

Code
Here's the code for the above (with the filler text abbreviated):

<ul id="profileTabs" class="nav nav-tabs">
<li class="active">Pro

file
About
Match

<div class="tab-content">

<div role="tabpanel" class="tab-pane active" id="profile">
<h2>Profile</h2>

<p>Praesent sit amet fermentum leo....</p>
</div>

<div role="tabpanel" class="tab-pane" id="about">
<h2>About</h2>
<p>Lorem ipsum ...</p></div>

<div role="tabpanel" class="tab-pane" id="match">
<h2>Match</h2>
<p>Vel vehicula</p>

</div>
</div>

Design constraints
Bootstrap automatically clears any floats after the navtab. Make sure you aren't
trying to float any element to the right of your navtabs, or there will be some
awkward space in your layout.

Appearance in the mini-TOC
If you put a heading in the navtab content, that heading will appear in the mini-
TOC as long as the heading tag has an ID. If you don't want the headings for each
navtab section to appear in the mini-TOC, omit the ID attribute from the heading
tag. Without this ID attribute in the heading, the mini-TOC won't insert the heading
title into the mini-TOC.

NavTabs PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 71

Must use HTML
You must use HTML within the navtab content because each navtab section is
surrounded with HTML, and you can't use Markdown inside of HTML.

Match up ID tags
Each tab's href attribute must match the id attribute of the tab content's div
section. So if your tab has href="#acme" , then you add acme as the ID attribute
in <div role="tabpanel" class="tab-pane" id="acme"> .

Set an active tab
One of the tabs needs to be set as active, depending on what tab you want to be
open by default (usually the first one).

<div role="tabpanel" class="tab-pane active" id="acme">

Sets a cookie
The navtabs are part of Bootstrap, but this theme sets a cookie to remember the
last tab's state. The js/customscripts.js file has a long chunk of JavaScript that
sets the cookie. The JavaScript comes from this StackOverflow thread
(http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-
active-with-twitter-bootstrap-after-a-page-reload).

By setting a cookie, if the user refreshes the page, the active tab is the tab the
user last selected (rather than defaulting to the default active tab).

Functionality to implement
One piece of functionality I'd like to implement is the ability to set site-wide nav
tab options. For example, if the user always chooses PHP instead of Java in the
code samples, it would be great to set this option site-wide by default. However,
this functionality isn't yet coded.

NavTabs PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 72

http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload
http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload
http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload

Video embeds
Summary: You can embed files with a Video JS wrapper by
adding 'video: true' in the frontmatter. Alternatively, you can just
fall back on the default video wrapper in the browser.

About Video JS
The theme has the video.js (http://www.videojs.com/) player integrated. But the
scripts only appear on a page or post if you have certain frontmatter in that page
or post. If you want to embed a video in a page and use the Video JS player, add
video: true in your frontmatter of a page or post, and then add code like this

where you want the video to appear:

<p><video id="scenario-1" class="video-js vjs-default-skin vj
s-big-play-centered" controls
preload="auto" width="640" height="480" data-setup='{}'>
<source src="http://idratherbetellingstories.com/podcasts/ont

ariochapterpresentation/ontariochapterv4.mp4" type='video/mp4'>
</video></p>

Here's an example:

Video embeds PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 73

http://www.videojs.com/

If you want the player button in the upper-left corner (which is the default), remove
the vjs-big-play-centered from the video class.

Video embeds PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 74

Here are more details on this video player from Video JS (https://github.com/
videojs/video.js/blob/stable/docs/guides/setup.md).

Note that if some of the js doesn't load correctly, the default fallback player is the
regular HTML5 video player available via the browser. Here's an example of the
built-in browser video wrapper:

Your browser does not support the video tag.

However, I don't think the built-in browser video players work very well (you can't
easily scrub around the video without seeing lots of buffering and other issues).
But definitely compare the two. You may find that adding the Video JS wrapper is
overkill.

 Warning: Github wasn't designed to store video content. If you have an
mp3 file, don't store it in your Github directory. Instead, put it on a web host
using regular FTP methods, or stream the video from a video streaming
service such as Youtube or Vimeo. Also, note that Github's Large File
Storage (which does handle large files) isn't compatible with Github Pages.

Video embeds PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 75

https://github.com/videojs/video.js/blob/stable/docs/guides/setup.md
https://github.com/videojs/video.js/blob/stable/docs/guides/setup.md

Tables
Summary: You can format tables using either multimarkdown
syntax or HTML. You can also use jQuery datatables (a plugin) if
you need more robust tables.

Multimarkdown Tables
You can use Multimarkdown syntax for tables. The following shows a sample:

Column 1	Column 2
cell 1a | cell 1b
cell 2a | cell 2b

This renders to the following:

COLUMN 1 COLUMN 2

cell 1a cell 1b

cell 2a cell 2b

jQuery datables
You also have the option of using a jQuery datatable
(https://www.datatables.net/), which gives you some more options. If you want to
use a jQuery datatable, then add datatable: true in a page's frontmatter. This
will load the right jQuery datatable scripts for the table on that page only (rather
than loading the scripts on every page of the site.)

Also, you need to add this script to trigger the jQuery table on your page:

Tables PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 76

https://www.datatables.net/
https://www.datatables.net/

<<script>>
$(document).ready(functionfunction(){

$('table.display').DataTable({
paging:: truetrue,
stateSave:: truetrue,
searching:: truetrue

}
);

});
<</script>

The available options for the datable are described in the datatable
documentation (https://www.datatables.net/manual/options), which is excellent.

Additionally, you must add a class of display to your tables. (You can change
the class, but then you'll need to change the trigger above from table.display
to whatever class you want to you. You might have different triggers with different
options for different tables.)

Since Markdown doesn't allow you to add classes to tables, you'll need to use
HTML for any datatables. Here's an example:

Tables PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 77

https://www.datatables.net/manual/options
https://www.datatables.net/manual/options

<table id="sampleTable" class="display">
<thead>

<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default Value</th>

</tr>
</thead>
<tbody>

<tr>
<td>Parameter 1</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 2</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 3</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 4</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
</tbody>

</table>

This renders to the following:

Tables PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 78

FOOD DESCRIPTION CATEGORY
SAMPLE

TYPE

Apples A small, somewhat round
and often red-colored,
crispy fruit grown on trees.

Fruit Fuji

Bananas A long and curved, often-
yellow, sweet and soft fruit
that grows in bunches in
tropical climates.

Fruit Snow

Kiwis A small, hairy-skinned sweet
fruit with green-colored in-
sides and seeds.

Fruit Golden

Oranges A spherical, orange-colored
sweet fruit commonly grown
in Florida and California.

Fruit Navel

Notice a few features:

• You can keyword search the table. When you type a word, the table filters
to match your word.

• You can sort the column order.

• You can page the results so that you show only a certain number of
values on the first page and then require users to click next to see more
entries.

Read more of the datatable documentation (https://www.datatables.net/manual/
options) to get a sense of the options you can configure. You should probably
only use datatables when you have long, massive tables full of information.

 Note: Try to keep the columns to 3 or 4 columns only. If you add 5+
columns, your table may create horizontal scrolling with the theme.

Tables PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 79

https://www.datatables.net/manual/options
https://www.datatables.net/manual/options

Syntax highlighting
Summary: You can apply syntax highlighting to your code. This
theme uses pygments and applies color coding based on the lexer
you specify.

About syntax highlighting
For syntax highlighting, use fenced code blocks optionally followed by the
language syntax you want:

```ruby
def foo

puts 'foo'
end

```

This looks as follows:

defdef foofoo
puts 'foo'

endend

Fenced code blocks require a blank line before and after.

If you're using an HTML file, you can also use the highlight command with
Liquid markup:

{% highlight ruby %}
def foo

puts 'foo'
end

{% endhighlight %}

It renders the same:

Syntax highlighting PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 80

defdef foofoo
puts 'foo'

endend

The theme has syntax highlighting specified in the configuration file as follows:

highlighter: pygments

You can use another highlighter such as rouge .

The syntax highlighting is done via the css/syntax.css file.

Available Pygments lexers
The keywords you must add to specify the highlighting (in the previous example,
ruby) are called "lexers." You can search for "pygments lexers" or go directly to

Available lexers (http://pygments.org/docs/lexers/) to see what values you can
use. Here are some common ones I use:

• js

• html

• css

• json

• php

• java

• cpp

• dotnet

• xml

• http

Syntax highlighting PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 81

http://pygments.org/docs/lexers/

Conditional logic
Summary: You can implement advanced conditional logic that
includes if statements, or statements, unless, and more. This
conditional logic facilitates single sourcing scenarios in which
you're outputting the same content for different audiences.

About Liquid and conditional statements
If you want to create different outputs for different audiences, you can do all of
this using a combination of Jekyll's Liquid markup and values in your configuration
file.

You can then incorporate conditional statements that check the values in the
configuration files.

 Tip: Definitely check out Liquid's documentation (http://docs.shopify.com/
themes/liquid-documentation/basics) for more details about how to use
operators and other liquid markup. The notes here are a small, somewhat
superficial sample from the site.

Where to store filtering values
You can filter content based on values that you have set either in your config file
or in a file in your _data folder. If you set the attribute in your config file, you need
to restart the Jekyll server to see the changes. If you set the value in a file in your
_data folder, you don't need to restart the server when you make changes.

Required conditional attributes
This theme requires you to add the following attributes in your configuration file:

• project

• audience

• product

• platform

Conditional logic PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 82

http://docs.shopify.com/themes/liquid-documentation/basics
http://docs.shopify.com/themes/liquid-documentation/basics

• version

If you've ever used DITA, you probably recognize these attributes, since DITA has
mostly the same ones. I've found that most single-sourcing projects I work on can
be sliced and diced in the ways I need using these conditional attributes.

If you're not single sourcing and you find it annoying having to specify these
attributes in your sidebar, you can rip out the logic from the sidebar.html,
topnav.html file and any other places where conditions.html appears; then you
wouldn't need these attributes in your configuration file.

Conditional logic based on config file value
Here's an example of conditional logic based on a value in the configs/
config_writer.yml file. In my config_writer.yml file, I have the following:

audience: writers

On a page in my site (it can be HTML or markdown), I can conditionalize content
using the following:

{% ifif site.audience ==== "writers" %}
The writer audience should see this...
{% elsifelsif site.audience ==== "designers" %}
The designer audience should see this ...
{% endifendif %}

This uses simple if-elsif logic to determine what is shown (note the spelling of
elsif). The else statement handles all other conditions not handled by the if

statements.

Here's an example of if-else logic inside a list:

To bake a casserole:

1. Gather the ingredients.
{% ifif site.audience ==== "writer" %}
2. Add in a pound of meat.
{% elsifelsif site.audience ==== "designer" %}
3. Add in an extra can of beans.
{% endifendif %}
3. Bake in oven for 45 min.

Conditional logic PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 83

You don't need the elsif or else . You could just use an if (but be sure to
close it with endif).

Or operator
You can use more advanced Liquid markup for conditional logic, such as an or
command. See Shopify's Liquid documentation (http://docs.shopify.com/themes/
liquid-documentation/basics/operators) for more details.

For example, here's an example using or :

{% if site.audience contains "vegan" or site.audience == "veget
arian" %}

// run this.
{% endif %}

Note that you have to specify the full condition each time. You can't shorten the
above logic to the following:

{% if site.audience contains "vegan" or "vegetarian" %}
// run this.

{% endif %}

This won't work.

Unless operator
You can also use unless in your logic, like this:

{% unlessunless site.print ==== truetrue %}
...
{% endunlessendunless %}

When figuring out this logic, read it like this: "Run the code here unless this
condition is satisfied." Or "If this condition is satisfied, don't run this code."

Don't read it the other way around or you'll get confused. (It's not executing the
code only if the condition is satisfied.)

In this situation, if site.print == true , then the code will not be run here.

Conditional logic PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 84

http://docs.shopify.com/themes/liquid-documentation/basics/operators
http://docs.shopify.com/themes/liquid-documentation/basics/operators

Storing conditions in the _data folder
Here's an example of using conditional logic based on a value in a data file:

{% if site.data.options.output == "alpha" %}
show this content...
{% elsif site.data.options.output == "beta" %}
show this content...
{% else %}
this shows if neither of the above two if conditions are met.
{% endif %}

To use this, I would need to have a _data folder called options where the output
property is stored.

I don't really use the _data folder as much for project options. I store them in the
configuration file because I usually want different projects to use different values
for the same property.

For example, maybe a file or function name is called something different for
different audiences. I currently single source the same content to at least two
audiences in different markets.

For the first audience, the function name might be called generate , but for the
second audience, the same function might be called called expand . In my
content, I'd just use {{site.function}} . Then in the configuration file I change
its value appropriately for the audience.

Specifying the location for _data
You can also specify a data_source for your data location in your configuration
file. Then you aren't limited to simply using _data to store your data files.

For example, suppose you have 2 projects: alpha and beta. You might store all the
data files for alpha inside data_alpha, and all the data files for beta inside
data_beta.

In your alpha configuration file, specify the data source like this:

data_source: data_alpha

Conditional logic PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 85

Then create a folder called _data_alpha.

For your beta configuratoin file, specify the data source like this:

data_source: data_beta

Then create a folder called _data_beta.

Conditional logic based on page namespace
You can also create conditional logic based on the page namespace. For
example, create a page with front matter as follows:

layout: page
user_plan: full

Now you can run logic based on the conditional property in that page's front
matter:

{% ifif page.user_plan ==== "full" %}
// run this code
{% endifendif %}

Conditions versus includes
If you have a lot of conditions in your text, it can get confusing. As a best practice,
whenever you insert an if condition, add the endif at the same time. This will
reduce the chances of forgetting to close the if statement. Jekyll won't build if
there are problems with the liquid logic.

If your text is getting busy with a lot of conditional statements, consider putting a
lot of content into includes so that you can more easily see where the conditions
begin and end.

Conditional logic PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 86

Content reuse
Summary: You can reuse chunks of content by storing these files
in the includes folder. You then choose to include the file where
you need it. This works similar to conref in DITA, except that you
can include the file in any content type.

About content reuse
You can embed content from one file inside another using includes. Put the file
containing content you want to reuse (e.g., mypage.html) inside the _includes
folder, and then use a tag like this:

{% include mypage.html %}

With content in your _includes folder, you don't add any frontmatter to these
pages because they will be included on other pages already containing
frontmatter.

Also, when you include a file, all of the file's contents get included. You can't
specify that you only want a specific part of the file included. However, you can
use parameters with includes. See []Jekyll's
documentation](http://stackoverflow.com/questions/21976330/passing-
parameters-to-inclusion-in-liquid-templates) for more information on that.

Page-level variables
You can also create custom variables in your frontmatter like this:

title: Page-level variables
permalink: /page_level_variables/
thing1: Joe
thing2: Dave

Content reuse PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 87

You can then access the values in those custom variables using the page
namespace, like this:

thing1: {{page.thing1}}
thing2: {{page.thing2}}

Honestly, I haven't found a tremendous use case for page-level variables, but it's
nice to know they're available.

I use includes all the time. Most of the includes in the _includes directory are
pulled into the theme layouts. For those includes that change, I put them inside
custom and then inside a specific project folder.

Content reuse PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 88

Build arguments
Summary: When you have a single sourcing project, you use
more advanced arguments when you're building or serving your
Jekyll sites. These arguments specify a particular configuration file
and may build on other configuration files.

How to build Jekyll sites
The normal way to build the Jekyll site is through the build command:

jekyll build

To build the site and view it in a live server so that Jekyll rebuilds that site each
time you make a change, use the serve command:

jekyll serve

By default, the config.yml in the root directory will be used, Jekyll will scan the
current directory for files, and the folder `site` will be used as the output. You can
customize these build commands like this:

jekyll serve --config configs/config_writers.yml --destination
/users/tjohnson/projects/documentation-theme-jekyll-builds/writ
er

Here the configs/config_writers.yml file is used instead of _config.yml .
The destination directory is ../doc_writers .

Shortcuts for the build arguments
If you don't want to enter the long Jekyll argument every time, with all your
configuration details, you can create a shell script and then just run the script. This
theme shows an example with the doc_multibuild_web.sh file in the root directory.

Build arguments PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 89

My preference is to add the scripts to profiles in iTerm. See iTerm profiles (page
120) for more details.

Stop a server
When you're done with the preview server, press Ctrl+C to exit out of it. If you exit
iTerm or Terminal without shutting down the server, the next time you build your
site, or if you build multiple sites with the same port, you may get a server-
already-in-use message.

You can kill the server process using these commands:

ps aux | grep jekyll

Find the PID (for example, it looks like "22298").

Then type kill -9 22298 where "22298" is the PID.

To kill all Jekyll instances, use this:

kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')

I created a profile in iTerm that stores this command. Here's what the iTerm
settings look like:

Build arguments PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 90

Build arguments PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 91

Themes
Summary: You can choose between two different themes (one
green, the other blue) for your projects. The theme CSS is stored
in the CSS folder and configured in the configuration file for each
project.

Theme options
You can choose a green or blue theme, or you can create your own. In the css
folder, there are two theme files: theme-blue.css and theme-green.css. These files
have the most common CSS elements extracted in their own CSS file. Just
change the hex colors to the ones you want.

In the configuration file, specify the theme file you want the output to use — for
example, theme_file: theme-green.css .

Theme differences
The differences between the themes is fairly minimal. The main navigation bar,
sidebar, buttons, and heading colors change color. That's about it.

In a more sophisticated theming approach, you could use Sass files to generate
rules based on options set in a data file, but I kept things simple here.

Themes PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 92

Generating PDF
Summary: You can generate a PDF from your Jekyll project. You
do this by creating a web version of your project that is printer
friendly. You then use utility called Prince to iterate through the
pages and create a PDF from them. It works quite well and gives
you complete control to customize the PDF output through CSS,
including page directives and dynamic tags from Prince.

PDF overview
This process for creating a PDF relies on Prince XML to transform the HTML
content into PDF. Prince costs about $500 per license. That might seem like a lot,
but if you're creating a PDF, you're probably working for a company that sells a
product, so you likely have access to some resources.

The basic approach is to generate a list of all pages that need to be added to the
PDF, and then add leverage Prince to package them up into a PDF.

It may seem like the setup is somewhat cumbersome, but it doesn't take long.
Once you set it up, building a pdf is just a matter of running a couple of
commands.

Also, creating a PDF this way gives you a lot more control and customization
capabilities than with other methods for creating PDFs. If you know CSS, you can
entirely customize the output.

Demo
You can see an example of the finished product here:

 Designers PDF Download

1. Set up Prince
Download and install Prince (http://www.princexml.com/doc/installing/).

You can install a fully functional trial version. The only difference is that the title
page will have a small Prince PDF watermark.

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 93

http://127.0.0.1:4002/doc_designers/doc_designers_pdf.pdf
http://127.0.0.1:4002/doc_designers/doc_designers_pdf.pdf
http://www.princexml.com/doc/installing/

2. Create a new configuration file for each of
your PDF targets
The PDF configuration file will build on the settings in the regular configuration file
but will some additional fields. Here's the configuration file for the
config_designers.yml file for this theme:

destination: ../doc_designers-pdf
url: "http://127.0.0.1:4002"
baseurl: "/doc_designers"
port: 4002
print: true
print_title: Jekyll Documentation Theme for Designers
print_subtitle: version 3.0
defaults:

-
scope:

path: ""
type: "pages"

values:
layout: "page_print"
comments: true
search: true

 Note: Although you're creating a PDF, you must still build a web target
before running Prince. Prince will pull from the HTML files and from the file-
list for the TOC. Prince won't be able to find files if they simply have relative
paths, such as /sample.html. The must have full URLs it can access — hence
the url and baseurl.

Unlike the other configuration files, the PDF configuration files require a url and
baseurl . This is because the Prince utility needs to access the pages in a

specific place. While you could probably set up locations via absolute paths to file
folders, it's easier just to provide the locations here as url and baseurl .

Also note that the default page layout is page_print . This layout strips out all the
sections that shouldn't appear in the print PDF, such as the sidebar and top
navigation bar.

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 94

Finally, note that there's a print: true toggle in case you want to make some
of your content unique to PDF output. For example, you could add conditional
logic that checks whether site.print is true or not. If it's true, then include
information only for the PDF, and so on.

In the configuration file, customize the values for the print_title and
print_subtitle that you want. These will appear on the title page of the PDF.

3. Make sure your sidebar_doc.yml file has a
titlepage.html and tocpage.html
There are two template pages in the root directory that are critical to the PDF:

• titlepage.html

• tocpage.html

These pages should appear in your sidebar YML file (in this theme,
sidebar_doc.yml):

entries:
- title: Sidebar

subcategories:
- title: Frontmatter

audience: writers, designers
platform: all
product: all
version: all
web: falsefalse
items:

- title: Title Page
url: /titlepage.html
audience: writers, designers
platform: all
product: all
version: all
web: falsefalse

- title: Table of Contents
url: /tocpage.html
audience: writers, designers
platform: all
product: all
version: all
web: falsefalse

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 95

Leave these pages here in your sidebar. (The web: false property means they
won't appear in your online TOC because the conditional logic of the sidebar.html
checks whether web is equal to false or not before including the item in the
web version of the content.)

The code in the tocpage.html is nearly identical to that of the sidebar.html page
except that it includes the site and baseurl for the URLs. This is essential for
Prince to create the page numbers correctly with cross references.

There's another file (in the root directory of the theme) that is critical to the PDF
generation process: prince-file-list.txt. This file simply iterates through the items in
your sidebar and creates a list of links. Prince will consume the list of links from
prince-file-list.txt and create a running PDF that contains all of the pages listed,
with appropriate cross references and styling for them all.

4. Customize your headers and footers
Open up the css/printstyles.css file and customize what you want for the headers
and footers. At the very least, customize the email address that appears in the
bottom left.

Exactly how the print styling works here is pretty cool. You don't need to
understand the rest of the content in this section unless you want to customize
your PDFs to look different from what I've configured.

This style creates a page reference for a link:

a[[href]:]::after {
contentcontent:: " (page " target--counter(attr(href),, pagepage) ")"

}

You don't want cross references for any link, so this style specifies that the
content after should be blank:

a[[href*=*="mailto"]:]::after,, a[[data-toggle=="tooltip"]:]::after,, a[[hr
ef]].noCrossRef.noCrossRef:::after {

contentcontent:: "";
}

If you have a link to a file download, for example, add noCrossRef as a class to
avoid having it say "page 0" in the cross reference.

This style specifies that after links to web resources, the URL should be inserted
instead of the page number:

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 96

a[[href^=^="http:"]:]::after,, a[[href^=^="https:"]:]::after {
contentcontent:: " (" attr(href) ")";

}

This style sets your page margins:

@page@page {
margin:: 60pt 90pt 60pt 90pt;;
font-family:: sans-serif;;
font-style:none;;
color:: gray;;

}

To set a specific style property for a particular page, you have to name the page.
This allows Prince to identify the page.

First you add frontmatter to the page that specifies the type. For the
titlepage.html, here's the frontmatter:

type: title

For the tocpage, here's the frontmatter:

type: frontmatter

For the index.html page, we have this type tag (among others):

type: first_page

The default_print.html layout will change the class of the body element based on
the type value in the page's frontmatter:

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 97

<body class="{% ifif page.type ==== "title"%}title{% elsif page.typ
e ==== "frontmatter" %}frontmatter{% elsif page.type ==== "first_pa
ge" %}first_page{% endif %} print">

Now in the css/printstyles.css file, you can assign a page name based on a
specific class:

body.title.title { pagepage:: title }

This means that for content inside of body class="title" , we can style this
page in our stylesheet using @page title .

Here's how that title page is styled:

@page@page title {
@top-left@top-left {

content:: " ";;
}
@top-right@top-right {

content:: " "
}
@bottom-right@bottom-right {

content:: " ";;
}
@bottom-left@bottom-left {

content:: " ";;
}

}

As you can see, we don't have any header or footer content, because it's the title
page.

For the tocpage.html, which has the type: frontmatter , this is specified in the
stylesheet:

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 98

body.frontmatter.frontmatter { pagepage:: frontmatter }
body.frontmatter.frontmatter {counter-resetcounter-reset:: pagepage 1}

@page@page frontmatter {
@top-left@top-left {

content:: prince-script((guideName););
}
@top-right@top-right {

content:: prince-script((datestamp););
}
@bottom-right@bottom-right {

content:: counter((page,, lower-roman););
}
@bottom-left@bottom-left {

content:: "youremail@domain.com";; }
}

We reset the page count to 1 so that the title page doesn't start the count. Then
we also add some header and footer info. The page numbers start counting in
lower-roman numerals.

Finally, for the first page, we restart the counting to 1 again and this time use
regular numbers.

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 99

body.first_page.first_page {counter-resetcounter-reset:: pagepage 1}

h1 { string--set:: doctitle contentcontent() }

@page@page {
@top-left@top-left {

content:: string((doctitle););
font-size:: 11px;;
font-style:: italic;;

}
@top-right@top-right {

content:: prince-script((datestamp););
font-size:: 11px;;

}

@bottom-right@bottom-right {
content:: "Page " counter((page););
font-size:: 11px;;

}
@bottom-left@bottom-left {

content:: prince-script((guideName););
font-size:: 11px;;

}
}

You'll see some other items in there such as prince-script . This means we're
using JavaScript to run some functions to dynamically generate that content.
These JavaScript functions are located in the _includes/head_print.html:

<<script>>
Prince.addScriptFunc("datestamp", functionfunction() {

returnreturn "PDF last generated: August 12, 2015";
});

<</script>

<<script>>
Prince.addScriptFunc("guideName", functionfunction() {

returnreturn "Jekyll Documentation Theme for Designers User G
uide";

});
<</script>

There are a couple of Prince functions that are default functions from Prince. This
gets the heading title of the page:

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 100

content:: string(doctitle);

This gets the current page:

content:: "Page " counter(page);

Because the theme uses JavaScript in the CSS, you have to add the
--javascript tag in the Prince command (detailed later on this page).

5. Customize the doc_multiserve_pdf.sh script
Open the doc_multiserve_pdf.sh file in the root directory and customize it for your
specific configuration files.

echo 'Killing all Jekyll instances'
kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')
clear

serve all di print deliverables

Writers
echo "Serving Writers PDF"
jekyll serve --detach --config configs/config_writers.yml,confi
gs/config_writers_pdf.yml

Designers
echo "Serving Designers PDF"
jekyll serve --detach --config configs/config_designers.yml,con
figs/config_designers_pdf.yml

Note that the first part kills all Jekyll instances. This way you won't try to server
Jekyll at a port that is already occupied.

The jekyll serve command serves up the PDF configurations for our two
projects. This web version is where Prince will go to get its content.

6. Configure the Prince scripts
Open up doc_multibuild_pdf.sh and look at the Prince commands:

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 101

prince --javascript --input-list=../doc_designers-pdf/prince-fi
le-list.txt -o /Users/tjohnson/projects/documentation-theme-jek
yll/doc_designers_pdf.pdf;

This script issues a command to the Prince utility. JavaScript is enabled
(--javascript), and we tell it exactly where to find the list of files
(--input-list) — just point to the prince-file-list.txt file. Then we tell it where
and what to output (-o).

Make sure that the path to the prince-file-list.txt is correct. For the output
directory, I like to output the PDF file into my project's source. Then when I build
the web output, the PDF is included and something I can refer to.

7. Add a download button for the PDF
You can add a download button for your PDF using some Bootstrap button code:

<a target="_blank" class="noCrossRef" href="doc_designers_pdf.p
df"><button type="button" class="btn btn-default" aria-label="L
eft Align"><span class="glyphicon glyphicon-download-alt" ari
a-hidden="true"> Designers PDF Download</button>

Here's what that looks like:

 Designers PDF Download

8. Run the scripts
To generate the PDF, you just run several scripts that have the commands
packaged up:

1. First run doc_multiserve_pdf.sh to serve up the PDF sites. The
commands will detach the site from the preview server so that you can
serve up multiple Jekyll sites in the same command terminal.

2. Then run doc_multibuild_pdf.sh to build the PDF files.

3. Now run doc_multibuild_web.sh to build the web version that includes the
generated PDF files.

 Note: If you don't like the style of the PDFs, just adjust the styles in the
printstyles.css file.

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 102

http://127.0.0.1:4002/doc_designers/doc_designers_pdf.pdf
http://127.0.0.1:4002/doc_designers/doc_designers_pdf.pdf

JavaScript conflicts
If you have JavaScript on any of your pages, Prince will note errors in Terminal like
this:

error: TypeError: value is not an object

However, the PDF will still build.

You need to conditionalize out any JavaScript from your PDF web output before
building your PDFs. Make sure that the PDF configuration files have the
print: true property.

Then surround the JavaScript with conditional tags like this:

{% unless site.print == true %}
javascript content here ...
{% endunless %}

For more detail about using unless in conditional logic, see Conditional logic
(page 82). What this code means is basically the opposite of
if site.print == true .

Generating PDF PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 103

Excluding files
Summary: By default, all the files in your Jekyll project are
included in the output (this differs from DITA projects, which don't
include files unless noted on the map). If you're single sourcing,
you'll need to exclude the files that shouldn't be included in the
output. The sidebar doesn't control inclusion or exclusion.

About exclusion
By default, all files in your project are included in your output (regardless of
whether they're listed in the sidebar_doc.yml file or not). To exclude files, note
them in the exclude section in the configuration file. Here's a sample:

exclude:
- doc_writers_*
- bower_components
- Gemfile

If you have different outputs for your site, you'll want to customize the exclude
sections in your various configuration files.

Exclude strategies
Here's the process I recommend. Put all files in the root directory of your project.
Suppose one project's name is alpha and the other is beta. Then name each file
as follows:

• alpha_sample.html

• beta_sample.html

In your exclude list for your beta project, specify it as follows:

exclude:
- alpha_*

Excluding files PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 104

In your exclude list for your alpha project, specify it as follows:

exclude:
- beta_*

If you have more sophisticated exclusion, add another level to your file names. For
example, if you have different programming languages you want to filter by, add
this:

• alpha_java_sample.html

• alpha_cpp_sample.html

Then you exclude files for your Alpha C++ project as follows:

exclude:

- alpha_java_*
- beta_*

And you exclude files for your Alpha Java project as follows:

exclude:

- alpha_cpp_*
- alpha_beta_*

When you exclude folders, include the trailing slash at the end of the folder name:

exclude:
- images/alpha/

There isn't a way to automatically exclude anything. By default, everything is
included unless you explicitly list it under the exclude section.

Excluding draft content
If you're working on a draft, put it inside the _drafts folder or add
published: false in the frontmatter. The _drafts folder is excluded by default,

so you don't have to specify it in your exclude list.

Excluding files PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 105

Limitations
What if a file should appear in two projects but not the third? This can get tricky.
For some files, rather than using a wildcard, you may need to manually specify the
entire filename that you're excluding instead of excluding it by way of a wildcard
pattern.

Excluding files PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 106

Help APIs and UI tooltips
Summary: You can loop through files and generate a JSON file
that developers can consume like a help API. Developers can pull
in values from the JSON into interface elements, styling them as
popovers for user interface text, for example. The beauty of this
method is that the UI text remains in the help system and isn't
hard-coded into the UI.

Full code demo of content API
You can create a help API that developers can use to pull in content.

For the full code demo, see the notes in the Tooltip Demo (page 0).

In this demo, the popovers pull in and display content from the information in an
external tooltips.json file located on a different host.

Diagram overview
Here's a diagram showing the basic idea of the help API:

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 107

http://127.0.0.1:4002/doc_designers/tooltip_demo.html

sample help text sample help
text sample help text sample
help text sample help text
sample help text sample help

Getting Started
text sample help text
sample help text sample
help text sample help
text sample help text
sample help text sample

Learning Course
sample help text sample help
text sample help text sample
help text sample help text
sample help text sample help

sample help
text sample
help text
sample help
text sample
help text
sample help
text sample

Help API

 pullin
g fr

om A
PI

 p
ul

lin
g

fr
om

 A
PI

 pulling from API

 pulling from
 A

PI

website #1

website #2

website #4

website #3

Is this really an API? Well, sort of. The help content is pushed out into a JSON file
that other websites and applications can easily consume. The endpoints don't
deliver different data based on parameters added to a URL. But the overall
concept is similar to an API: you have a client requesting resources from a server.

Note that in this scenario, the help is openly accessible on the web. If you have a
private system, it's more complicated.

To deliver help this way using Jekyll, follow the steps in each of the sections
below.

1. Create a "collection" for the help content
(optional)
A collection is another content type that extends Jekyll beyond the use of pages
and posts. Here I'm calling the collection "tooltips." You could also just use
pages, but if you have a lot of content, it will take longer to look up information in
the file because the lookup will have to scan through all your site content instead
of just the tooltips.

Add the following information to your configuration file to declare your collection:

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 108

collections:
tooltips:

output: true

In your Jekyll project, create a new folder called "_tooltips" and put every page
that you want to be part of that tooltips collection inside that folder.

2. Create pages in your collection
Create pages inside your new tooltips collection (that is, inside the _tooltips
folder). Each page needs only a unique id in the frontmatter. Here's an example:

id: basketball

{{site.data.definitions.basketball}}

You need to create a separate page for each resource you want to deliver. In this
setup, the definition of basketball is stored in a data file call definitions inside the
_data folder so that we can re-use it in other parts of the help as well. (This
additional re-use is covered later on this page.)

3. Create a JSON file that loops through your
collection pages
Add the following to a file and call it tooltips.json:

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 109

layout: none

{

"entries":
[

{% for page in site.tooltips %}
{

"id" : "{{ page.id }}",
"body": "{{ page.content | strip_newlines | replace:

'\', '\\\\' | replace: '"', '\\"' }}"
} {% unless forloop.last %},{% endunless %}

{% endfor %}
]
}

This code will loop through all pages in the tooltips collection and insert the id and
body into key-value pairs for the JSON code. Here's an example of what that
looks like after it's processed by Jekyll in the site build: Tooltips (page 0).

 Tip: Check out Google's style guide for JSON (https://google-
styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml). These best
practices can help you keep your JSON file valid.

Store this tooltips.json file in your root directory. You can add different fields
depending on how you want the JSON to be structured. Here I just have to fields:
id and body . And the JSON is looking just in the tooltips collection that I

created.

When you build your site, Jekyll will iterate through every page in your _tooltips
folder and put the page id and body into this format.

You could create different JSON files that specialize in different content. For
example, suppose you have some getting started information. You could put that
into a different JSON file. Using the same structure, you might add an if tag that
checks whether the page has frontmatter that says getting_started: true or
something. Or you could put it into a separate collection entirely (different from
tooltips).

By chunking up your JSON files, you can provide a quicker lookup, though I'm not
sure how big the JSON file can be before you experience any latency with the
jQuery lookup.

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 110

http://127.0.0.1:4002/doc_designers/tooltips.json
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml

4. Allow CORS access to your help if stored
on a remote server
When people make calls to your site from other domains, you must allow them
access to get the content. To do this, you have to enable something called CORS
(cross origin resource sharing) within the server where your help resides.

In other words, people are going to be executing calls to reach into your site and
grab your content. Just like the door on your house, you have to unlock it so
people can get in. Enabling CORS is unlocking it.

How you enable CORS depends on the type of server.

If your server setup allows htaccess files to override general server permissions,
then create an .htaccess file and add the following:

Header set Access-Control-Allow-Origin "*"

Store this in the same directory as your project. This is what I've done in a
directory on my web host (bluehost.com). Inside
http://idratherbetellingstories.com/wp-content/apidemos/, I uploaded a file called
".htaccess" with the preceding code.

After I uploaded it, I renamed it to .htaccess, right-clicked the file and set the
permissions to 774.

To test whether your server permissions are set correctly, open a terminal and run
the following curl command pointing to your tooltips.json file:

curl -I http://idratherbetellingstories.com/wp-content/apidemo
s/tooltips.json

If the server permissions are set correctly, you should see the following line
somewhere in the response:

Access-Control-Allow-Origin: *

If you don't see this response, CORS isn't allowed for the file.

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 111

If you have an AWS S3 bucket, you can supposedly add a CORS configuration to
the bucket permissions. Log into AWS S3 and click your bucket. On the right, in
the Permissions section, click Add CORS Configuration. In that space, add the
following policy:

<CORSConfiguration>
<CORSRule>

<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>

</CORSRule>
</CORSConfiguration>

Although this should work, in my experiment it doesn't. And I'm not sure why...

In other server setups, you may need to edit one of your Apache configuration
files. See Enable CORS (http://enable-cors.org/server.html) or search online for
ways to allow CORS for your server.

If you don't have CORS enabled, users will see a CORS error/warning message in
the console of the page making the request.

 Tip: If enabling CORS is problematic, you could always just send
developers the tooltips.json file and ask them to place it on their own server.

5. Explain how developers can access the
help
Developers can access the help using the .get method from jQuery, among
other methods. Here's an example of how to get a page with the ID of
basketball :

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 112

http://enable-cors.org/server.html

<<script type=="text/javascript">>
$(document).ready(functionfunction(){

varvar url == "{url}/tooltips.json";

$.get(url, functionfunction(data) {

$.each(data.entries, functionfunction(i, page) {
ifif (page.id ==== "basketball") {

$("#basketball").attr("data-content", page.b
ody);

}

});
});

});
<</script>

The {url} is where your tooltips.json file is. The each method looks through all
the JSON content to find the item whose page.id is equal to basketball . It
then looks for an element on the page named #basketball and adds a
data-content attribute to that element.

 Warning: Note: Make sure your JSON file is valid. Otherwise, this method
won't work. I use the JSON Formatter extension for Chrome
(https://chrome.google.com/webstore/detail/json-formatter/
bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en). When I go to the tooltips.json
page in my browser, the JSON content — if valid — is nicely formatted (and
includes some color coding). If the file isn't valid, it's not formatted and there
isn't any color. You can also check the JSON formatting using JSON
Formatter and Validator (http://jsonformatter.curiousconcept.com/). If your
JSON file isn't valid, identify the problem area using the validator and
troubleshoot the file causing issues. It's usually due to some code that isn't
escaping correctly.

Why data-content ? Well, in this case, I'm using Bootstrap popovers
(http://getbootstrap.com/javascript/#popovers) to display the tooltip content. The
data-content attribute is how Bootstrap injects popovers.

Here's the section on the page where the popover is inserted:

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 113

https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
http://jsonformatter.curiousconcept.com/
http://jsonformatter.curiousconcept.com/
http://getbootstrap.com/javascript/#popovers
http://getbootstrap.com/javascript/#popovers

<p>Basketball <span class="glyphicon glyphicon-info-sign" id="b
asketball" data-toggle="popover"></p>

Notice that I just have id="basketball" added to this popover element.
Developers merely need to add a unique ID to each tooltip they want to pull in the
help content. Either you tell developers the unique ID they should add, or ask
them what IDs they added (or just tell them to use an ID that matches the field's
name).

In order to use jQuery and Bootstrap, you'll need to add the appropriate
references in the head tags of your page:

<<link rel=="stylesheet" href=="https://maxcdn.bootstrapcdn.com/bo
otstrap/3.3.2/css/bootstrap.min.css">>
<<script src=="https://ajax.googleapis.com/ajax/libs/jquery/1.1
1.2/jquery.min.js"><></script>
<<script src=="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/j
s/bootstrap.min.js"><></script>

<<script type=="text/javascript">>
$(document).ready(functionfunction(){

$('[data-toggle="popover"]').popover({
placement :: 'right',
trigger:: 'hover',
html:: truetrue

});

Note that even though you reference a Bootstrap js script, Bootstrap's popovers
require you to initialize them using the above code as well — they aren't turned on
by default.

View the source code of the Tooltip Demo (page 0) for the full comments.

6. Create easy links to embed the help in your
help site
You might also want to insert the same content into different parts of your help
site. For example, if you have tooltips providing definitions for fields, you'll
probably want to create a page in your help that lists those same definitions. You
could use the same method developers use to pull help content into their
applications. But it will probably be easier to simply use Jekyll's tags for doing it.

Here's how you would reuse the content:

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 114

http://127.0.0.1:4002/doc_designers/tooltip_demo.html

<h2>Reuse Demo</h2>

<table>
<thead>
<tr>
<th>Sport</th>
<th>Comments</th>
</tr>
</thead>
<tbody>

<tr>
<td>Basketball</td>
<td>{{site.data.definitions.basketball}}</td>
</tr>

<tr>
<td>Baseball</td>
<td>{{site.data.definitions.baseball}}</td>
</tr>

<tr>
<td>Football</td>
<td>{{site.data.definitions.football}}</td>
</tr>

<tr>
<td>Soccer</td>
<td>{{site.data.definitions.soccer}}</td>
</tr>
</tbody>
</table>

And here's the code:

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 115

Reuse Demo
SPORT COMMENTS

Basketball Basketball is a sport involving two teams of five players
each competing to put a ball through a small circular
rim 10 feet above the ground. Basketball requires play-
ers to be in top physical condition, since they spend
most of the game running back and forth along a
94-foot-long floor.

Baseball Baseball is considered America's pasttime sport,
though that may be more of a historical term than a
current one. There's a lot more excitement about foot-
ball than baseball. A baseball game is somewhat of a
snooze to watch, for the most part.

Football No doubt the most fun sport to watch, football also
manages to accrue the most injuries with the players.
From concussions to blown knees, football players
have short sport lives.

Soccer If there's one sport that dominates the world land-
scape, it's soccer. However, US soccer fans are few
and far between. Apart from the popularity of soccer
during the World Cup, most people don't even know
the name of the professional soccer organization in
their area.

Help APIs and UI tooltips PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 116

Search configuration
Summary: The search feature uses JavaScript to look for keyword
matches in a JSON file. The results show instant matches, but it
doesn't provide a search results page like Google. Also,
sometimes invalid formatting can break the JSON file.

About search
The search is configured through the search.json file in the root directory. Take a
look at that code if you want to change what fields are included.

The search is a simple search that looks at content in pages. It looks at titles,
summaries, keywords, tags, and bodies.

However, the search doesn't work like google — you can't hit return and see a list
of results on the search results page, with the keywords in bold. Instead, this
search shows a list of page titles that contain keyword matches. It's fast, but
simple.

Excluding pages form search
By default, every page is included in the search. Depending on the type of content
you're including, you may find that some pages will break the JSON formatting. If
that happens, then the search will no longer work.

If you want to exclude a page from search add search: exclude in the
frontmatter.

Troubleshooting search
You should exclude any files from search that you don't want appearing in the
search results. For example, if you have a tooltips.json file or prince-file-list.txt,
don't include it, as the formatting will break the JSON format.

If any formatting in the search.json file is invalid (in the build), search won't work.
You'll know that search isn't working if no results appear when you start typing in
the search box.

Search configuration PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 117

If this happens, go directly to the search.json file in your browser, and then copy
the content. Go to a JSON validator (http://jsonlint.com/) and paste in the content.
Look for the line causing trouble. Edit the file to either exclude it from search or fix
the syntax so that it doesn't invalidate the JSON.

The search.json file already tries to strip out content that would otherwise make
the JSON invalid:

"body": "{{ page.content | strip_html | strip_newlines |
replace: '\', '\\\\' | replace: '"', '\\"' }}",

However, it's possible that the formatting may not account for all the scenarios
that would invalidate the JSON. (Sometimes it's an extra comma after the last item
that makes it invalid.)

Customizing search results
At some point, you may want to customize the search results more. Here's a little
more detail that will be helpful. The search.json file retrieves various page values:

{% if page.search == true %}
{
"title": "{{ page.title | escape }}",
"tags": "{{ page.tags }}",
"keywords": "{{page.keywords}}",
"url": "{{ page.url | replace: "/", "" }}",
"last_updated": "{{ page.last_updated }}",
"summary": "{{page.summary}}",
"body": "{{ page.content | strip_html | strip_newlines |

replace: '\', '\\\\' | replace: '"', '\\"' }}"
}

The _includes/topnav.html file then makes use of these values:

Search configuration PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 118

http://jsonlint.com/

<!-- start search -->
<div id="search-demo-container">
<input type="text" id="search-input" placeholder="search...">
<ul id="results-container">
</div>
<script src="js/jekyll-search.js" type="text/javascript"></scri
pt>
<script type="text/javascript">
SimpleJekyllSearch.init({
searchInput:: document.getElementById('search-input'),
resultsContainer:: document.getElementById('results-container'),
dataSource:: 'search.json',
searchResultTemplate:: '<a href="{url}" title="Search config
uration">{title}',
noResultsText:: 'No results found.',
limit:: 10,
fuzzy:: truetrue,
})
</script>
<!-- end search -->

Where you see {url} and {title} , the search is retrieving the values for these
as specified in the search.json file.

At some point, you may want to add in the {summary} as well. You could create
a dedicated search page that could include the summary as an instant result as
you type.

Search configuration PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 119

iTerm profiles
Summary: Set up profiles in iTerm to facilitate the build process
with just a few clicks. This can make it a lot easier to quickly build
multiple outputs.

About iTerm profiles
When you're working with tech docs, a lot of times you're single sourcing multiple
outputs. It can be a hassle to fire up each one of these outputs using the build
files containing the shell scripts. Instead, it's easier to configure iTerm with profiles
that initiate the scripts.

Set up profiles
1. Open iTerm and go to Profiles > Open Profiles.

2. Click Edit Profiles.

3. Click the + button in the lower-left corner to create a new profile.

4. In the Name field, type a name describing the output, such as
Doc theme -- designers .

5. In the Send text at start field, type the command for the build script,
such as this:

jekyll serve --config configs/config_designers.yml

Leave the Login shell option selected.

6. In the Working Directory section, select Directory and enter the directory
for your project, such as /Users/tjohnson/projects/documentation-
theme-jekyll.

7. Close the profiles panel.

Here's an example:

iTerm profiles PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 120

Launching a profile
1. In iTerm, make sure the Toolbar is shown. Go to View > Toggle Toolbar.

2. Click the New button and select your profile.

 Tip: When you're done with the session, make sure to click **Ctrl+C**.

iTerm profiles PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 121

Pushing builds to server
Summary: You can push your build to AWS using commands
from the command line. By including your copy commands in
commands, you can package all of the build and deploy process
into executable scripts.

Pushing to AWS S3
If you have the AWS Command Line Interface installed and are pushing your
builds to AWS, the following commands show how you can build and push to an
AWS location from the command line:

#aws s3 cp ~/users/tjohnson/projects/documentation-theme-jekyl
l-builds/doc_writers s3://[aws path]documentation-theme-jekyll/
doc_writers --recursive

#aws s3 cp ~/users/tjohnson/projects/documentation-theme-jekyl
l-builds/doc_designers s3://[aws path]/documentation-theme-jeky
ll/doc_designers --recursive

The first path is the local location; the second path is the destination.

Pushing to a regular server
If you're pushing to a regular server that you can ssh into, you can use scp
commands to push your build. Here's an example:

scp -r /users/tjohnson/projects/documentation-theme-jekyll-buil
ds/doc_writers name@domain:/var/www/html/documentation-theme-je
kyll/doc_writers

Similar to the above, the first path is the local location; the second path is the
destination.

Pushing builds to server PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 122

Knowledge-base layout
Summary: This shows a sample layout for a knowledge base.
Each square could link to a tag archive page. In this example, font
icons from Font Awesome are enlarged to a large size. You can
also add captions below each icon.

Getting Started

(page 0)

(page 0)

Navigation (page 0)

Single-sourcing

(page 0)

Knowledge-base layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 123

http://127.0.0.1:4002/doc_designers/doc_tag-getting-started.html
http://127.0.0.1:4002/doc_designers/doc_tag-getting-started.html
http://127.0.0.1:4002/doc_designers/doc_tag-getting-started.html
http://127.0.0.1:4002/doc_designers/doc_tag-getting-started.html
http://127.0.0.1:4002/doc_designers/doc_tag-navigation.html
http://127.0.0.1:4002/doc_designers/doc_tag-navigation.html
http://127.0.0.1:4002/doc_designers/doc_tag-navigation.html
http://127.0.0.1:4002/doc_designers/doc_tag-navigation.html
http://127.0.0.1:4002/doc_designers/doc_tag-single-sourcing.html
http://127.0.0.1:4002/doc_designers/doc_tag-single-sourcing.html
http://127.0.0.1:4002/doc_designers/doc_tag-single-sourcing.html
http://127.0.0.1:4002/doc_designers/doc_tag-single-sourcing.html

Generating a list of all pages with a certain tag
If you don't want to link to a tag archive index, but instead want to list all pages
that have a certain tag, you could use this code:

Publishing

(page 0)

Special layouts

(page 0)

Formatting

(page 0)

Knowledge-base layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 124

http://127.0.0.1:4002/doc_designers/doc_tag-publishing.html
http://127.0.0.1:4002/doc_designers/doc_tag-publishing.html
http://127.0.0.1:4002/doc_designers/doc_tag-publishing.html
http://127.0.0.1:4002/doc_designers/doc_tag-publishing.html
http://127.0.0.1:4002/doc_designers/doc_tag-special-layouts.html
http://127.0.0.1:4002/doc_designers/doc_tag-special-layouts.html
http://127.0.0.1:4002/doc_designers/doc_tag-special-layouts.html
http://127.0.0.1:4002/doc_designers/doc_tag-special-layouts.html
http://127.0.0.1:4002/doc_designers/doc_tag-formatting.html
http://127.0.0.1:4002/doc_designers/doc_tag-formatting.html
http://127.0.0.1:4002/doc_designers/doc_tag-formatting.html
http://127.0.0.1:4002/doc_designers/doc_tag-formatting.html

Getting started pages:

{% assign sorted_pages = (site.pages | sort: 'title') %}
{% for page in sorted_pages %}
{% for tag in page.tags %}
{% if tag == "getting-started" %}
{{page.title}}
{% endif %}
{% endfor %}
{% endfor %}

Getting started pages:

• About this theme (page 0)

• Getting started with this theme (page 0)

• Introduction (page 0)

• Pages (page 0)

• Support (page 0)

• Supported features (page 0)

• Theme customization (page 0)

• Troubleshooting (page 0)

• WebStorm Text editor (page 0)

Knowledge-base layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 125

http://127.0.0.1:4002/doc_about.html
http://127.0.0.1:4002/doc_getting_started.html
http://127.0.0.1:4002/index.html
http://127.0.0.1:4002/doc_pages.html
http://127.0.0.1:4002/doc_support.html
http://127.0.0.1:4002/doc_supported_features.html
http://127.0.0.1:4002/doc_theme_customization.html
http://127.0.0.1:4002/doc_troubleshooting.html
http://127.0.0.1:4002/doc_webstorm_text_editor.html

Scroll layout
Summary: This page demonstrates how you the integration of a
script called ScrollTo, which is used here to link definitions of a
JSON code sample to a list of definitions for that particular term.
The scenario here is that the JSON blocks are really long, with
extensive nesting and subnesting, which makes it difficult for
tables below the JSON to adequately explain the term in a usable
way.

 Note: The content on this page doesn't display well on PDF, but I included
it anyway so you could see the problems this layout poses if you're including
it in PDF.

Scroll layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 126

{
"apples" (page 128): "red fruit at the store",
"bananas" (page 128): "yellow bananas in a bunch",
"carrots" (page 128): "orange vegetables that grow in th

e ground",
"dingbats" (page 128): "a type of character symbol on a c

omputer",
"eggs" (page 128): "chickens lay them, and people eat the

m",
"falafel" (page 129): "a Mediterranean sandwich consistin

g of lots of different stuff i don't know much about",
"giraffe" (page 129): "tall animal, has purple tongue",
"hippo" (page 129): "surprisingly dangerous amphibian",
"igloo" (page 129): "an ice shelter made by eskimos",
"jeep (page 129): "the only car that starts with a j",
"kilt" (page 129): "something worn by scottish people, no

t a dress",
"lamp" (page 129): "you use it to read by your bedside a

t night"
"manifold" (page 129): "an intake mechanism on a car, lik

e a valve, i think",
"octopus" (page 129): "eight tentacles, shoots ink, live

s in dark caves, very mysterious",
"paranoia" (page 130): "the constant feeling that others

are out to get you, conspiring against your success",
"qui" (page 130): "a life force that runs through your bo

dy",
"radical" (page 130): "someone who opposes the status qu

o in major ways",
"silly" (page 130): "how I feel writing this dummy copy",
"taffy" (page 130): "the sweets children like the most an

d dentists hate the worst",
"umbrella" (page 130): "an invention that has not had an

y advancements in 200 years",
"vampire" (page 130): "a paranormal figure that is surpri

singly in vogue despite its basic nature",
"washington" (page 130): "the place where tom was born",
"xylophone" (page 131): "some kind of pinging instrument

used to sound chime-like notes",
"yahoo" (page 131): "an expression of exuberance, said un

der breath when something works right",
"zeta" (page 131): "the way british people pronounce z",
"alpha" (page 131): "the original letter of the alphabe

t, which has since come to mean the first. however, i thin
k the original symbol of alpha is actually an ox. it is som
ewhat of a mystery to linquists as to the exact origin of t
he letter alpha, but it basically represents the dawn of th

Scroll layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 127

e alphabet, which proved to be a huge step forward for huma
n thought and expression.",

"beta" (page 131): "the period of time when something is
finished but undergoing testing by a group of people.",

"cappa" (page 131): "how italians refer to their basebal
l caps",

"dunno" (page 131): "informal expression for 'don't kno
w'"

}

apples

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer magna
massa, euismod sed rutrum at, ullamcorper quis tellus. Vestibulum erat
purus, aliquet sit amet pellentesque eget, tempus at ante. Nulla justo nisi,
elementum nec nisi eget, consectetur varius tortor.

bananas

Curabitur quis nibh sed eros viverra tempus et quis lorem. Nulla convallis sit
amet risus vitae rutrum. Nulla at faucibus lectus. Pellentesque tortor nisl,
interdum ac quam non, egestas congue massa. Vestibulum non porttitor
lacus. Nam tincidunt arcu lectus. Donec eget ornare neque, hendrerit ornare
lectus. In ac pretium odio.

carrots

Vivamus pulvinar vestibulum pharetra. Vivamus vitae diam iaculis, posuere mi
sed, dignissim massa. Nunc vitae aliquet urna. Proin sed pulvinar ex.
Maecenas nisl lorem, rutrum sit amet hendrerit sed, posuere at odio. Sed
consectetur semper tristique. Vivamus finibus varius felis at convallis. Fusce
in dictum nunc.

dingbats

Curabitur feugiat lorem eget elit ullamcorper tincidunt. In euismod diam
aliquet tortor fermentum tempor. Fusce quam felis, commodo viverra orci
vitae, scelerisque aliquet risus.

eggs

Duis est nunc, fringilla eu ligula et, varius dignissim dui. Vivamus in tellus
vitae ipsum vehicula fermentum at congue tellus. Suspendisse fermentum,
magna vitae aliquet sodales, tellus nisi rutrum arcu, vitae auctor dolor quam
ac tellus. Cras posuere augue erat, in sagittis quam lacinia id.

Scroll layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 128

falafel

Praesent auctor a enim non lacinia. Integer sodales aliquet mi vel dapibus.
Donec consequat justo eget nisi lacinia, eu sodales ligula molestie. Sed
sapien nulla, rhoncus at elementum a,

giraffe

Nullam venenatis at lectus sed pharetra. Sed hendrerit ligula lectus, non
pellentesque diam faucibus sit amet. Aliquam dictum hendrerit pellentesque.
Cras eu nisl sagittis, faucibus velit sit amet, sagittis odio. Donec vulputate ex
vitae purus

hippo

Cras nec pretium nulla. Suspendisse tempus tortor vel venenatis pulvinar.
Integer varius tempor enim fringilla tincidunt. Phasellus magna turpis, auctor
vitae elit eget, fringilla pellentesque est. Phasellus ut porta risus. Curabitur
iaculis sapien sed venenatis auctor. Integer eu orci at lectus eleifend auctor id
rutrum urna.

Fusce rhoncus elit sed quam laoreet placerat. Praesent lacinia metus quis
felis mollis, ac facilisis risus consequat. Phasellus laoreet feugiat lacus.
Etiam a neque est.

jeep

Nulla vitae metus rutrum, condimentum orci nec, maximus est. Aenean sit
amet ante nec elit dignissim faucibus eget quis quam.

kilt

Morbi maximus, erat vel rhoncus sagittis, dolor purus dignissim ante, sit amet
pharetra ex justo vitae ipsum. Nulla consequat interdum neque

lamp

Cum sociis natoque penatibus et magnis dis parturient montes, nascetur
ridiculus mus. Mauris aliquam dapibus blandit. Donec porta, enim hendrerit
venenatis vulputate, orci diam lacinia nibh, faucibus rutrum dolor dui ut
quam.

manifold

Donec finibus massa vel nisi ullamcorper, vitae ornare enim euismod.
Aliquam auctor quam erat. Duis interdum rutrum orci, ac interdum urna
pharetra eget.

octopus

Nulla id egestas enim. Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Suspendisse potenti. Curabitur eu lobortis ligula.

Scroll layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 129

paranoia

Aenean hendrerit mauris ipsum, non laoreet ipsum luctus vel. Curabitur
tristique auctor elit ut pulvinar. Quisque arcu arcu, condimentum aliquam
sodales nec, dignissim nec justo. Nunc tristique sem felis, pharetra euismod
lorem volutpat sed. Ut porttitor metus sit amet elit rhoncus semper.

qui

Quisque rhoncus cursus felis vel elementum. Vestibulum dignissim molestie
tortor nec facilisis. Praesent a nibh condimentum, porta nulla egestas, auctor
eros

radical

Etiam hendrerit interdum tellus, at aliquet sapien egestas in. Aenean eu urna
nisl. Cras vitae risus pharetra, elementum mauris nec, auctor lectus. Fusce
pellentesque venenatis dictum. Proin at augue at mauris finibus semper
ultricies sed eros.

silly

Praesent pulvinar consequat posuere. Morbi egestas rhoncus felis, id
fermentum metus lobortis in. Vestibulum nibh orci, euismod eget vestibulum
nec, vehicula vitae tortor. Aenean ullamcorper enim nunc, eu auctor ligula
auctor eget.

taffy

Etiam et arcu vel lacus aliquet lobortis in in massa. Nunc non mollis elit.
Aenean accumsan orci quis risus aliquam, non gravida nulla molestie. Mauris
pharetra libero et magna aliquam aliquam. Integer quis luctus dolor.

umbrella

Fusce molestie finibus malesuada. Nullam ac egestas quam, id venenatis
ligula. Pellentesque pulvinar elit et vestibulum fringilla. Cras volutpat sed
quam ornare scelerisque. Vivamus volutpat ante pretium scelerisque tempus.
Etiam venenatis tempor nisl dignissim sollicitudin. Curabitur ac risus vitae
dolor pretium posuere vel vitae diam. Donec in odio arcu.

vampire

Vestibulum pretium condimentum commodo. Integer placerat leo non ipsum
ultrices, ac convallis elit varius. Vestibulum ultricies, justo eu rutrum molestie,
quam arcu euismod sapien, vel gravida ipsum nulla eget erat.

washington

Nunc ac quam eu risus dictum sodales. Nam ac risus iaculis, aliquet sem eu,
mollis mauris. Curabitur pretium facilisis orci ut lacinia. Sed fermentum leo a
odio blandit rutrum. Phasellus at nibh vel odio interdum vulputate ac eget
urna. Nam eu arcu dapibus, sodales ligula nec, volutpat ipsum. Suspendisse
auctor tellus vitae libero euismod venenatis.

Scroll layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 130

 Note: This was mostly an experiment to see if there was a better way to
document a long JSON code example. I haven't actually used this approach
in my own documentation.

xylophone

Sed molestie lobortis ante sit amet hendrerit. Sed pharetra nisi sed interdum
pulvinar. Nunc efficitur erat non aliquam mattis. Sed id nisl mattis lacus
vehicula volutpat vitae vel massa. Curabitur interdum velit odio, vitae
sollicitudin nunc rutrum non.

yahoo

Nunc commodo consectetur scelerisque. Proin fermentum ligula ac quam
finibus tincidunt. Aenean venenatis nisi et semper semper. Nunc sodales velit
ipsum, ac pellentesque augue placerat eu.

Nullam ac suscipit odio. Curabitur viverra arcu ut egestas sollicitudin.
Fusce sodales varius lectus ut tristique. Etiam eget nunc ornare, aliquet
tortor eget, consequat mauris. Integer sit amet fermentum augue.

alpha

Praesent nec neque ac tellus sodales eleifend nec vel ipsum. Cras et semper
risus. Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Integer mattis leo nisl, a tincidunt lectus tristique
eget. Donec finibus lobortis viverra. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Vivamus egestas pulvinar odio
non vehicula. Morbi malesuada leo eget nisl sagittis aliquet.

Mauris a libero vel enim pharetra interdum non a quam. Sed tincidunt ut
elit sed dignissim. Suspendisse vitae tellus dapibus, fermentum lacus ac,
fermentum lacus. Nam ante odio, fringilla ac elementum a, mollis sed
tellus.

cappa

Nam molestie semper nulla et molestie. Ut facilisis, ipsum sed convallis
posuere, mi mauris bibendum erat, nec egestas ipsum est nec dolor.

dunno

Etiam et metus congue, commodo libero et, accumsan sem. Aliquam erat
volutpat. Quisque tincidunt, tortor non blandit ullamcorper, orci mauris
dignissim augue, eget vehicula nulla justo sed dolor. Nunc ac urna quis nisi
maximus pharetra in a mauris. Proin metus mi, venenatis vitae tristique sed,
fermentum at purus. Aliquam erat volutpat. Maecenas efficitur sodales nibh,
ac hendrerit felis facilisis et. Interdum et malesuada fames ac ante ipsum
primis in faucibus.

Scroll layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 131

Shuffle layout
Summary: This layout shows an example of a knowledge-base
style navigation system, where there is no hierarchy, just groups of
pages that have certain tags.

 Note: The content on this page doesn't display well on PDF, but I included
it anyway so you could see the problems this layout poses if you're including
it in PDF.

All Getting Started Formatting Publishing Content types

Single Sourcing Special Layouts

Getting started

If you're getting started with
Jekyll, see the links in this
section. It will take you from the
beginning level to comfortable.

• About this theme (page
0)

• Getting started with this
theme (page 0)

• Pages (page 0)

• Support (page 0)

• Supported features
(page 0)

• Theme customization
(page 0)

• Troubleshooting (page 0)

Content types

This section lists different content
types and how to work with
them.

• Collections (page 0)

• Generating PDF (page 0)

• Help APIs and UI tooltips
(page 0)

• Pages (page 0)

• Series pages (page 0)

Formatting

These topics get into formatting
syntax, such as images and

Shuffle layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 132

http://127.0.0.1:4002/doc_about.html
http://127.0.0.1:4002/doc_about.html
http://127.0.0.1:4002/doc_getting_started.html
http://127.0.0.1:4002/doc_getting_started.html
http://127.0.0.1:4002/doc_pages.html
http://127.0.0.1:4002/doc_support.html
http://127.0.0.1:4002/doc_supported_features.html
http://127.0.0.1:4002/doc_supported_features.html
http://127.0.0.1:4002/doc_theme_customization.html
http://127.0.0.1:4002/doc_theme_customization.html
http://127.0.0.1:4002/doc_troubleshooting.html
http://127.0.0.1:4002/doc_collections.html
http://127.0.0.1:4002/doc_generating_pdfs.html
http://127.0.0.1:4002/doc_help_api.html
http://127.0.0.1:4002/doc_help_api.html
http://127.0.0.1:4002/doc_pages.html
http://127.0.0.1:4002/doc_series.html

• WebStorm Text editor
(page 0)

• Introduction (page 0)

tables, that you'll use on each of
your pages:

◦ Tooltips (page 0)

◦ Alerts (page 0)

◦ Glossary layout
(page 0)

◦ Links (page 0)

◦ Icons (page 0)

◦ Images (page 0)

◦ Labels (page 0)

◦ NavTabs (page
0)

◦ Pages (page 0)

◦ Syntax
highlighting
(page 0)

◦ Tables (page 0)

◦ Video embeds
(page 0)

Single Sourcing

These topics cover strategies for
single-sourcing. Single sourcing
refers to strategies for re-using
the same source in different
outputs for different audiences or
purposes.

• Conditional logic (page
0)

• Configuration settings
(page 0)

Publishing

When you're building, publishing,
and deploying your Jekyll site,
you might find these topics
helpful.

• Build arguments (page 0)

• Configuration settings
(page 0)

• Generating PDF (page 0)

Shuffle layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 133

http://127.0.0.1:4002/doc_webstorm_text_editor.html
http://127.0.0.1:4002/doc_webstorm_text_editor.html
http://127.0.0.1:4002/index.html
http://127.0.0.1:4002/doc_adding_tooltips.html
http://127.0.0.1:4002/doc_alerts.html
http://127.0.0.1:4002/doc_glossary.html
http://127.0.0.1:4002/doc_glossary.html
http://127.0.0.1:4002/doc_hyperlinks.html
http://127.0.0.1:4002/doc_icons.html
http://127.0.0.1:4002/doc_images.html
http://127.0.0.1:4002/doc_labels.html
http://127.0.0.1:4002/doc_navtabs.html
http://127.0.0.1:4002/doc_navtabs.html
http://127.0.0.1:4002/doc_pages.html
http://127.0.0.1:4002/doc_syntax_highlighting.html
http://127.0.0.1:4002/doc_syntax_highlighting.html
http://127.0.0.1:4002/doc_syntax_highlighting.html
http://127.0.0.1:4002/doc_tables.html
http://127.0.0.1:4002/doc_video_embeds.html
http://127.0.0.1:4002/doc_video_embeds.html
http://127.0.0.1:4002/doc_conditional_logic.html
http://127.0.0.1:4002/doc_conditional_logic.html
http://127.0.0.1:4002/doc_configuration_settings.html
http://127.0.0.1:4002/doc_configuration_settings.html
http://127.0.0.1:4002/doc_build_arguments.html
http://127.0.0.1:4002/doc_configuration_settings.html
http://127.0.0.1:4002/doc_configuration_settings.html
http://127.0.0.1:4002/doc_generating_pdfs.html

 Note: This was mostly an experiment to see if I could break away from the
hierarchical TOC and provide a different way of arranging the content.
However, this layout is somewhat problematic because it doesn't allow you
to browse other navigation options on the side while viewing a topic.

• Content reuse (page 0)

• Excluding files (page 0)

• Generating PDF (page 0)

• Help APIs and UI tooltips
(page 0)

• Help APIs and UI tooltips
(page 0)

• iTerm profiles (page 0)

• Pushing builds to server
(page 0)

• Search configuration
(page 0)

• Themes (page 0)

Special Layouts

These pages highlight special
layouts outside of the
conventional page and TOC
hierarchy.

• FAQ layout (page 0)

• Glossary layout (page 0)

• Knowledge-base layout
(page 0)

• Scroll layout (page 0)

• Shuffle layout (page 0)

• Special layouts overview
(page 0)

Shuffle layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 134

http://127.0.0.1:4002/doc_content_reuse.html
http://127.0.0.1:4002/doc_excluding_files.html
http://127.0.0.1:4002/doc_generating_pdfs.html
http://127.0.0.1:4002/doc_help_api.html
http://127.0.0.1:4002/doc_help_api.html
http://127.0.0.1:4002/doc_help_api.html
http://127.0.0.1:4002/doc_help_api.html
http://127.0.0.1:4002/doc_iterm_profiles.html
http://127.0.0.1:4002/doc_push_build_to_server.html
http://127.0.0.1:4002/doc_push_build_to_server.html
http://127.0.0.1:4002/doc_search_configuration.html
http://127.0.0.1:4002/doc_search_configuration.html
http://127.0.0.1:4002/doc_themes.html
http://127.0.0.1:4002/doc_faq.html
http://127.0.0.1:4002/doc_glossary.html
http://127.0.0.1:4002/doc_kb_layout.html
http://127.0.0.1:4002/doc_kb_layout.html
http://127.0.0.1:4002/doc_scroll.html
http://127.0.0.1:4002/doc_shuffle.html
http://127.0.0.1:4002/doc_special_layouts.html
http://127.0.0.1:4002/doc_special_layouts.html

FAQ layout
Summary: You can use an accordion-layout that takes advantage
of Bootstrap styling. This is useful for an FAQ page.

If you want to use an FAQ format, use the syntax shown on the faq.html page.
Rather than including code samples here (which are bulky with a lot of nested `div`
tags), just look at the source in the doc_faq.html theme file.

Lorem ipsum dolor sit amet, consectetur adipiscing elit? (page 0)

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus? (page 0)

Aenean consequat lorem ut felis ullamcorper? (page 0)

Lorem ipsum dolor sit amet, consectetur adipiscing elit? (page 0)

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus? (page 0)

Aenean consequat lorem ut felis ullamcorper? (page 0)

Lorem ipsum dolor sit amet, consectetur adipiscing elit? (page 0)

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus? (page 0)

Aenean consequat lorem ut felis ullamcorper? (page 0)

FAQ layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 135

Glossary layout
Summary: Your glossary page can take advantage of definitions
stored in a data file. This gives you the ability to reuse the same
definition in multiple places. Additionally, you can use Bootstrap
classes to arrange your definition list horizontally.

You can create a glossary for your content. First create your glossary items in a
data file such as glossary.yml.

Then create a page and use definition list formatting, like this:

<dl class="dl">

<dt id="fractious">fractious</dt>
<dd>Like a little mischevious child, full of annoying and const
ant trouble.</dd>

<dt id="gratuitous">gratuitous</dt>
<dd>Something that is unwarranted and uncouth, like the social
equivalent of a flagrant foul.</dd>

<dt id="haughty">haughty</dt>
<dd>Proud and flaunting it. Holding your head high up like a sn
ooty, too-good-for-everything rich person.</dd>

<dt id="gratuitous">gratuitous</dt>
<dd>Something that is unwarranted and uncouth, like the social
equivalent of a flagrant foul.</dd>

<dt id="impertinent">impertinent</dt>
<dd>Someone acting rude and insensitive to others.</dd>

<dt id="intrepid">intrepid</dt>
<dd>Brave and courageous especially in a difficult, dangerous s
ituation.</dd>

</dl>

Here's what that looks like:

Glossary layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 136

fractious

Like a little mischevious child, full of annoying and constant trouble.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

haughty

Proud and flaunting it. Holding your head high up like a snooty, too-good-for-
everything rich person.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

impertinent

Someone acting rude and insensitive to others.

intrepid

Brave and courageous especially in a difficult, dangerous situation.

The glossary works well as a link in the top navigation bar.

Horizontally styled definiton lists
You can also change the definition list (dl) class to dl-horizontal . This is a
Bootstrap specific class. If you do, the styling looks like this:

fractious

Like a little mischevious child, full of annoying and constant trouble.

Glossary layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 137

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

haughty

Proud and flaunting it. Holding your head high up like a snooty, too-good-for-
everything rich person.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

impertinent

Someone acting rude and insensitive to others.

intrepid

Brave and courageous especially in a difficult, dangerous situation.

If you squish your screen small enough, at a certain breakpoint this style reverts to
the regular dl class.

Although I like the side-by-side view for shorter definitions, I found it problematic
with longer definitions.

Glossary layout PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 138

Tag archives overview
Summary: This is an overview to the tag archives section. Really
the only reason this section is listed explicitly in the TOC here is to
demonstrate how to add a third-level to the navigation.

Reasons for tags
Tags provide alternate groupings for your content. In the documentation for this
theme, there are a number of equally plausible ways I could have grouped the
content. The folder names and items I chose for each item could have been
grouped in other ways with good reason.

Tags allow you to go beyond the traditional hierarchical classification and provide
other groupings. For example, the same item can belong to two different groups.
You can also introduce other dimensions not used in your table of contents, such
as platform-specific tags or audience-specific tags.

Tag archives overview PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 139

Tag archives overview
Summary: This is an overview to the tag archives section. Really
the only reason this section is listed explicitly in the TOC here is to
demonstrate how to add a third-level to the navigation.

Reasons for tags
Tags provide alternate groupings for your content. In the documentation for this
theme, there are a number of equally plausible ways I could have grouped the
content. The folder names and items I chose for each item could have been
grouped in other ways with good reason.

Tags allow you to go beyond the traditional hierarchical classification and provide
other groupings. For example, the same item can belong to two different groups.
You can also introduce other dimensions not used in your table of contents, such
as platform-specific tags or audience-specific tags.

Tag archives overview PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 140

Tag archives overview
Summary: This is an overview to the tag archives section. Really
the only reason this section is listed explicitly in the TOC here is to
demonstrate how to add a third-level to the navigation.

Reasons for tags
Tags provide alternate groupings for your content. In the documentation for this
theme, there are a number of equally plausible ways I could have grouped the
content. The folder names and items I chose for each item could have been
grouped in other ways with good reason.

Tags allow you to go beyond the traditional hierarchical classification and provide
other groupings. For example, the same item can belong to two different groups.
You can also introduce other dimensions not used in your table of contents, such
as platform-specific tags or audience-specific tags.

Tag archives overview PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 141

Tag archives overview
Summary: This is an overview to the tag archives section. Really
the only reason this section is listed explicitly in the TOC here is to
demonstrate how to add a third-level to the navigation.

Reasons for tags
Tags provide alternate groupings for your content. In the documentation for this
theme, there are a number of equally plausible ways I could have grouped the
content. The folder names and items I chose for each item could have been
grouped in other ways with good reason.

Tags allow you to go beyond the traditional hierarchical classification and provide
other groupings. For example, the same item can belong to two different groups.
You can also introduce other dimensions not used in your table of contents, such
as platform-specific tags or audience-specific tags.

Tag archives overview PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 142

Tag archives overview
Summary: This is an overview to the tag archives section. Really
the only reason this section is listed explicitly in the TOC here is to
demonstrate how to add a third-level to the navigation.

Reasons for tags
Tags provide alternate groupings for your content. In the documentation for this
theme, there are a number of equally plausible ways I could have grouped the
content. The folder names and items I chose for each item could have been
grouped in other ways with good reason.

Tags allow you to go beyond the traditional hierarchical classification and provide
other groupings. For example, the same item can belong to two different groups.
You can also introduce other dimensions not used in your table of contents, such
as platform-specific tags or audience-specific tags.

Tag archives overview PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 143

Tag archives overview
Summary: This is an overview to the tag archives section. Really
the only reason this section is listed explicitly in the TOC here is to
demonstrate how to add a third-level to the navigation.

Reasons for tags
Tags provide alternate groupings for your content. In the documentation for this
theme, there are a number of equally plausible ways I could have grouped the
content. The folder names and items I chose for each item could have been
grouped in other ways with good reason.

Tags allow you to go beyond the traditional hierarchical classification and provide
other groupings. For example, the same item can belong to two different groups.
You can also introduce other dimensions not used in your table of contents, such
as platform-specific tags or audience-specific tags.

Tag archives overview PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 144

Tag archives overview
Summary: This is an overview to the tag archives section. Really
the only reason this section is listed explicitly in the TOC here is to
demonstrate how to add a third-level to the navigation.

Reasons for tags
Tags provide alternate groupings for your content. In the documentation for this
theme, there are a number of equally plausible ways I could have grouped the
content. The folder names and items I chose for each item could have been
grouped in other ways with good reason.

Tags allow you to go beyond the traditional hierarchical classification and provide
other groupings. For example, the same item can belong to two different groups.
You can also introduce other dimensions not used in your table of contents, such
as platform-specific tags or audience-specific tags.

Tag archives overview PDF last generated: August 12, 2015

Jekyll Documentation Theme for Designers User Guide Page 145

	
	
	Table of Contents
	Introduction
	Overview
	Survey of features
	Getting started
	PDF Download

	Getting started with this theme
	Step 1: Set up the prerequisites
	Step 2: Build the theme
	Questions

	Configuration settings
	Importance of Configuration File
	Configuration file options
	Configuration settings for web outputs
	Where to store configuration files
	The conditional attributes
	Configuration settings for PDF output

	Theme customization
	About customizing the theme

	Supported features
	Pages
	Where to author content
	Page names and excluding files from outputs
	Frontmatter
	What about permalinks?
	Colons in page titles
	Saving pages as drafts
	Markdown or HTML format
	Where to save pages
	Github-flavored Markdown
	Automatic mini-TOCs
	Specify a particular page layout
	Comments
	Posts
	Custom keyboard shortcuts

	WebStorm Text editor
	About text editors and WebStorm
	Remove unnecessary plugins
	Add the Markdown Support plugin
	Learn a few key commands
	Identifying changed files
	Creating file templates
	Disable pair quotes

	Series pages
	Using series for pages
	1. Create the series button
	2. Create the "next" include
	3. Add the correct frontmatter to each of your series pages
	4. Add links to the series button and next button on each page.
	Changing the series drop-down color

	Collections
	What are collections
	Create a collection
	Interacting with collections
	How to use collections

	Sidebar navigation
	Sidebar overview
	Sidebar levels
	External links
	How it works

	Sidebar accordion
	Sidebar fixed or moving
	Navgoco foundation
	Highlighting the active item

	Top navigation
	Changing the top navigation
	The Feedback email
	Custom Menu
	Pop-out link

	Tags
	Add a tag to a page
	Tags overview
	Setting up tags
	Retrieving pages for a specific tag
	Efficiency
	Empty tags?
	Remembering the right tags

	Tooltips
	Creating tooltips

	Alerts
	About alerts
	Alerts
	Callouts
	Blast a warning to users
	Using Markdown inside of notes

	Icons
	Font icon options
	See Font Awesome icons available
	Creating your own combinations
	Glyphicon icons available
	Callouts

	Images
	SVG Images

	Labels
	About labels

	Links
	Link strategies
	Create an external link
	Linking to internal pages
	Managed links
	Relative link paths
	Limitations with links

	NavTabs
	Common uses
	Navtabs demo
	Profile
	Code
	Design constraints
	Appearance in the mini-TOC
	Must use HTML
	Match up ID tags
	Set an active tab
	Sets a cookie
	Functionality to implement

	Video embeds
	About Video JS

	Tables
	Multimarkdown Tables
	jQuery datables

	Syntax highlighting
	About syntax highlighting
	Available Pygments lexers

	Conditional logic
	About Liquid and conditional statements
	Where to store filtering values
	Required conditional attributes
	Conditional logic based on config file value
	Or operator
	Unless operator
	Storing conditions in the _data folder
	Specifying the location for _data
	Conditional logic based on page namespace
	Conditions versus includes

	Content reuse
	About content reuse
	Page-level variables

	Build arguments
	How to build Jekyll sites
	Shortcuts for the build arguments
	Stop a server

	Themes
	Theme options
	Theme differences

	Generating PDF
	PDF overview
	Demo
	1. Set up Prince
	2. Create a new configuration file for each of your PDF targets
	3. Make sure your sidebar_doc.yml file has a titlepage.html and tocpage.html
	4. Customize your headers and footers
	5. Customize the doc_multiserve_pdf.sh script
	6. Configure the Prince scripts
	7. Add a download button for the PDF
	8. Run the scripts
	JavaScript conflicts

	Excluding files
	About exclusion
	Exclude strategies
	Excluding draft content
	Limitations

	Help APIs and UI tooltips
	Full code demo of content API
	Diagram overview
	1. Create a "collection" for the help content (optional)
	2. Create pages in your collection
	3. Create a JSON file that loops through your collection pages
	4. Allow CORS access to your help if stored on a remote server
	5. Explain how developers can access the help
	6. Create easy links to embed the help in your help site
	Reuse Demo

	Search configuration
	About search
	Excluding pages form search
	Troubleshooting search
	Customizing search results

	iTerm profiles
	About iTerm profiles
	Set up profiles
	Launching a profile

	Pushing builds to server
	Pushing to AWS S3
	Pushing to a regular server

	Knowledge-base layout
	Generating a list of all pages with a certain tag

	Scroll layout
	apples
	bananas
	carrots
	dingbats
	eggs
	falafel
	giraffe
	hippo
	Fusce rhoncus elit sed quam laoreet placerat. Praesent lacinia metus quis felis mollis, ac facilisis risus consequat. Phasellus laoreet feugiat lacus. Etiam a neque est.
	jeep
	kilt
	lamp
	manifold
	octopus
	paranoia
	qui
	radical
	silly
	taffy
	umbrella
	vampire
	washington
	xylophone
	yahoo
	Nullam ac suscipit odio. Curabitur viverra arcu ut egestas sollicitudin. Fusce sodales varius lectus ut tristique. Etiam eget nunc ornare, aliquet tortor eget, consequat mauris. Integer sit amet fermentum augue.
	alpha
	Mauris a libero vel enim pharetra interdum non a quam. Sed tincidunt ut elit sed dignissim. Suspendisse vitae tellus dapibus, fermentum lacus ac, fermentum lacus. Nam ante odio, fringilla ac elementum a, mollis sed tellus.
	cappa
	dunno

	Shuffle layout
	FAQ layout
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?

	Glossary layout
	Horizontally styled definiton lists

	Tag archives overview
	Reasons for tags

	Tag archives overview
	Reasons for tags

	Tag archives overview
	Reasons for tags

	Tag archives overview
	Reasons for tags

	Tag archives overview
	Reasons for tags

	Tag archives overview
	Reasons for tags

	Tag archives overview
	Reasons for tags

