
Jekyll theme for
documentation — mydoc
product
version 5.0
Last generated: July 03, 2016

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

© 2016 Your company. This is a boilerplate copyright statement... All rights
reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or
other electronic or mechanical methods, without the prior written permission of
the publisher, except in the case of brief quotations embodied in critical reviews
and certain other noncommercial uses permitted by copyright law.

Table of Contents
Overview

Get started ... 3

5.0 Release notes... 11

Sample formatting.. 13

Introduction .. 30

Supported features .. 31

About the theme author ... 36

Support... 37

Installation
About Ruby, Gems, Bundler, etc. .. 38

Install Jekyll on Mac ... 45

Install Jekyll on Windows ... 49

Authoring
Pages ... 52

Posts .. 58

Conditional logic... 60

Content reuse... 65

Collections.. 68

Navigation
Sidebar navigation.. 70

YAML tutorial in the context of Jekyll... 73

Tags.. 84

Series.. 90

Formatting
Tooltips... 93

Alerts .. 94

Icons... 101

Images.. 109

Jekyll theme for documentation — mydoc product User Guide PDF last generated: July 03, 2016

youremail@domain.com i

Labels ... 112

Links ... 113

Navtabs .. 114

Tables... 117

Syntax highlighting ... 121

Handling reviews
Commenting on files .. 123

Publishing
Build arguments ... 126

Themes... 129

Check page title consistency ... 0

Generating PDFs .. 130

Help APIs and UI tooltips ... 142

Search configuration .. 154

iTerm profiles.. 158

Pushing builds to server... 160

Getting around the password prompts in SCP.. 161

Publishing on Github Pages... 165

Special layouts
Knowledge-base layout.. 168

Glossary layout... 171

FAQ layout.. 174

Troubleshooting
Troubleshooting ... 177

Jekyll theme for documentation — mydoc product User Guide PDF last generated: July 03, 2016

youremail@domain.com ii

http://127.0.0.1:4010/mydoc-pdf/mydoc_title_checker

Quick start guide
Summary: These brief instructions will help you get started quickly
with the theme. The other topics in this help provide additional
information and detail about working with other aspects of this theme
and Jekyll.

Build this theme
If you’re used to running Jekyll sites, you can type the normal jekyll command,
jekyll serve , to build the Jekyll theme. However, if you’re a new Jekyll user or

if you run into issues, see the following two topics:

• Install Jekyll on Mac (page 0)

• Install Jekyll on Windows (page 0)

Customize the Gemfile
Open the Gemfile (in any text editor) in the Jekyll doc theme project:

open Gemfile

The theme’s gemfile looks as follows:

A sample Gemfile
source "https://rubygems.org"

gem "rails"
gem 'github-pages'
gem 'jekyll'

If you’re publishing on Github Pages, leave the github-pages gem there. But if
not, remove github-pages because Github sometimes has dependencies that
conflict with the latest versions of the Jekyll gem and Kramdown, which can be
frustrating.

Quick start guide PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 3

http://127.0.0.1:4010/mydoc_install_jekyll_on_mac.html
http://127.0.0.1:4010/mydoc_install_jekyll_on_windows.html

Use Bundler to install all the needed Ruby gems:

bundle install

Now run Jekyll serve to build the theme:

jekyll serve

Configure the sidebar
There are several products in this theme. Each product uses a different sidebar.
This is the essence of what makes this theme unique – different sidebars for
different product documentation. The idea is that when users are reading
documentation for a specific product, the sidebar navigation should be specific to
that product. (You can read more of my thoughts on why multiple sidebars are
important in this blog post
(http://idratherbewriting.com/2016/03/23/release-of-documentation-theme-for-jekyll-50/).)

The top navigation remains the same, because it allows users to navigate across
products. But the sidebar navigation adapts to the product.

Because each product uses a different sidebar, you’ll need to set up your
sidebars. There’s a file inside _includes/custom called “sidebarconfigs.html”. This
file controls which sidebar gets associated with which product. Open up this file to
see its contents.

The sidebarconfigs.html file uses simple if elsif logic to set a variable that the
sidebar.html file uses to read the sidebar data file. The code in
sidebarconfigs.html looks like this:

Quick start guide PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 4

http://idratherbewriting.com/2016/03/23/release-of-documentation-theme-for-jekyll-50/
http://idratherbewriting.com/2016/03/23/release-of-documentation-theme-for-jekyll-50/
http://idratherbewriting.com/2016/03/23/release-of-documentation-theme-for-jekyll-50/

{% ifif page.sidebar ==== "home_sidebar" %}
{% assign sidebar == site.data.sidebars.home_sidebar.entries %}

{% elsifelsif page.sidebar ==== "product1_sidebar" %}
{% assign sidebar == site.data.sidebars.product1_sidebar.entrie
s %}

{% elsifelsif page.sidebar ==== "product2_sidebar" %}
{% assign sidebar == site.data.sidebars.product2_sidebar.entrie
s %}

{% elsifelsif page.sidebar ==== "mydoc_sidebar" %}
{% assign sidebar == site.data.sidebars.mydoc_sidebar.entries %}

{% elsifelsif page.sidebar ==== "tags_sidebar" %}
{% assign sidebar == site.data.sidebars.tags_sidebar.entries %}

{% elseelse %}
{% assign sidebar == site.data.sidebars.home_sidebar.entries %}
{% endifendif %}

In each page’s frontmatter, you must specify the sidebar you want that page to
use. Here’s an example of the page frontmatter showing the sidebar property:

title: Alerts
tags: [formatting]
keywords: notes, tips, cautions, warnings, admonitions
last_updated: July 3, 2016
summary: "You can insert notes, tips, warnings, and important a
lerts in your content. These notes are stored as shortcodes mad
e available through the linksrefs.hmtl include."
sidebar: mydoc_sidebar
permalink: mydoc_alerts/

The sidebar: mydoc_sidebar refers to the _data/sidebars/mydoc_sidebar.yml
file (meaning, the mydoc_sidebar.yml file inside the \data folder and sidebars
subfolder).

If no sidebar assignment is found in the page frontmatter, the default sidebar
(specified by the else statement) will be shown:
site.data.sidebars.home_sidebar.entries .

Quick start guide PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 5

Note that your sidebar can only have 2 levels. Given that each product has its own
sidebar, this depth should be sufficient (it’s really like 3 levels). Deeper nesting
goes against usability recommendations.

Additionally, each level must have at least one topic before the next level starts.

For more detail on the sidebar, see Sidebar navigation (page 0).

Sidebar syntax
The sidebar data file uses a specific YAML syntax that you must follow. Follow the
sample pattern shown in the theme. For example:

entries:
- title: sidebar

product: Jekyll Doc Theme
version: 5.0
folders:

- title: Overview
output: web, pdf
folderitems:

- title: Get started
url: /home
output: web, pdf

- title: 5.0 Release notes
url: /mydoc_release_notes_50
output: web, pdf

- title: Sample formatting
url: /mydoc_sample_formatting
output: web, pdf

Each folder or subfolder must contain a title and output property. Each
folderitem or subfolderitem must contain a title , url , and output

property.

The two outputs available are web and pdf . (Even if you aren’t publishing PDF,
you still need to specify output: web).

The YAML syntax depends on exact spacing, so make sure you follow the pattern
shown in the sample sidebars. See my YAML tutorial (page 73) for more details
about how YAML works.

Quick start guide PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 6

http://127.0.0.1:4010/mydoc_sidebar_navigation.html

To accommodate the title page and table of contents in PDF outputs, each
product sidebar must list these pages before any other:

- title:
output: pdf
type: frontmatter
folderitems:
- title:

url: /titlepage
output: pdf
type: frontmatter

- title:
url: /tocpage
output: pdf
type: frontmatter

Leave the output as output: pdf for these frontmatter pages so that they don’t
appear in the web output.

For more detail on the sidebar, see Sidebar navigation (page 0) and YAML tutorial
(page 0).

Page frontmatter
When you write pages, include these same frontmatter keys with each page:

title: "Some title"
tags: [sample1, sample2]
keywords: keyword1, keyword2, keyword3
last_updated: Month day, year
summary: "optional summary here"
sidebar: sidebar name
permalink: yoururl/

(You will customize the values for each of these keys, of course.)

For titles, surrounding the title in quotes is optional, but if you have a colon in the
title, you must surround the title with quotation marks. If you have a quotation
mark within the title, escape it first with a backlash \ .

Values for keywords get populated into the metadata of the page for SEO.

Quick start guide PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 7

http://127.0.0.1:4010/mydoc_sidebar_navigation.html
http://127.0.0.1:4010/mydoc_yaml_tutorial.html
http://127.0.0.1:4010/mydoc_yaml_tutorial.html

Values for tags must be defined in your _data/tags.yml list. You also need a
corresponding tag file inside the tags folder that follows the same pattern as the
other tag files shown in the tags folder. (Jekyll wont auto-create these tag files.)

If you don’t want the mini-TOC to show on a page (such as for the homepage or
landing pages), add toc: false in the frontmatter.

For more detail, see Pages (page 0).

Where to store your documentation topics
Store your files for each product inside subfolders following the pattern shown in
the theme. For example, product1, product2, etc. You can store your topics inside
sub-subfolders or sub-sub-folders to your heart’s content. When Jekyll builds
your site, it will pull the topics into the root directory and use the permalink for the
URL.

Note that product1, product2, and mydoc are all just sample content to
demonstrate how to add multiple products into the theme. You can freely delete
that content.

For more information, see Pages (page 0) and Posts (page 0).

Configure the top navigation
The top navigation bar’s menu items are set through the _data/topnav.yml file.
Use the top navigation bar to provide links for navigating from one product to
another, or to navigate to external resources.

For external URLs, use external_url in the item property, as shown in the
example topnav.yml file. For internal links, use url as usual.

Note that the topnav has two sections: topnav and topnav_dropdowns . The
topnav section contains single links, while the topnav_dropdowns section
contains dropdown menus. The two sections are independent of each other.

Generating PDF
If you want to generate PDF, you’ll need a license for Prince XML
(http://www.princexml.com/). You will also need to install Prince
(http://www.princexml.com/doc/installing/). You can generate PDFs by product (but
not for every product on the site combined together into one massive PDF). Prince
will work even without a license, but it will imprint a small Prince image on the first
page, and you’re supposed to buy the license to use it.

Quick start guide PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 8

http://127.0.0.1:4010/mydoc_pages.html
http://127.0.0.1:4010/mydoc_pages.html
http://127.0.0.1:4010/mydoc_posts.html
http://www.princexml.com/
http://www.princexml.com/
http://www.princexml.com/
http://www.princexml.com/doc/installing/
http://www.princexml.com/doc/installing/
http://www.princexml.com/doc/installing/

Open up the css/printstyles.css file and customize the email address
(youremail@domain.com) that is listed there. This email address appears in the
bottom left footer of the PDF output. You’ll also need to create a PDF
configuration file following the examples shown in the pdfconfigs folder, and also
customize some build scripts following the same pattern shown in the root: pdf-
product1.sh

See the section on Generating PDFs (page 0) for more details about setting the
theme up for this output.

Blogs / News
For blog posts, create your markdown files in the _posts folder following the
sample formats. Post file names always begin with the date (YYYY-MM-DD-title).

The news/news.html file displays the posts, and the news_archive.html file shows
a yearly history of posts. In documentation, you might use the news to highlight
product features outside of your documentation, or to provide release notes and
other updates.

See Posts (page 0) for more information.

Markdown
This theme uses Kramdown markdown. Kramdown is similar to Github-flavored
Markdown, except that when you have text that intercepts list items, the spacing
of the intercepting text must align with the spacing of the first character after the
space of a numbered list item. Basically, with your list item numbering, use two
spaces after the dot in the number, like this:

1. First item
2. Second item
3. Third item

When you want to insert paragraphs, notes, code snippets, or other matter in
between the list items, use four spaces to indent. The four spaces will line up with
the first letter of the list item (the First or Second or Third).

Quick start guide PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 9

http://127.0.0.1:4010/mydoc_generating_pdfs.html
http://127.0.0.1:4010/mydoc_posts.html

1. First item

```
alert("hello");
```

2. Second item

Some pig!

3. Third item

See the topics under “Formatting” in the sidebar for more information.

Managing links
If you want to use a simple system for managing links, see the “Managed Links”
section in Links (page 0).

Other instructions
For other details in working with the theme, see the various sections in the
sidebar.

Quick start guide PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 10

http://127.0.0.1:4010/mydoc_hyperlinks.html#managed-links.html

Release notes 5.0
Summary: Version 5.0 of the Documentation theme for Jekyll
changes some fundamental ways the theme works to provide
product-specific sidebars, intended to accommodate a site where
multiple products are grouped together on the same site rather than
generated out as separate outputs.

Unique sidebars for each product
In previous versions of the theme, I built the theme to generate different outputs
for different scenarios based on various filtering attributes that might include
product, version, platform, and audience variants.

However, this model results in siloed outputs and lots of separate file directories
to manage. Instead of having 30 separate sites for your content (or however many
variants you might have been producing), in this version of the theme I’ve moved
towards a strategy of having one site with multiple products.

For each product, you can associate a unique sidebar with each of the product’s
pages. This allows you to have all your documentation on one site, but with
separate navigation that is tailored to a view of that product.

You can still output to both web and PDF. And if you really need multiple site
outputs, you can still do so by using multiple configuration files that trigger
different builds. But my conclusion after using the multiple site output model for
some years is that it’s a bad practice for tech comm.

Permalinks
With this theme, since you’ll be publishing to one site, I’ve implement permalinks
instead of relative links. Using permalinks means the way you store pages is much
more flexible. You can store topics in folders and subfolders, etc., to any degree.
But note that with permalinks you can’t view the content offline (outside of Jekyll’s
preview server) nor on a separate site other than the one specified in the
configuration file. Permalinks are how Jekyll was designed to work, and the sites
just work better that way.

Release notes 5.0 PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 11

Kramdown and Rouge
I also switched from redcarpet and Pygments to Kramdown and Rouge to align
with the current direction of Jekyll 3.0. Kramdown is a Markdown filter (it’s slightly
different from Github-flavored Markdown). Rouge is a syntax highlighter.
Pygments had some dependencies on Python, which made it more cumbersome
for Windows users.

Blog feature
I included a blog feature with this version of the theme. You can write posts and
view them through the News link. There’s also an archive for blog posts that sorts
posts by year.

Additionally, the tagging system works across both the blog and pages, so your
tags allow users to move laterally across the site based on topics they’re
interested in. When you view a tag archive, the sidebar shows a list of tags.

Updated documentation
I updated the documentation for the theme. The switch from the multi-site outputs
to the single-site with multiple sidebars required updating a lot of different parts of
the documentation and code.

Fixed errors
Previously I had some errors with the HTML that showed up in w3c HTML
validator analyses. This caused some small problems in certain browsers or
systems less tolerant of the errors. I fixed all of the errors.

Accessing the old theme
If you want to access the old theme, you can still find it here
(https://github.com/tomjohnson1492/jekylldoctheme-separate-outputs).

Release notes 5.0 PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 12

https://github.com/tomjohnson1492/jekylldoctheme-separate-outputs
https://github.com/tomjohnson1492/jekylldoctheme-separate-outputs
https://github.com/tomjohnson1492/jekylldoctheme-separate-outputs

Sample formatting
Summary: This page shows sample formatting.

 Tip: Keep this topic in your project, as it demonstrates how to format
everything with kramdown-flavored Markdown.

Jekyll Overview
To get started with Jekyll, you will use a theme called GenericDocs
(https://code.amazon.com/packages/GenericDocs/trees/mainline) (which you are
currently viewing). The GenericDocs theme has everything set up for you to author
and publish content. It’s assumed that you will download this project and
customize it with your own content.

The GenericDocs project has two outputs defined: one that looks like the new
Developer Portal, and one that is designed to be copied and pasted into Hippo
pages.

Make Updates to Previous Theme Versions
If you previously downloaded GenericDocs and already customized it, see the
[Changelog][changelog] file to know what updates have been released and how to
incorporate the updates.

Atom Editor
If you haven’t downloaded Atom (https://atom.io/), download and install it. Use this
as your editor when working with Jekyll. The syntax highlighting is probably the
best among the available editors, as it was designed with Jekyll-authoring in mind.
However, if you prefer Sublime Text, WebStorm, or some other editor, you can
also use that.

Customize the invisibles and tab spacing in Atom:

1. Go to Atom > Preferences.

2. On the Settings tab, keep the default options but also select the
following:

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 13

https://code.amazon.com/packages/GenericDocs/trees/mainline
https://code.amazon.com/packages/GenericDocs/trees/mainline
https://code.amazon.com/packages/GenericDocs/trees/mainline
https://atom.io/
https://atom.io/

• Show Invisibles

• Soft Wrap

• For the Tab Length, type 4.

• For the Tab Type, select soft.

Turn off auto-complete:

1. Go to Atom > Preferences.

2. Click the Packages tab.

3. Search for autocomplete-plus.

4. Disable the autocomplete package.

Atom Shortcuts

• Cmd + T: Find file

• Cmd + Shift + F: Find across project

• Cmd + Alt + S: Save all

(For Windows, replace “Cmd” with “Ctrl”.)

Git Clients
If you haven’t installed Git, do so. For Windows users, consider using Git Bash
(https://git-for-windows.github.io/) as your Git client, as this will allow you to run
shell scripts.

For Mac users, iTerm (https://www.iterm2.com/) is the recommended terminal
emulator.

Clone the GenericDocs Project
See Using Git for Docs
(https://w.amazon.com/index.php/DeveloperCommunications/Using_Git_for_Docs) for
more detail about working with Git. Basically, clone the GenericDocs project:

git clone ssh://git.amazon.com/pkg/GenericDocs

After cloning the project, rename the folder to your own project’s name. Then
remove the Config and .git folder (hidden).

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 14

https://git-for-windows.github.io/
https://git-for-windows.github.io/
https://git-for-windows.github.io/
https://www.iterm2.com/
https://www.iterm2.com/
https://w.amazon.com/index.php/DeveloperCommunications/Using_Git_for_Docs
https://w.amazon.com/index.php/DeveloperCommunications/Using_Git_for_Docs
https://w.amazon.com/index.php/DeveloperCommunications/Using_Git_for_Docs

 Note: You don’t have to use Git when working with Jekyll. Managing your
content through version control is optional. If you’re interested in using the
Amazon internal Git repository, see Using Git for Docs
(https://w.amazon.com/index.php/DeveloperCommunications/Using_Git_for_Docs).

Install Jekyll
Jekyll must be able to run on your computer. Jekyll is based on Ruby, so your
computer needs Ruby to build and run Jekyll. To install Jekyll, see the following
help topics:

• Install Jekyll on a Mac
(http://idratherbewriting.com/documentation-theme-jekyll/

mydoc_install_jekyll_on_mac/)

• Install Jekyll on Windows
(http://idratherbewriting.com/documentation-theme-jekyll/

mydoc_install_jekyll_on_windows/)

Run the Build Commands
Use Git Bash to run these commands, as Git Bash allows you to run shell scripts.

To build the Jekyll output, run this on your command line:

. jekyll.sh

This is just a shortcut. You could also just enter this manually:

jekyll serve --config configjekyll.yml

To build the Hippo output, run this on your command line:

. hippo.sh

You could also just enter this manually:

jekyll serve --config confighippo.yml

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 15

https://w.amazon.com/index.php/DeveloperCommunications/Using_Git_for_Docs
https://w.amazon.com/index.php/DeveloperCommunications/Using_Git_for_Docs
https://w.amazon.com/index.php/DeveloperCommunications/Using_Git_for_Docs
http://idratherbewriting.com/documentation-theme-jekyll/mydoc_install_jekyll_on_mac/
http://idratherbewriting.com/documentation-theme-jekyll/mydoc_install_jekyll_on_mac/
http://idratherbewriting.com/documentation-theme-jekyll/mydoc_install_jekyll_on_mac/
http://idratherbewriting.com/documentation-theme-jekyll/mydoc_install_jekyll_on_windows/
http://idratherbewriting.com/documentation-theme-jekyll/mydoc_install_jekyll_on_windows/
http://idratherbewriting.com/documentation-theme-jekyll/mydoc_install_jekyll_on_windows/

The sites will build in the _site folder in your project. (Each build will overwrite the
contents of _site with the build you specified. If you want the builds to output into
separate folders, use the --destination flag in the build command and specify
the directory.)

In both cases, when you build the site you receive a preview URL to view the site,
similar to this:

http://127.0.0.1:4000/

Here’s what it looks like:

Sample Jekyll output

You can also just browse the Jekyll site by clicking the index.html file from your
Finder or Explorer. (Note that this theme gives you an estimate of what it will look
like in the Developer Portal. The search and login features won’t work locally.)

With the Hippo build, although the terminal gives you a preview URL, ignore it.
Instead, just browse to the build folder (_site) and look at the HTML files. To get
the content into Hippo, you have to copy and paste the contents of each HTML
file into the Hippo interface file by file.

Jekyll rebuilds the project each time you save a change. To stop the build
process, press Ctrl+C.

Edit the Table of Contents
The table of contents is managed through data in a YAML file inside the _data >
sidebars folder.

Sidebars must follow a unique format as follows:

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 16

entries:
- title: sidebar

folders:

- title: My Folder Title
folderitems:

- title: Sample Topic
jurl: /sample.html
hurl: https://developer.amazon.com/public/solutions/devic

es/fire-tv/docs/sample
ref: sample-topic

- title: Sample2 Topic
jurl: /sample2.html
hurl: https://developer.amazon.com/public/solutions/devic

es/fire-tv/docs/sample2
ref: sample-topic-2

Don’t change any of the level names, such as entries , folders , and
folderitems . The theme’s template files use a for loop to iterate through this

structure based on these level terms.

Each entry in your TOC (the entries are your pages that appear under
folderitems) must have these properties:

• title : The page title.

• hurl : The Hippo URL. Use an absolute link.

• jurl : The Jekyll URL. Use a relative link that begins with a / and
contains the file extension (.html) at the end. Use .html even if your
file is Markdown.

• ref : The shortname used to create the markdown link references. More
detail is explained in the Automated Links (page 0) section.

Why not just have one link? Here’s the reason:

• Links in Hippo must be absolute, not relative.

• Links in a standalone Jekyll site that is viewed locally on your computer
and on other locations like Corp Drive must be relative.

Ideally, we would just have relative links all around. But Hippo’s absolute URL
requires us to specify another property. Hence the need for two URLs. The ref
property is like a variable used to refer to either the hurl or jurl property,
depending on which build you use (confighippo.yml or configjekyll.yml).

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 17

Add Navigation Between Doc Sets
You might want several different sidebars for your documentation. As a best
practice, sidebars that are too massive aren’t helpful. Having a sidebar
appropriate to the user’s specific tasks is ideal. To facilitate movement from one
doc set to another, it’s helpful to include some links at the bottom of the sidebar
that point to other categories. You can see an example with the Fire TV docs
(https://developer.amazon.com/public/solutions/devices/fire-tv) or with the GenericDocs
output.

If you want to add a section to your sidebar that has a vertical bar above it, add
these pages under a entrypages element. The entrypages element
(highlighted in red below) must be at the same level as folderitems :

folders:
- title: My Folder Title

folderitems:
... (items omitted)

entrypages:
- title: Other Page

jurl: /other.html
hurl: https://developer.amazon.com/public/solutions/devic

es/fire-tv/docs/other
ref: other

- title: Other2 Pages
jurl: /other2.html
hurl: https://developer.amazon.com/public/solutions/devic

es/fire-tv/docs/other2
ref: other2

In the hippo sidebar, the bar will look like this:

It looks similar in the Jekyll build as well. To change the default text of “Other
Sections” to something else, edit the text manually in the _includes >
amazonsidebar.html file. ## Configure the Sidebar Files The GenericDocs project
is intended to be customized. As part of the customization, you'll rename the
sidebar files. ### Rename the Sidebars in _data Folder Rename the sidebar files
inside the _data folder to be specific to your project: 1. In _data/sidebars,
rename **genericsidebar.yml** to something like

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 18

https://developer.amazon.com/public/solutions/devices/fire-tv
https://developer.amazon.com/public/solutions/devices/fire-tv
https://developer.amazon.com/public/solutions/devices/fire-tv

myawesomeprojectsidebar.yml. 2. Inside **myawesomeprojectsidebar.yml**,
change the `sidebarTitle` value to the title you want. This title appears at the top of
the sidebar in the Hippo theme. 3. Leave the other structure and content in that
sidebar as is for now. Look at the pattern to see how you add entries to your
sidebar table of contents. ### Update the Sidebarconfigs.html file 1. Inside
_includes folder, open **sidebarconfigs.html**. 2. Customize the sidebar names in
this file to match your sidebar names. Here's what the sidebarconfigs.html file's
contents look like: ```javascript {% if page.sidebar == "genericsidebar" %} {%
assign sidebar = site.data.sidebars.genericsidebar.entries %} {% endif %} {% if
page.sidebar == "othersidebar" %} {% assign sidebar =
site.data.sidebars.othersidebar.entries %} {% endif %} ``` This file is used to match
up the sidebar specified in the page's frontmatter with the actual sidebar code. It
roughly says this: If the `sidebar` property in the page's frontmatter says to use the
`genericsidebar`, assign the `sidebar` variable to point to the code in the _data /
sidebars / genericsidebar.yml file. If the `sidebar` property in the page's
frontmatter says to use the `othersidebar`, assign the `sidebar` variable to point to
the code in the _data / sidebars / othersidebar.yml. In general, when you have
more than 20 or so links in your sidebar, it's wise to break that sidebar up into
multiple sidebars. This way users aren't overwhelmed by too many options, and
the sidebar will still be meaningful. You can allow users to switch sidebar links by
referencing some files at the bottom that take users to the other sidebars (this is
explained in [Adding Navigation Between Doc Sets](#addingnavdocsets)). ###
Rename the Sidebar Files in hippo_menus 1. In the **hippo_menus** folder,
rename the files with the same sidebar names you chose earlier. 2. Open each
menu in hippo_menus and change each instance of the sidebarname (for
example, `genericsidebar`) to your new sidebar name. There should be 4 instances
to change. To change the name of “Other Sections” in the Jekyll theme, open the
_includes/amazonsidebar.html file and update the text for “Other Sections.” ###
Upload Your Sidebars into Media Central {#uploadsidebarsmediacentral} After you
have finished populating your sidebars with entries, you will need to upload the
sidebar files into Media Central to make them available within Hippo. This isn't
required for the Jekyll output — just for the Hippo output. (You'll do this later,
when you're ready to publish your output.) 1. Build the **hippo.yml** target. 2.
Browse into your **_site** folder (which contains the built site). 3. Go into the
hippo_menus folder. (Make sure you are inside _site and not just the root
directory.) 4. Upload your sidebar menus into Media Central
[here](https://mediacentral.amazon.com/apps/basic/media-viewer/
index.mhtml#command=getdirectory&path=mobile-apps/devportal/menus&ou=1).

 Note: HTML files get cached here and expire on an hourly basis. If you’re
experimenting with your files and need to see faster updates, open a single
HTML page that references the menu and change the TTH to something like
V2349340 where the numbers after V are simply random.

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 19

Pages and Frontmatter Each Jekyll file (using an .md extension) has frontmatter
at the top set off with three hyphens at the top and bottom. The frontmatter for
each page should look like this: ``` yaml --- title: My File Name sidebar:
genericsidebar --- ``` Replace `genericsidebar` with the name of your sidebar data
file that you want associated with the page. If you have a colon in your title, put
the title's value in parentheses, like this: ```yaml --- title: "Alexa: Voice-enabled
interface" sidebar: genericsidebar --- ``` The format for any content in the
frontmatter must be in YAML syntax. You can't use Liquid or other `{{ }}` syntax
here. (In other words, no variables in YAML.) Store all pages in your root directory.
You cannot put files inside of subfolders (due to the need to make links relative).
File Organization All files must be stored in the root directory of your project.
You can't group them into folders and subfolders. (Storing everything in root
simplifies paths to JS, CSS, and other assets -- it allows the Jekyll site to be
viewed anywhere.) ## Markdown Formatting Jekyll uses [kramdown-flavored
Markdown](http://kramdown.gettalong.org/). You can read up more on kramdown
and implement any of the techniques available. ## Alerts Use the alerts include
templates, like this: ```liquid {% include note.html content="This is a note." %} ```
Result:

 Note: This is a note.

----- ```liquid {% include tip.html content="This is a tip." %} ``` **Result:**

 Tip: This is a tip.

----- ```liquid {% include warning.html content="This is a warning." %} ``` **Result:**

 Warning: This is a warning.

----- Alerts have just one include property: `content`. If you need to use quotation
inside the `content` quotation marks, use single quotes for `content` and double
quotes inside the single quotes, like this: ```liquid {% include warning.html
content='This is a "serious" warning.' %} ``` **Result:**

 Warning: This is a “serious” warning.

Use Liquid Variables Inside Parameters with Includes {#variable-includes}
Suppose you have a product name or some other property that you're storing as a
variable in your configuration file (confighippo.yml and configjekyll.yml), and you
want to use this variable in the `content` parameter for your alert or callout. You
will get an error if you use Liquid syntax inside a include parameter. For example,
this syntax will produce an error: ```liquid {% include note.html content="The

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 20

{{site.company}} is pleased to announce an upcoming release." %} ``` The error
will say something like this: ``` Liquid Exception: Invalid syntax for include tag. File
contains invalid characters or sequences:... Valid syntax: {% include file.ext
param='value' param2='value' %} ``` To use variables in your include parameters,
you must use the "variable parameter" approach. First you use a `capture` tag to
capture some content. Then you reference this captured tag in your include.
Here's an example. In my site configuration file, I have a property called
`myvariable`. ```yaml myvariable: ACME ``` I want to use this variable in my note
include. First, before the note I capture the content for my note's include like this:
```liquid {% capture company_note %}The {{site.myvariable}} company is pleased
to announce an upcoming release.{% endcapture %} ``` Now reference the
`company_note` in your `include` parameter like this: ```liquid {% include note.html
content=company_note %} ``` Here's the result:

 Note: The company is pleased to announce an upcoming release.

Note the omission of quotation marks with variable parameters. Also note that
instead of storing the variable in your site's configuration file, you could also put
the variable in your page's frontmatter. Then instead of using `{{site.myvariable}}`
you would use `{{page.myvariable}}`. ## Using Markdown Inside of Alerts You can
use Markdown inside of alerts, even though this content actually gets inserted
inside of HTML in the include. This is one of the advantages of kramdown
Markdown. The include template has an attribute of `markdown="span"` that
allows for the processor to parse Markdown inside of HTML. If you're creating
your own includes, note this property. ## Headings Use pound signs before the
heading title to designate the level. Note that headings must have one space
before and after the heading. ``` ## Second-level heading ``` ## Second-level
heading ----- ``` ### Third-level heading ``` ### Third-level heading ------ ``` ####
Fourth-level heading ``` #### Fourth-level heading ## Headings with ID Tags
{#someIdTag} If you want to use a specific ID tag with your heading, add it like
this: ``` ## Headings with ID Tags {#someIdTag} ``` Then you can reference it with a
link like this on the same page: ``` [Some link](#someIdTag) ``` **Result:** [Some
link](#someIdTag) Or if you're linking to it from another page, add this property
into the other.yml file in your \_data/sidebars folder: ```yaml - title: Some link
bookmark hurl: http://somehippourl.com/#someIdTag jurl:
/sample.html#someIdTag ref: [someIdTag] ``` And reference it like this: ``` This is
[Some link][someIdTag] ``` **Result:** This is [Some link][someIdTagz]. ## Bulleted
Lists This is a bulleted list: ``` * first item * second item * third item ``` **Result:** *
first item * second item * third item ## Numbered list This is a simple numbered
list: ``` 1. First item. 1. Second item. 1. Third item. ``` **Result:** 1. First item. 1.
Second item. 1. Third item. You can use whatever numbers you want — when the
Markdown filter processes the content, it will assign the correct numbers to the
list items. ## Complex Lists Here's a more complex list: ``` 1. Sample first item. *
sub-bullet one * sub-bullet two 2. Continuing the list 1. sub-list numbered one 2.

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 21



sub-list numbered two 3. Another list item. ``` **Result:** 1. Sample first item. *
sub-bullet one * sub-bullet two 2. Continuing the list 1. sub-list numbered one 2.
sub-list numbered two 3. Another list item. ## Another Complex List Here's a list
with some intercepting text: ``` 1. Sample first item. This is a result statement that
talks about something.... 2. Continuing the list

 Note: Remember to do this. If you have “quotes”, you must escape them.

Here's a list in here: * first item * second item 3. Another list item. ```js function
alert("hello"); ``` 4. Another item. ``` **Result:** 1. Sample first item. This is a result
statement that talks about something.... 2. Continuing the list

 Note: Remember to do this. If you have “quotes”, you must escape them.

Here's a list in here: * first item * second item 3. Another list item. ```js function
alert("hello"); ``` 4. Another item. ### Key Principle to Remember with Lists The key
principle is to line up the first character after the dot following the number:

Lining up the left edge ensures the list stays in tact.

For the sake of simplicity, use two spaces after the dot for numbers 1 through 9.
Use one space for numbers 10 and up. If any part of your list doesn't align
symmetrically on this left edge, the list will not render correctly. Also note that this
is characteristic of kramdown-flavored Markdown and may not yield the same
results in other Markdown flavors. ## Sidebar Table of Contents The theme
generates the sidebar table of contents from the YAML files in the \_data/sidebars
folder. Look carefully at the YAML syntax in these files, as you must match the
syntax with the same spacing and indentations. The genericsidebar.yml and
othersidebar.yml are intended to be replaced with the real names of your sidebars.
Each entry in the sidebar files includes three properties — `jurl`, `hurl`, and `ref`.
These stand for Jekyll URL, Hippo URL, and how you want to refer to the URL
using reference-Markdown style linking. Here's an example: ```yaml - title: Sample
Topic jurl: /sample.html hurl: https://somelonghippourl.com/somefolder/
sample.html ``` Why are there two links? This handles the relative versus absolute
link requirements on the two platforms (a local computer or Corp Drive, and
Hippo). When editing the sidebar, in order to get the spacing exactly right, it's
probably easiest to copy and paste entries when you need new ones. ##
Automated Links {#automatedlinks} Automated links is the recommended way of
handling links. For each item in your table of contents, include a `ref` property like
this: ```yaml - title: Sample Topic jurl: /sample.html hurl:
https://developer.amazon.com/public/solutions/devices/fire-tv/docs/sample ref:
sample ``` Then open confighippo.yml and configjekyll.yml and make sure each of

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 22



your sidebars is listed in the `sidebars` properties, like this: ```yaml sidebars: -
genericsidebar - othersidebar - other ``` The links.html file (in the \_includes folder)
will automatically create the markdown reference style links for each item in your
sidebar. Just add an include for links.html at the bottom of each of your pages:
```liquid {% include links.html %} ``` Now you can create markdown-reference style
links, using the `ref` property in your sidebar table of contents for the markdown
referent value: ``` [My Quick Start page][quickstart] ``` The value for `ref` is what gets
used as the Markdown referent. (There's no way to automate the link title, so if
you update a page title, do a find and replace to update any instances of the title
in these links.) For links that don't appear in your table of contents, such as
bookmarks links or links to pages not otherwise listed in your TOC, add them in
the other.yml file in the _data/sidebars folder. Here's an example link to a
bookmark: ``` - title: Partner bookmark hurl: https://developer.amazon.com/public/
solutions/devices/fire-tv/docs/catalog/catalog-data-format-schema-
reference#Partner jurl: /catalog-data-format-schema-reference.html#Partner ref:
catalog-data-format-schema-reference-bookmark-partner ``` On the page, you
might reference the link like this: ``` See the [Partner section][catalog-data-format-
schema-reference-bookmark-partner]. ``` For links to external web resources, just
use regular Markdown style linking: ``` See the [Android
documentation](https://developer.android.com/index.html) ``` Or or Markdown-
reference style linking: ``` See the [Android documentation][androiddocs] ... lots of
content... [androiddocs][https://developer.android.com/index.html] ``` If the link
points to a resource that should be the same for both Jekyll and Hippo outputs (a
rare case), and you want to store this resource in the sidebar file rather than
manually using traditional Markdown syntax, make the `jurl` and `hurl` values the
same.

 Tip: If the link formatting doesn’t render correctly in your output,
something is wrong with the link. Check to make sure you included the
links.html file at the bottom of the file, and that your referent is correct. If you
updated something in your confighippo.yml or configjekyll.yml file, you must
restart Jekyll in order to see the result.

Linking to Your Homepage For the home page TOC entry, the entry in in your
sidebar data file should be `/index.html` and an additional property should be
included: `type: homepage`, like this: ``` - title: Quick Start Guide jurl: /index.html
hurl: https://developer.amazon.com/public/solutions/devices/fire-tv/docs/ type:
homepage ref: [quickstart] ``` (The amazonsidebar.html file needs the `type:
homepage` property to process the file differently because the `page.url` property
for the index.md file renders as `/` instead of as `/index.html`. Additionally, the `jurl`
must specify the link as `index.html` to accommodate Corp Drive, which doesn't
auto-resolve to index.html on its own, and to facilitate the sidebar menu
highlighting.) ## Manual Links If you prefer to handle links manually, you can
populate the links.html file in your _includes folder manually. In links.html, first

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 23

remove (or comment out) the existing content. Then create one section for Jekyll
URLs and another for Hippo URLs, like this: ``` {% if site.target == "jekyll" %}
[Quick Start]: [quickstart.html] [other123]: [other.html] {% endif %} {% if site.target
== "hippo" %} [sample]: [http://somelonghippourl.com/somesubpath/sample.html]
[other123]: [http://somelonghippourl.com/somesubpath/other.html] {% endif %} ```
(Ideally, you would not need the special Hippo section. But Hippo pages require
all the URLs to be absolute URLs. However, if you're viewing content locally, you
need the URLs to be relative, not absolute. Hence the need for two URLs. These
`if` tags are probably the easiest way to set up this distinction.) Similar to before, at
the bottom of each page, include the links.html file: ```liquid {% include links.html
%} ``` ## Code Samples Use fenced code blocks with the language specified, like
this: ```js console.log('hello'); ```` **Result:** ```js console.log('hello'); ``` For the list of
supported languages you can use (similar to `js` for JavaScript), see [Supported
languages](https://github.com/jneen/rouge/wiki/list-of-supported-languages-and-
lexers). ## Markdown Tables Use standard Markdown syntax for tables: ``` |
Priority apples | Second priority | Third priority | |-------|--------|---------| | ambrosia |
gala | red delicious | | pink lady | jazz | macintosh | | honeycrisp | granny smith | fuji
| ``` **Result:** | Priority apples | Second priority | Third priority | |-------|--------|------
---| | ambrosia | gala | red delicious | | pink lady | jazz | macintosh | | honeycrisp |
granny smith | fuji | You can't use block level tags (paragraphs or lists) inside
Markdown tables, so if you need separate paragraphs inside a cell, use `

`. ## HTML Tables {#htmltables} If you need a more sophisticated table syntax,
use HTML syntax for the table. Although you're using HTML, you can use
Markdown inside the table cells by adding `markdown="1"` as an attribute for the
`td`, as shown in the following table. You can also control the column widths.
```html

To create… Use this skill type

A skill that can handle just about any type of
request.

For example:

• Look up information from a web ser-
vice

• Integrate with a web service to order
something (order a car from Uber, or-
der a pizza from Domino’s Pizza)

• Interactive games

• Just about anything else you can
think of

Custom skill (custom interac-
tion model)

See [Sample 3][sample-3]

…(more content…)

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 24



To create… Use this skill type

…(content in second row, first column) …(content in second row,
second column)

``` **Result:**

To create… Use this skill type

A skill that can handle just about any type of
request.

For example:

• Look up information from a web ser-
vice

• Integrate with a web service to order
something (order a car from Uber, or-
der a pizza from Domino’s Pizza)

• Interactive games

• Just about anything else you can
think of

Custom skill (custom interac-
tion model) See [Sample
3][sample-3] …(more con-
tent…)

…(content in second row, first column) …(content in second row,
second column)

Images ### Storing Images on MediaCentral You'll publish your images via
[Media Central](https://mediacentral.amazon.com/), so you need to set up your
access to this resource and configure your folders. To upload images into Media
Central, you must be part of the [ms-mediacentral-
users](https://permissions.amazon.com/group.mhtml?target=706819) permissions
group. To delete images in Media Central, you must be part of the ms-mediasnb-
pwr group. Make sure you're added to both of these groups (manager permission
required). Create a folder on Media Central for your doc's images. It doesn't
matter exactly what folder path you choose, but for consistency, create the folder
for devices under this directory: **ROOT/mobile-apps/dex**. To create a new
folder on Media Central: 1. Go to [Media
Central](https://mediacentral.amazon.com/). 2. Enter the new path (for example,
mobile-apps/dex/myawesomeproject) into the Goto New/Existing Directory
box near the top-center of the screen. The content area will initially appear blank

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 25

when you go to this new folder path. 3. Click **Upload** to this directory and
upload a test image into your new folder. 4. Click **Info** under the image and
copy the HTTPS path to the image. Paste the link into a text editor — you'll need it
in the next section when you configure the image_path in the confighippo.yml file.
Customize the Image Path in the confighippo.yml File In this section, you'll
customize the configuration files to be specific to your own project. 1. Open the
confighippo.yml file. 2. In confighippo.yml, change the `image_path` to
correspond to the place on Media Central where you're hosting images. It should
look something like this: https://images-na.ssl-images-amazon.com/images/G/01/
mobile-apps/dex/myawesomeproject/ Be sure to include the forward slash (/) at
the end. ### Formatting for Images Use the image.html include template that is
set up: ```liquid {% include image.html file="amazon_developer" type="png"
url="http://developer.amazon.com" alt="My alternative image text" caption="This
is my caption" %} ``` **Result:**

My alternative image text

This is my caption

The image include's properties are as follows: | Property | description | |-------|-----
---| | file | The name of the file | | type | The type of file (png, svg, and so on) | | url |
Whether to link the image to a URL | | alt | Alternative image text for accessibility
and SEO | | caption | A caption for the image | All properties are optional except for
`file` and `type`. Store images in the **images** folder in your Jekyll project. Also
upload the images to Media Central. Note that all images in Media Central must
be available at the path as defined in the `image_path` property in the
confighippo.yml file. Media Central will cache images you upload and expire the
cache on an *hourly* basis. ## Inline Images For inline images, such as with a
button that you want to appear inline with text, use the inline_image.html include,
like this: ```liquid Click the **Android SDK Manager** button {% include
inline_image.html file="androidsdkmanagericon" type="png" alt="SDK button" %}
``` Click the **Android SDK Manager** button SDK button The inline_image.html
include properties are as follows: | Property | description | |-------|--------| | file |
The name of the file | | type | The type of file (png, svg, and so on) | | alt |
Alternative image text for accessibility and SEO | ## Bold, Italics You can make
content **bold** with two asterisks (`**bold**`), or *italics* with one asterisk
(`*italics*`). ## Content Re-use To re-use content: 1. Create either an HTML or
Markdown file and store it in the \_includes folder. For example, myfile.md. The
myfile.md file simply says: `This is a sample include.` 2. In the page where you
want to insert the content, include the file: ``` {% include myfile.md %} ``` ##
Variables To use a variable, add the property to both the confighippo.yml and
configjekyll.yml files, like this: ```yaml myvariable: ACME ``` Then reference the
property through the site namespace: ```liquid {{site.myvariable}} ``` **Result:** All
properties in your configuration files are available through the site namespace.

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 26

http://developer.amazon.com
http://developer.amazon.com


(Note that if you add values to your configuration files -- confighippo.yml or
configjekyll.yml -- you must restart Jekyll for the changes to take effect.) All
properties in the page's frontmatter are available through the page namespace.
## Landing Page Banners If you want to include a banner on a landing page for
the local Jekyll site, similar to the [Fire TV landing
page](https://developer.amazon.com/public/solutions/devices/fire-tv), put the
following `banner` properties in your page's frontmatter: ``` yaml --- title: Amazon
Fire TV — Tiny Box, Huge Performance sidebar: firetvsidebar banner: true
banner_image: firetvlanding.png banner_title: Amazon Fire TV banner_subtitle:
Reach new audiences by bringing your apps and games to the Iiving room --- ```
The page layout detects the `banner:` `true` property and then uses a banner.html
include to insert the other banner properties. When you publish this same page on
Hippo, you'll have to insert these values into the appropriate Hippo fields
manually. This banner technique is used for the Jekyll publishing target only. ##
Publish your Jekyll Site on Corp Drive for Preview When you're ready to share
your content with SMEs or others to look over, first publish your Jekyll site using
the Jekyll build. Then drag the build from the \_site folder into Corp Drive using
your Chrome browser. See [publish the site on Drive Corp](https://w.amazon.com/
index.php/DeveloperCommunications#Publishing_to_Amazon_Corp_Drive) for
more details. You could also put the content behind a Weblab on Hippo, but you'd
have to create new Hippo pages. ## Publish Your Jekyll Site on AWS S3 For
information on publishing your Jekyll site on AWS S3, see [Publishing to AWS
S3](https://w.amazon.com/index.php/DeveloperCommunications/
Publishing_to_AWS_S3). ## Publish Your Jekyll Site on Hippo If you haven't
[uploaded your sidebars into Media Central](#uploadsidebarsmediacentral), do
this first. When you're ready to publish your pages on Hippo, first build the Hippo
target (`. hippo.sh`) Then grab the content from the **\_site** folder, where the
output builds. Unfortunately, you have to copy and paste the output in your Hippo
destination folder file by file into Hippo pages. There is no bulk upload or import
process. However, you merely open the file, select all, copy it, and paste it.
There's no need to paste the content into different Hippo sections. As you publish
content in Hippo, keep the following in mind: - Paste all the content into the first
“Compound Tech Section” box. - The title for the first “Compound Tech Section”
box can be anything (e.g., “Overview”). The JS scripts actually overwrite this box
title. - You have to custom write the title and any keywords using the Hippo form
fields. - Select the **Hide right menu** check box. To set up a Weblab on Hippo,
see [ Creating a Weblab for Documenation]. Hopefully when we get rid of Hippo,
we can publish the Jekyll site by using a simple command to upload the content
to AWS S3 and Aperture's scripts will grab the body content and push it into the
Developer Portal. However, Aperture's timeline for implementing this isn't until late
summer. [ Creating a Weblab for Documenation]: DeveloperCommunications/
Creating_a_Weblab_for_Documentation "wikilink"

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 27



 Tip: Before you publish to Hippo, make sure you upload your hippo
sidebars (page 0) into Media Central.

## Troubleshooting Common errors to check for: * Make sure you add `{% include
links.html %}` at the bottom of each page. * Make sure your page's frontmatter
has a `sidebar` property. * Make sure your sidebars are listed in both config files. *
Make sure any opening `{%}` tag has a closing end tag as well. ## Learn More You
can learn more about Jekyll generally here: [jekyllrb.com](https://jekyllrb.com/
docs/home/). The Jekyll theme is a spinoff of the Jekyll theme I developed
[here](http://idratherbewriting.com/documentation-theme-jekyll/). Some things are
the same, and some are different. To learn more about for loops, if statements,
and more, read up on [Liquid from Shopify](https://help.shopify.com/themes/
liquid/basics). [news]: /news.html [mydoc_introduction]: /mydoc_introduction.html
[p1_landing_page]: /p1_landing_page.html [p2_landing_page]:
/p2_landing_page.html [titlepage]: /titlepage.html [tocpage]: /tocpage.html [home]:
/home.html [mydoc_release_notes_50]: /mydoc_release_notes_50.html
[mydoc_sample_formatting]: /mydoc_sample_formatting.html
[mydoc_introduction]: /mydoc_introduction.html [mydoc_supported_features]:
/mydoc_supported_features.html [mydoc_about]: /mydoc_about.html
[mydoc_support]: /mydoc_support.html [mydoc_about_ruby_gems_etc]:
/mydoc_about_ruby_gems_etc.html [mydoc_install_jekyll_on_mac]:
/mydoc_install_jekyll_on_mac.html [mydoc_install_jekyll_on_windows]:
/mydoc_install_jekyll_on_windows.html [mydoc_pages]: /mydoc_pages.html
[mydoc_posts]: /mydoc_posts.html [mydoc_conditional_logic]:
/mydoc_conditional_logic.html [mydoc_content_reuse]:
/mydoc_content_reuse.html [mydoc_collections]: /mydoc_collections.html
[mydoc_sidebar_navigation]: /mydoc_sidebar_navigation.html
[mydoc_yaml_tutorial]: /mydoc_yaml_tutorial.html [mydoc_tags]:
/mydoc_tags.html [mydoc_series]: /mydoc_series.html [mydoc_adding_tooltips]:
/mydoc_adding_tooltips.html [mydoc_alerts]: /mydoc_alerts.html [mydoc_icons]:
/mydoc_icons.html [mydoc_images]: /mydoc_images.html [mydoc_labels]:
/mydoc_labels.html [mydoc_hyperlinks]: /mydoc_hyperlinks.html
[mydoc_navtabs]: /mydoc_navtabs.html [mydoc_tables]: /mydoc_tables.html
[mydoc_syntax_highlighting]: /mydoc_syntax_highlighting.html
[mydoc_commenting_on_files]: /mydoc_commenting_on_files.html
[mydoc_build_arguments]: /mydoc_build_arguments.html [mydoc_themes]:
/mydoc_themes.html [mydoc_title_checker]: /mydoc_title_checker.html
[mydoc_generating_pdfs]: /mydoc_generating_pdfs.html [mydoc_help_api]:
/mydoc_help_api.html [mydoc_search_configuration]:
/mydoc_search_configuration.html [mydoc_iterm_profiles]:
/mydoc_iterm_profiles.html [mydoc_push_build_to_server]:
/mydoc_push_build_to_server.html [mydoc_no_password_prompts_scp]:
/mydoc_no_password_prompts_scp.html [mydoc_publishing_github_pages]:

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 28



/mydoc_publishing_github_pages.html [mydoc_kb_layout]:
/mydoc_kb_layout.html [mydoc_glossary]: /mydoc_glossary.html
[mydoc_faq_layout]: /mydoc_faq_layout.html [mydoc_troubleshooting]:
/mydoc_troubleshooting.html [mydoc_tag_archives_overview]:
/mydoc_tag_archives_overview.html [tag_formatting]: /tag_formatting.html
[tag_navigation]: /tag_navigation.html [tag_content_types]:
/tag_content_types.html [tag_publishing]: /tag_publishing.html
[tag_special_layouts]: /tag_special_layouts.html [tag_collaboration]:
/tag_collaboration.html [tag_troubleshooting]: /tag_troubleshooting.html
[mydoc_hyperlinks.html#managed-links]: /mydoc_hyperlinks.html#managed-
links.html [index.html#variable-includes]: /index.html#variable-includes.html
[index.html#htmltables]: /index.html#htmltables.html [index.html#someIdTag]:
/index.html#someIdTag.html [titlepage]: /titlepage.html [tocpage]: /tocpage.html
[p1_landing_page]: /p1_landing_page.html [p1_sample1]: /p1_sample1.html
[p1_sample2]: /p1_sample2.html [p1_sample3]: /p1_sample3.html [p1_sample4]:
/p1_sample4.html [p1_sample5]: /p1_sample5.html [p1_sample6]:
/p1_sample6.html [p1_sample7]: /p1_sample7.html [titlepage]: titlepage.html
[tocpage]: tocpage.html [p2_landing_page]: /p2_landing_page.html [p2_sample1]:
/p2_sample1.html [p2_sample2]: /p2_sample2.html [p2_sample3]:
/p2_sample3.html [p2_sample4]: /p2_sample4.html [p2_sample5]:
/p2_sample5.html [p2_sample6]: /p2_sample6.html [p2_sample7]:
/p2_sample7.html [p2_sample8]: /p2_sample8.html [p2_sample9]:
/p2_sample9.html [p2_sample10]: /p2_sample10.html [p2_sample11]:
/p2_sample11.html [p2_sample12]: /p2_sample12.html [p2_sample13]:
/p2_sample13.html [p2_sample14]: /p2_sample14.html [news]: /news.html
[mydoc_introduction]: /mydoc_introduction.html [p1_landing_page]:
/p1_landing_page.html [p2_landing_page]: /p2_landing_page.html

Sample formatting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 29



Introduction

Overview
This site provides documentation, training, and other notes for the Jekyll
Documentation theme. There’s a lot of information about how to do a variety of
things here, and it’s not all unique to this theme. But by and large, understanding
how to do things in Jekyll depends on how your theme is coded. As a result, these
additional details are provided.

The instructions here are geared towards technical writers working on
documentation. You may have a team of one or more technical writers working on
documentation for multiple projects. You can use this same theme to author all of
your documentation for each of your products. The theme is built to
accommodate documentation for multiple products on the same site.

Survey of features
Some of the more prominent features of this theme include the following:

• Bootstrap framework

• Navgoco multi-level sidebar (http://www.komposta.net/article/navgoco) for
table of contents

• Ability to specify different sidebars for different products

• Top navigation bar with drop-down menus

• Notes, tips, and warning information notes

• Tags for alternative navigation

• Advanced landing page layouts from the Modern Business theme
(http://startbootstrap.com/template-overviews/modern-business/).

Getting started
To get started, see Getting Started (page 0).

Introduction PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 30

http://www.komposta.net/article/navgoco
http://www.komposta.net/article/navgoco
http://startbootstrap.com/template-overviews/modern-business/
http://startbootstrap.com/template-overviews/modern-business/
http://startbootstrap.com/template-overviews/modern-business/
http://127.0.0.1:4010/home.html


Supported features
Summary: If you're not sure whether Jekyll and this theme will
support your requirements, this list provides a semi-comprehensive
overview of available features.

Before you get into exploring Jekyll as a potential platform for help content, you
may be wondering if it supports some basic features needed to fulfill your tech
doc requirements. The following table shows what is supported in Jekyll and this
theme.

Supported feautres
Features Supported Notes

Content re-use Yes Supports re-use through Liquid. You can
re-use variables, snippets of code, entire
pages, and more. In DITA speak, this in-
cludes conref and keyref.

Markdown Yes You can author content using Markdown
syntax. This is a wiki-like syntax for HTML
that you can probably pick up in 10 min-
utes. Where Markdown falls short, you
can use HTML. Where HTML falls short,
you use Liquid, which is a scripting that
allows you to incorporate more advanced
logic.

Responsive design Yes Uses Bootstrap framework for responsive
design.

Translation Yes I haven’t done a translation project yet
(just a pilot test). Here’s the basic ap-
proach: Export the HTML pages and
send them to a translation agency. Then
create a new project for that language
and insert the translated pages. Every-
thing will be translated.

Supported features PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 31



Features Supported Notes

Collaboration Yes You collaborate with Jekyll projects the
same way that developers collaborate
with software projects. (You don’t need a
CMS.) Because you’re working with text
file formats, you can use any version con-
trol software (Git, Mercurial, Perforce, Bit-
bucket, etc.) as a CMS for your files.

Scalability Yes Your site can scale to any size. It’s up to
you to determine how you will design the
information architecture for your thou-
sands of pages. You can choose what
you display at first, second, third, fourth,
and more levels, etc. Note that when your
project has thousands of pages, the build
time will be longer (maybe 1 minute per
thousand pages?). It really depends on
how many for loops you have iterating
through the pages.

Lightweight architec-
ture

Yes You don’t need a LAMP stack (Linux,
Apache, MySQL, PHP) architecture to get
your site running. All of the building is
done on your own machine, and you then
push the static HTML files onto a server.

Skinnability Yes You can skin your Jekyll site to look iden-
tical to pretty much any other site online.
If you have a UX team, they can really
skin and design the site using all the tools
familiar to the modern designer –
JavaScript, HTML5, CSS, jQuery, and
more. Jekyll is built on the modern web
development stack rather than the XML
stack (XSLT, XPath, XQuery).

Support Yes The community for your Jekyll site isn’t
so much other tech writers (as is the case
with DITA) but rather the wider web de-
velopment community. Jekyll Talk
(http://talk.jekyllrb.com) is a great re-
source. So is Stack Overflow.

Supported features PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 32

http://talk.jekyllrb.com
http://talk.jekyllrb.com
http://talk.jekyllrb.com


Features Supported Notes

Blogging features Yes There is a simple blogging feature. This
appears as “news” and is intended to
promote news that applies across prod-
ucts.

Versioning Yes Jekyll doesn’t version your files. You up-
load your files to a version control system
such as Github. Your files are versioned
there.

PC platform Yes Jekyll runs on Windows. Although the ex-
perience working on the command line is
better on a Mac, Windows also works,
especially now that Jekyll 3.0 dropped
dependencies on Python, which wasn’t
available by default on Windows.

jQuery plugins Yes You can use any jQuery plugins you and
other JavaScript, CMS, or templating
tools. However, note that if you use Ruby
plugins, you can’t directly host the source
files on Github Pages because Github
Pages doesn’t allow Ruby plugins. In-
stead, you can just push your output to
any web server. If you’re not planning to
use Github Pages, there are no restric-
tions on any plugins of any sort. Jekyll
makes it super easy to integrate every
kind of plugin imaginable. This theme
doesn’t actually use any plugins, so you
can publish on Github if you want.

Bootstrap integration Yes This theme is built on Bootstrap
(http://getbootstrap.com/). If you don’t
know what Bootstrap is, basically this
means there are hundreds of pre-built
components, styles, and other elements
that you can simply drop into your site.
For example, the responsive quality of the
site comes about from the Bootstrap
code base.

Supported features PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 33

http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/


Features Supported Notes

Fast-loading pages Yes This is one of the Jekyll’s strengths. Be-
cause the files are static, they loading ex-
tremely fast, approximately 0.5 seconds
per page. You can’t beat this for perfor-
mance. (A typically database-driven site
like WordPress averages about 2.5 + sec-
onds loading time per page.) Because the
pages are all static, it means they are also
extremely secure. You won’t get hacked
like you might with a WordPress site.

Themes Yes You can have different themes for differ-
ent outputs. If you know CSS, theming
both the web and print outputs is pretty
easy.

Open source Yes This theme is entirely open source. Every
piece of code is open, viewable, and ed-
itable. Note that this openness comes at
a price — it’s easy to make changes that
break the theme or otherwise cause er-
rors.

Features not available
The following features are not available.

Features Supported Notes

CMS interface No Unlike with WordPress, you don’t log into
an interface and navigate to your files.
You work with text files and preview the
site dynamically in your browser. Don’t
worry – this is part of the simplicy that
makes Jekyll awesome. I recommend us-
ing WebStorm as your text editor.

Supported features PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 34



Features Supported Notes

WYSIWYG interface No I use WebStorm to author content, be-
cause I like working in text file formats.
But you can use any Markdown editor
you want (e.g., Lightpaper for Mac,
Marked) to author your content.

Different outputs No This theme provides a single website out-
put that contains documentation for mul-
tiple products. Unlike previous iterations
of the theme, it’s not intended to support
different outputs from the same content.

Robust search No The search feature is a simplistic JSON
search. For more robust search, you
should integrate Swiftype or Algolia.
However, those services aren’t currently
integrated into the theme.

Standardized tem-
plates

No You can create pages with any structure
you want. The theme does not enforce
topic types such as a task or concept as
the DITA specification does.

Integration with
Swagger

No You can link to a SwaggerUI output, but
there is no built-in integration of Swag-
gerUI into this documentation theme.

Templates for end-
points

No Although static site generators work well
with API documentation, there aren’t any
built-in templates specific to endpoints in
this theme. You could construct your
own, though.

eBook output No There isn’t an eBook output for the con-
tent.

Supported features PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 35



About the theme author
Summary: I have used this theme for projects that I've worked on as
a professional technical writer.

My name is Tom Johnson, and I’m a technical writer, blogger, and podcaster
based in San Jose, California. My blog is here: http://idratherbewriting.com
(http://idratherbewriting.com). I write several posts there a week. See my blog’s
about page (http://idratherbewriting.com/aboutme/) for more details about me.

I have used this theme and variations of it for various documentation projects.
This theme has undergone several major iterations, and now it’s fairly stable and
full of all the features that I need. You are welcome to use it for your
documentation projects for free.

I think this theme does pretty much everything that you can do with something like
OxygenXML, but without the constraints of structured authoring. Everything is
completely open and changeable, so if you start tinkering around with the theme’s
files, you can break things. But it’s completely empowering as well!

With a completely open architecture and code base, you can modify the code to
make it do exactly what you want, without having to jump through all kinds of
confusing or proprietary code.

If there’s a feature you need but it isn’t available here, let me know and I might
add it. Alternatively, if you fork the theme, I would love to see your modifications
and enhancements.

About the theme author PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 36

http://idratherbewriting.com
http://idratherbewriting.com
http://idratherbewriting.com
http://idratherbewriting.com/aboutme/
http://idratherbewriting.com/aboutme/
http://idratherbewriting.com/aboutme/


Support
Summary: Contact me for any support issues.

Let me know about any bugs or other issues that you find. Just email me at
tomjohnson1492@gmail.com. You can also create issues directly within the
Github repository here (https://github.com/tomjohnson1492/jekyll-doc/issues).

Support PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 37

mailto:tomjohnson1492@gmail.com
https://github.com/tomjohnson1492/jekyll-doc/issues
https://github.com/tomjohnson1492/jekyll-doc/issues
https://github.com/tomjohnson1492/jekyll-doc/issues


About Ruby, Gems, Bundler, and other
prerequisites

Summary: Ruby is a programming language you must have on your
computer in order to build Jekyll locally. Ruby has various gems (or
plugins) that provide various functionality. Each Jekyll project usually
requires certain gems.

About Ruby
Jekyll runs on Ruby, a programming language. You have to have Ruby on your
computer in order to run Ruby-based programs like Jekyll. Ruby is installed on the
Mac by default, but you must add it to Windows.

About Ruby Gems
Ruby has a number of plugins referred to as “gems.” Just because you have Ruby
doesn’t mean you have all the necessary Ruby gems that your program needs to
run. Gems provide additional functionality for Ruby programs. There are
thousands of Rubygems (https://rubygems.org/) available for you to use.

Some gems depend on other gems for functionality. For example, the Jekyll gem
might depend on 20 other gems that must also be installed.

Each gem has a version associated with it, and not all gem versions are
compatible with each other.

Rubygem package managers
Bundler (http://bundler.io/) is a gem package manager for Ruby, which means it
goes out and gets all the gems you need for your Ruby programs. If you tell
Bundler you need the jekyll gem (https://rubygems.org/gems/jekyll), it will retrieve all
the dependencies on the jekyll gem as well – automatically.

Not only does Bundler retrieve the right gem dependencies, but it’s smart enough
to retrieve the right versions of each gem. For example, if you get the github-
pages (https://rubygems.org/gems/github-pages) gem, it will retrieve all of these other
gems:

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 38

https://rubygems.org/
https://rubygems.org/
http://bundler.io/
http://bundler.io/
https://rubygems.org/gems/jekyll
https://rubygems.org/gems/jekyll
https://rubygems.org/gems/github-pages
https://rubygems.org/gems/github-pages
https://rubygems.org/gems/github-pages


github-pages-health-check = 1.1.0
jekyll = 3.0.3
jekyll-coffeescript = 1.0.1
jekyll-feed = 0.4.0
jekyll-gist = 1.4.0
jekyll-github-metadata = 1.9.0
jekyll-mentions = 1.1.2
jekyll-paginate = 1.1.0
jekyll-redirect-from = 0.10.0
jekyll-sass-converter = 1.3.0
jekyll-seo-tag = 1.3.2
jekyll-sitemap = 0.10.0
jekyll-textile-converter = 0.1.0
jemoji = 0.6.2
kramdown = 1.10.0
liquid = 3.0.6
mercenary ~> 0.3
rdiscount = 2.1.8
redcarpet = 3.3.3
RedCloth = 4.2.9
rouge = 1.10.1
terminal-table ~> 1.

See how Bundler retrieved version 3.0.3 of the jekyll gem, even though (as of this
writing) the latest version of the jekyll gem is 3.1.2? That’s because github-pages
is only compatible up to jekyll 3.0.3. Bundler handles all of this dependency and
version compatibility for you.

Trying to keep track of which gems and versions are appropriate for your project
can be a nightmare. This is the problem Bundler solves. As explained on
Bundler.io (http://bundler.io/):

Bundler provides a consistent environment for Ruby projects
by tracking and installing the exact gems and versions that are
needed.
Bundler is an exit from dependency hell, and ensures that the
gems you need are present in development, staging, and
production. Starting work on a project is as simple as bundle
install.

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 39

http://bundler.io/
http://bundler.io/


Gemfiles
Bundler looks in a project’s “Gemfile” (no file extension) to see which gems are
required by the project. The Gemfile lists the source and then any gems, like this:

source "https://rubygems.org"

gem 'github-pages'
gem 'jekyll'

The source indicates the site where Bundler will retrieve the gems:
https://rubygems.org (https://rubygems.org).

The gems it retrieves are listed separately on each line.

Here no versions are specified. Sometimes gemfiles will specify the versions like
this:

gem 'kramdown', '1.0'

This means Bundler should get version 1.0 of the kramdown gem.

To specify a subset of versions, the Gemfile looks like this:

gem 'jekyll', '~> 2.3'

The ~> sign means greater than or equal to the last digit before the last period in
the number.

Here it will get any gem equal to 2.3 but less than 3.0.

If it adds another digit, the scope is affected:

gem `jekyll`, `~>2.3.1'

This means to get any gem equal to 2.3.1 but less than 2.4.

If it looks like this:

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 40

https://rubygems.org
https://rubygems.org


gem 'jekyll', '~> 3.0', '>= 3.0.3'

This will get any Jekyll gem between versions 3.0 and up to 3.0.3.

See this Stack Overflow post
(http://stackoverflow.com/questions/5170547/what-does-tilde-greater-than-mean-in-ruby-

gem-dependencies)

for more details.

Gemfile.lock
After Bundler retrieves and installs the gems, it makes a detailed list of all the
gems and versions it has installed for your project. The snapshot of all gems +
versions installed is stored in your Gemfile.lock file, which might look like this:

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 41

http://stackoverflow.com/questions/5170547/what-does-tilde-greater-than-mean-in-ruby-gem-dependencies
http://stackoverflow.com/questions/5170547/what-does-tilde-greater-than-mean-in-ruby-gem-dependencies
http://stackoverflow.com/questions/5170547/what-does-tilde-greater-than-mean-in-ruby-gem-dependencies


GEM
remote: https://rubygems.org/
specs:

RedCloth (4.2.9)
activesupport (4.2.5.1)

i18n (~> 0.7)
json (~> 1.7, >= 1.7.7)
minitest (~> 5.1)
thread_safe (~> 0.3, >= 0.3.4)
tzinfo (~> 1.1)

addressable (2.3.8)
coffee-script (2.4.1)

coffee-script-source
execjs

coffee-script-source (1.10.0)
colorator (0.1)
ethon (0.8.1)

ffi (>= 1.3.0)
execjs (2.6.0)
faraday (0.9.2)

multipart-post (>= 1.2, < 3)
ffi (1.9.10)
gemoji (2.1.0)
github-pages (52)

RedCloth (= 4.2.9)
github-pages-health-check (= 1.0.1)
jekyll (= 3.0.3)
jekyll-coffeescript (= 1.0.1)
jekyll-feed (= 0.4.0)
jekyll-gist (= 1.4.0)
jekyll-mentions (= 1.0.1)
jekyll-paginate (= 1.1.0)
jekyll-redirect-from (= 0.9.1)
jekyll-sass-converter (= 1.3.0)
jekyll-seo-tag (= 1.3.1)
jekyll-sitemap (= 0.10.0)
jekyll-textile-converter (= 0.1.0)
jemoji (= 0.5.1)
kramdown (= 1.9.0)
liquid (= 3.0.6)
mercenary (~> 0.3)
rdiscount (= 2.1.8)
redcarpet (= 3.3.3)
rouge (= 1.10.1)
terminal-table (~> 1.4)

github-pages-health-check (1.0.1)
addressable (~> 2.3)

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 42



net-dns (~> 0.8)
octokit (~> 4.0)
public_suffix (~> 1.4)
typhoeus (~> 0.7)

html-pipeline (2.3.0)
activesupport (>= 2, < 5)
nokogiri (>= 1.4)

i18n (0.7.0)
jekyll (3.0.3)

colorator (~> 0.1)
jekyll-sass-converter (~> 1.0)
jekyll-watch (~> 1.1)
kramdown (~> 1.3)
liquid (~> 3.0)
mercenary (~> 0.3.3)
rouge (~> 1.7)
safe_yaml (~> 1.0)

jekyll-coffeescript (1.0.1)
coffee-script (~> 2.2)

jekyll-feed (0.4.0)
jekyll-gist (1.4.0)

octokit (~> 4.2)
jekyll-mentions (1.0.1)

html-pipeline (~> 2.3)
jekyll (~> 3.0)

jekyll-paginate (1.1.0)
jekyll-redirect-from (0.9.1)

jekyll (>= 2.0)
jekyll-sass-converter (1.3.0)

sass (~> 3.2)
jekyll-seo-tag (1.3.1)

jekyll (~> 3.0)
jekyll-sitemap (0.10.0)
jekyll-textile-converter (0.1.0)

RedCloth (~> 4.0)
jekyll-watch (1.3.1)

listen (~> 3.0)
jemoji (0.5.1)

gemoji (~> 2.0)
html-pipeline (~> 2.2)
jekyll (>= 2.0)

json (1.8.3)
kramdown (1.9.0)
liquid (3.0.6)
listen (3.0.6)

rb-fsevent (>= 0.9.3)
rb-inotify (>= 0.9.7)

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 43



mercenary (0.3.5)
mini_portile2 (2.0.0)
minitest (5.8.4)
multipart-post (2.0.0)
net-dns (0.8.0)
nokogiri (1.6.7.2)

mini_portile2 (~> 2.0.0.rc2)
octokit (4.2.0)

sawyer (~> 0.6.0, >= 0.5.3)
public_suffix (1.5.3)
rb-fsevent (0.9.7)
rb-inotify (0.9.7)

ffi (>= 0.5.0)
rdiscount (2.1.8)
redcarpet (3.3.3)
rouge (1.10.1)
safe_yaml (1.0.4)
sass (3.4.21)
sawyer (0.6.0)

addressable (~> 2.3.5)
faraday (~> 0.8, < 0.10)

terminal-table (1.5.2)
thread_safe (0.3.5)
typhoeus (0.8.0)

ethon (>= 0.8.0)
tzinfo (1.2.2)

thread_safe (~> 0.1)

PLATFORMS
ruby

DEPENDENCIES
github-pages
jekyll

BUNDLED WITH
1.11.2

You can always delete the Gemlock file and run Bundle install again to get the
latest versions. You can also run bundle update , which will ignore the Gemlock
file to get the latest versions of each gem.

To learn more about Bundler, see Bundler’s Purpose and Rationale
(http://bundler.io/rationale.html).

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 44

http://bundler.io/rationale.html
http://bundler.io/rationale.html
http://bundler.io/rationale.html


Install Jekyll on Mac
Summary: Installation of Jekyll on Mac is usually less problematic
than on Windows. However, you may run into permissions issues with
Ruby that you must overcome. You should also use Bundler to be
sure that you have all the required gems and other utilities on your
computer to make the project run.

Ruby and RubyGems
Ruby and RubyGems (https://rubygems.org/pages/download) are usually installed by
default on Macs. Open your Terminal and type which ruby and which gem to
confirm that you have Ruby and Rubygems. You should get a response indicating
the location of Ruby and Rubygems.

If you get responses that look like this:

/usr/local/bin/ruby

and

/usr/local/bin/gem

Great! Skip down to the Bundler (page 47) section.

However, if your location is something like
/Users/MacBookPro/.rvm/rubies/ruby-2.2.1/bin/gem , which points to your

system location of Rubygems, you will likely run into permissions errors when
trying to get a gem. A sample permissions error (triggered when you try to install
the jekyll gem such as gem install jekyll ) might look like this for Rubygems:

>ERROR:  While executing gem ... (Gem::FilePermissionError)
You don't have write permissions for the /Library/Ruby/Gems/

2.0.0 directory.

Install Jekyll on Mac PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 45

https://rubygems.org/pages/download
https://rubygems.org/pages/download


Instead of changing the write permissions on your operating system’s version of
Ruby and Rubygems (which could pose security issues), you can install another
instance of Ruby (one that is writable) to get around this.

Install Homebrew
Homebrew is a package manager for the Mac, and you can use it to install an
alternative instance of Ruby code. To install Homebrew, run this command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.co
m/Homebrew/install/master/install)"

If you already had Homebrew installed on your computer, be sure to update it:

brew update

Install Ruby through Homebrew
Now use Homebrew to install Ruby:

brew install ruby

Log out of terminal, and then then log back in.

When you type which ruby and which gem , you should get responses like this:

/usr/local/bin/ruby

And this:

/usr/local/bin/gem

Now Ruby and Rubygems are installed under your username, so these directories
are writeable.

Install Jekyll on Mac PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 46



Note that if you don’t see these paths, try restarting your computer or try installing
rbenv, which is a Ruby version management tool. If you still have issues getting a
writeable version of Ruby, you need to resolve them before installing Bundler.

Install the Jekyll gem
At this point you should have a writeable version of Ruby and Rubygem on your
machine.

Now use gem to install Jekyll:

gem install jekyll

You can now use Jekyll to create new Jekyll sites following the quick-start
instructions on Jekyllrb.com (http://jekyllrb.com).

Installing dependencies through Bundler
Some Jekyll themes will require certain Ruby gem dependencies. These
dependencies are stored in something called a Gemfile, which is packaged with
the Jekyll theme. You can install these dependencies through Bundler. (Although
you don’t need to install Bundler for this Documentation theme, it’s a good idea to
do so.)

Bundler (http://bundler.io/) is a package manager for RubyGems. You can use it to
get all the gems (or Ruby plugins) that you need for your Jekyll project.

You install Bundler by using the gem command with RubyGems:

gem install bundler

If you’re prompted to switch to superuser mode ( sudo ) to get the correct
permissions to install Bundler in that directory, avoid doing this. All other
applications that need to use Bundler will likely not have the needed permissions
to run.

Bundler goes out and retreives all the gems that are specified in a Jekyll project’s
Gemfile. If you have a gem that depends on other gems to work, Bundler will go
out and retrieve all of the dependencies as well. (To learn more about Bundler, see
About Ruby Gems (page 0).

Install Jekyll on Mac PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 47

http://jekyllrb.com
http://jekyllrb.com
http://bundler.io/
http://bundler.io/
http://127.0.0.1:4010/mydoc_about_ruby_gems_etc.html


The vanilla Jekyll site you create through jekyll new my-awesome-site doesn’t
have a Gemfile, but many other themes (including the Documentation theme for
Jekyll) do have a Gemfile.

Serve the Jekyll Documentation theme
1. Browse to the directory where you downloaded the Documentation

theme for Jekyll.

2. Type jekyll serve

3. Go to the preview address in the browser. (Make sure you include the /
at the end.)

Install Jekyll on Mac PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 48



Install Jekyll on Windows
 Tip: For a better terminal emulator on Windows, use Git Bash
(https://git-for-windows.github.io/). Git Bash gives you Linux-like control on
Windows.

Install Ruby
First you must install Ruby because Jekyll is a Ruby-based program and needs
Ruby to run.

1. Go to RubyInstaller for Windows (http://rubyinstaller.org/downloads/).

2. Under RubyInstallers, download and install one of the Ruby installers
(usually one of the first two options).

3. Double-click the downloaded file and proceed through the wizard to
install it.

Install Ruby Development Kit
Some extensions Jekyll uses require you to natively build the code using the Ruby
Development Kit.

1. Go to RubyInstaller for Windows (http://rubyinstaller.org/downloads/).

2. Under the Development Kit section near the bottom, download one of
the For use with Ruby 2.0 and above… options (either the 32-bit or
64-bit version).

3. Move your downloaded file onto your C drive in a folder called something
like RubyDevKit.

4. Extract the compressed folder’s contents into the folder.

5. Browse to the RubyDevKit location on your C drive using your Command
Line Prompt.

To see the contents of your current directory, type dir . To move into a
directory, type cd foldername , where “foldername” is the name of the
folder you want to enter. To move up a directory, type cd ../ one or

Install Jekyll on Windows PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 49

https://git-for-windows.github.io/
https://git-for-windows.github.io/
https://git-for-windows.github.io/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/


more times depending on how many levels you want to move up. To
move into your user’s directory, type /users . The / at the beginning of
the path automatically starts you at the root.

6. Type ruby dk.rb init

7. Type ruby dk.rb install

If you get stuck, see the official instructions for installing Ruby Dev Kit
(https://github.com/oneclick/rubyinstaller/wiki/Development-Kit).

Install the Jekyll gem
At this point you should have Ruby and Rubygem on your machine.

Now use gem to install Jekyll:

gem install jekyll

You can now use Jekyll to create new Jekyll sites following the quick-start
instructions on Jekyllrb.com (http://jekyllrb.com).

Installing dependencies through Bundler
Some Jekyll themes will require certain Ruby gem dependencies. These
dependencies are stored in something called a Gemfile, which is packaged with
the Jekyll theme. You can install these dependencies through Bundler. (Although
you don’t need to install Bundler for this Documentation theme, it’s a good idea to
do so.)

Bundler (http://bundler.io/) is a package manager for RubyGems. You can use it to
get all the gems (or Ruby plugins) that you need for your Jekyll project.

You install Bundler by using the gem command with RubyGems:

Install Bundler
1. Install Bundler: gem install bundler

2. Initialize Bundler: bundle init

This will create a new Gemfile.

3. Open the Gemfile in a text editor.

Install Jekyll on Windows PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 50

https://github.com/oneclick/rubyinstaller/wiki/Development-Kit
https://github.com/oneclick/rubyinstaller/wiki/Development-Kit
https://github.com/oneclick/rubyinstaller/wiki/Development-Kit
http://jekyllrb.com
http://jekyllrb.com
http://bundler.io/
http://bundler.io/


Typically you can open files from the Command Prompt by just typing the
filename, but because Gemfile doesn’t have a file extension, no program
will automatically open it. You may need to use your File Explorer and
browse to the directory, and then open the Gemfile in a text editor such
as Notepad.

4. Remove the existing contents. Then paste in the following:

source "https://rubygems.org"

gem 'wdm'
gem 'jekyll'

The wdm gem (https://rubygems.org/gems/wdm/versions/0.1.1) allows for the
polling of the directory and rebuilding of the Jekyll site when you make
changes. This gem is needed for Windows users, not Mac users.

5. Save and close the file.

6. Type bundle install .

Bundle retrieves all the needed gems and gem dependencies and
downloads them to your computer. At this time, Bundle also takes a
snapshot of all the gems used in your project and creates a Gemfile.lock
file to store this information.

Serve the Jekyll Documentation theme
1. Browse to the directory where you downloaded the Documentation

theme for Jekyll.

2. Type jekyll serve

3. Go to the preview address in the browser. (Make sure you include the /
at the end.)

Unfortunately, the Command Prompt doesn’t allow you to easily copy
and paste the URL, so you’ll have to type it manually.

Install Jekyll on Windows PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 51

https://rubygems.org/gems/wdm/versions/0.1.1
https://rubygems.org/gems/wdm/versions/0.1.1


Pages
Summary: This theme primarily uses pages. You need to make sure
your pages have the appropriate frontmatter. One frontmatter tag
your users might find helpful is the summary tag. This functions
similar in purpose to the shortdesc element in DITA.

Where to author content
Use a text editor such as Sublime Text, WebStorm, IntelliJ, or Atom to create
pages.

My preference is IntelliJ/WebStorm, since it will treat all files in your theme as
belonging to a project. This allows you to easily search for instances of keywords,
do find-and-replace operations, or do other actions that apply across the whole
project.

Page names and excluding files from outputs
By default, everything in your project is included in the output. You can exclude all
files that don’t belong to that project by specifying the file name, the folder name,
or by using wildcards in your configuration file:

exclude:

• filename.md

• subfolder_name/

• mydoc_*

These wildcards will exclude every match after the * .

Frontmatter
Make sure each page has frontmatter at the top like this:

Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 52



---
title: Alerts
tags: [formatting]
keywords: notes, tips, cautions, warnings, admonitions
last_updated: July 3, 2016
summary: "You can insert notes, tips, warnings, and important a
lerts in your content. These notes are stored as shortcodes mad
e available through the linksrefs.hmtl include."
sidebar: mydoc_sidebar
permalink: mydoc_alerts/
---

Frontmatter is always formatted with three hyphens at the top a
nd bottom. Your frontmatter must have a `title` value. All the
other values are optional. If you omit them, the theme won't br
eak.

Note that you cannot use variables in frontmatter.

The following table describes each of the frontmatter that you
can use with this theme:

| Frontmatter | Required? | Description |
|-------------|-------------|-------------|
| **title** | Required | The title for the page |
| **tags** | Optional | Tags for the page. Make all tags singl
e words, with underscores if needed (rather than spaces). Separ
ate them with commas. Enclose the whole list within brackets. A
lso, note that tags must be added to \_data/tags_doc.yml to be
allowed entrance into the page. This prevents tags from becomin
g somewhat random and unstructured. You must create a tag page
for each one of your tags following the pattern shown in the ta
gs folder. (Tag pages aren't automatically created.)  |
| **keywords** | Optional | Synonyms and other keywords for th
e page. This information gets stuffed into the page's metadata
to increase SEO. The user won't see the keywords, but if you se
arch for one of the keywords, it will be picked up by the searc
h engine.  |
| **last_updated**  | Optional | The date the page was last upd
ated. This information could helpful for readers trying to eval
uate how current and authoritative information is. If include
d, the last_updated date appears in the footer of the page in r
ather small font.|
| **summary** | Optional | A 1-2 word sentence summarizing the
content on the page. This gets formatted into the summary secti
on in the page layout. Adding summaries is a key way to make yo

Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 53



ur content more scannable by users (check out [Jakob Nielsen's
site](http://www.nngroup.com/articles/corporate-blogs-front-pag
e-structure/) for a great example of page summaries.) The only
drawback with summaries is that you can't use variables in the
m. |
| **permalink**| Required | This theme uses permalinks to facil
itate the linking. You specify the permalink want for the pag
e, and the \_site output will put the page into the root direct
ory when you publish. The page will appear inside a folder by t
he same name, with the actual page being index.html. Browsers w
ill automatically show the index.html file inside of any folde
r, so permalinks avoid the .html extension with file names. Per
malink names don't have to match your file names, but it might
be easier to keep them in sync. If you don't use permalinks, Je
kyll automatically uses the file name and folder path as the li
nk.|
| **datatable** | Optional | 'true'. If you add `datatable: tru
e` in the frontmatter, scripts for the [jQuery Datatables plugi
n](https://www.datatables.net/) get included on the page. You c
an see the scripts that conditionally appear by looking in the
\_layouts/default.html page. |
| toc | Optional | If you specify `toc: false` in the frontmatt
er, the page won't have the table of contents that appears belo
w the title. The toc refers to the list of jump links below th
e page title, not the sidebar navigation. You probably want to
hide the TOC on the homepage and product landing pages.|

## Colons in page titles

If you want to use a colon in your page title, you must enclos
e the title's value in quotation marks.

## Saving pages as drafts

If you add `published: false` in the frontmatter, your page wo
n't be published. You can also move draft pages into the \_draf
ts folder to exclude them from the build. With posts, you can a
lso keep them as drafts by omitting the date in the title.

## Markdown or HTML format

Pages can be either Markdown or HTML format (specified through
either an .md or .html file extension).

If you use Markdown, you can also include HTML formatting wher
e needed. But not vice versa &mdash; if you use HTML (as your f
ile extension), you can't insert Markdown content in the file.

Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 54



Also, if you use HTML inside a Markdown file, you cannot use Ma
rkdown inside of HTML. But you can use HTML inside of Markdown.

For your Markdown files, note that a space or two indent will s
et text off as code or blocks, so avoid spacing indents unless
intentional.

If you have a lot of HTML, as long as the top and bottom tags o
f the HTML are flesh left in a Markdown file, all the tags insi
de those bookend HTML tags will render as HTML, regardless of t
heir indentation.

## Where to save pages

You can store your pages in any folder structures you want, wit
h any level of folder nesting. The site output will pull all o
f those pages out of their folders and put them into the root d
irectory. Check out the \_site folder, which is where Jekyll i
s generated, to see the difference between your project's struc
ture and the resulting site output.

## Page names

I recommend prefixing your page names with the product, such a
s "mydoc_pages" instead of just "pages." This way if you have o
ther products that also hae topics with generic names such as
"pages," there won't be naming conflicts.

Additionally, consider adding the product name in parentheses a
fter the title, such as "Pages (Mydoc)" so that users can clear
ly navigate different topics for each product.

## Kramdown Markdown

Kramdown is the Markdown flavor used in the theme. This mostly
aligns with Github-flavored Markdown, but with some difference
s in the indentation allowed within lists. Basically, Kramdown
requires you to line up the indent between list items with the
first starting character after the space in your list item numb
ering. See this [blog post on Kramdown and Rouge](http://idrath
erbewriting.com/2016/02/21/bug-with-kramdown-and-rouge-with-git
hub-pages/) for more details.

You can use standard Multimarkdown syntax for tables. You can a
lso use fenced code blocks with lexers specifying the type of c
ode. The configuration file shows the Markdown processor and ex

Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 55



tensiosn:

```yaml
highlighter: rouge
markdown: kramdown
kramdown:
input: GFM
auto_ids: true
hard_wrap: false
syntax_highlighter: rouge

Automatic mini-TOCs
By default, a TOC appears at the top of your pages and posts. If you don’t want
the TOC to appear for a specific page, such as for a landing page or other
homepage, add toc: false in the frontmatter of the page.

The mini-TOC requires you to use the ## Markdown syntax for headings. If you
use <h2> elements, you must add an ID attribute for the heading element in order
for it to appear in the mini-TOC (for example,
<h2 id="mysampleid">Heading</h2> .

Specify a particular page layout
The configuration file sets the default layout for pages as the “page” layout.

You can create other layouts inside the layouts folder. If you create a new layout,
you can specify that your page use your new layout by adding
layout: mylayout.html in the page’s frontmatter. Whatever layout you specify

in the frontmatter of a page will override the layout default set in the configuration
file.

Comments
Disqus, a commenting system, is integrated into the theme. In the configuration
file, specify the Disqus code for the universal code, and Disqus will appear. If you
don’t add a Disqus value, the Disqus form isn’t included.

Custom keyboard shortcuts
Some of the Jekyll syntax can be slow to create. Using a utility such as aText
(https://www.trankynam.com/atext/) can make creating content a lot of faster.

Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 56

https://www.trankynam.com/atext/
https://www.trankynam.com/atext/
https://www.trankynam.com/atext/

For example, with my aText configuration, when I type jlink , aText replaces it
with page .

You get aText from the App Store on a Mac for about $5. However, the Mac Store
version of aText won’t work on Mac OSX El Capitan due to sandbox security
restrictions, so you need to download the app outside of the App Store to make it
work.

There are alternatives to aText, such as Typeitforme. But aText seems to work the
best. You can read more about aText on Lifehacker
(http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac).

Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 57

http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac
http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac
http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac

Posts
Summary: You can use posts when you want to create blogs or news
type of content.

About posts
Posts are typically used for blogs or other news information because they contain
a date and are sorted in reverse chronological order.

You create a post by adding a file in the _posts folder that is named yyyy-mm-
dddd-permalink.md, which might be 2016-02-25-my-latest-updates.md. You can
use any number of subfolders here that you want.

Posts use the post.html layout in the _layouts folder when you are viewing the
post.

The news.html file in the root directory shows a reverse chronological listing of the
10 latest posts

Allowed frontmatter
The frontmatter you can use with posts is as follows:

title: My sample post keywords: pages, authoring, exclusion, frontmatter
summary: “This is some summary frontmatter for my sample post.” sidebar:
mydoc_sidebar permalink: mydoc_pages/ tags: content_types —

Frontmatter Required? Description

title Required The title for the page

Posts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 58

Frontmatter Required? Description

tags Optional Tags for the page. Make all tags single words, with underscores
if needed. Separate them with commas. Enclose the whole list
within brackets. Also, note that tags must be added to _data/
tags_doc.yml to be allowed entrance into the page. This prevents
tags from becoming somewhat random and unstructured. You
must create a tag page for each one of your tags following the
sample pattern in the tabs folder. (Tag pages aren’t automatically
created.)

keywords Optional Synonyms and other keywords for the page. This information
gets stuffed into the page’s metadata to increase SEO. The user
won’t see the keywords, but if you search for one of the key-
words, it will be picked up by the search engine.

summary Optional A 1-2 word sentence summarizing the content on the page. This
gets formatted into the summary section in the page layout.
Adding summaries is a key way to make your content more
scannable by users (check out Jakob Nielsen’s site
(http://www.nngroup.com/articles/corporate-blogs-front-page-structure/)

for a great example of page summaries.) The only drawback with
summaries is that you can’t use variables in them.

permalink Required This theme uses permalinks to facilitate the linking. You specify
the permalink want for the page, and the _site output will put the
page into the root directory when you publish. The page will ap-
pear inside a folder by the same name, with the actual page be-
ing index.html. Browsers will automatically show the index.html
file inside of any folder, so permalinks avoid the .html extension
with file names. Permalink names don’t have to match your file
names, but it might be easier to keep them in sync.

Posts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 59

http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
http://www.nngroup.com/articles/corporate-blogs-front-page-structure/

Conditional logic
Summary: You can implement advanced conditional logic that
includes if statements, or statements, unless, and more. This
conditional logic facilitates single sourcing scenarios in which you're
outputting the same content for different audiences.

About Liquid and conditional statements
If you want to create different outputs for different audiences, you can do all of
this using a combination of Jekyll’s Liquid markup and values in your configuration
file. This is how I previously configured the theme. I had different configuration
files for each output. Each configuration file specified different values for product,
audience, version, and so on. Then I had different build processes that would
leverage the different configuration files. It seemed like a perfect implementation
of DITA-like techniques with Jekyll.

But I soon found that having lots of separate outputs for a project was
undesirable. If you have 10 different outputs that have different nuances for
different audiences, it’s hard to manage and maintain. In this latest version of the
theme, I consolidated all information into the same output to explicitly do away
with the multi-output approach.

As such, the conditional logic won’t have as much play as it previously did.
Instead of conditions, you’ll probably want to incorporate navtabs (page 114) to
split up the information.

However, you can still of course use conditional logic as needed.

 Tip: Definitely check out Liquid’s documentation
(http://docs.shopify.com/themes/liquid-documentation/basics) for more details
about how to use operators and other liquid markup. The notes here are a
small, somewhat superficial sample from the site.

Conditional logic PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 60

http://docs.shopify.com/themes/liquid-documentation/basics
http://docs.shopify.com/themes/liquid-documentation/basics
http://docs.shopify.com/themes/liquid-documentation/basics

Where to store filtering values
You can filter content based on values that you have set either in your page’s
frontmatter, a config file, or in a file in your _data folder. If you set the attribute in
your config file, you need to restart the Jekyll server to see the changes. If you set
the value in a file in your _data folder or page frontmatter, you don’t need to
restart the server when you make changes.

Conditional logic based on config file value
Here’s an example of conditional logic based on a value in the page’s frontmatter.
Suppose you have the following in your frontmatter:

platform: mac

On a page in my site (it can be HTML or markdown), you can conditionalize
content using the following:

{% ifif page.platform ==== "mac" %}
Here's some info about the Mac.
{% elsifelsif page.platform ==== "windows" %}
Here's some info about Windows ...
{% endifendif %}

This uses simple if-elsif logic to determine what is shown (note the spelling of
elsif). The else statement handles all other conditions not handled by the if

statements.

Here’s an example of if-else logic inside a list:

Conditional logic PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 61

To bake a casserole:

1. Gather the ingredients.
{% ifif page.audience ==== "writer" %}
2. Add in a pound of meat.
{% elsifelsif page.audience ==== "designer" %}
3. Add in an extra can of beans.
{% endifendif %}
3. Bake in oven for 45 min.

You don’t need the elsif or else . You could just use an if (but be sure to
close it with endif).

Or operator
You can use more advanced Liquid markup for conditional logic, such as an or
command. See Shopify’s Liquid documentation
(http://docs.shopify.com/themes/liquid-documentation/basics/operators) for more details.

For example, here’s an example using or :

{% ifif page.audience containscontains "vegan" or page.audience ==== "veget
arian" %}

Then run this...
{% endifendif %}

Note that you have to specify the full condition each time. You can’t shorten the
above logic to the following:

{% ifif page.audience containscontains "vegan" or "vegetarian" %}
// run this.

{% endifendif %}

This won’t work.

Unless operator
You can also use unless in your logic, like this:

Conditional logic PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 62

http://docs.shopify.com/themes/liquid-documentation/basics/operators
http://docs.shopify.com/themes/liquid-documentation/basics/operators
http://docs.shopify.com/themes/liquid-documentation/basics/operators

{% unlessunless site.output ==== "pdf" %}
...do this
{% endunlessendunless %}

When figuring out this logic, read it like this: “Run the code here unless this
condition is satisfied.”.”

Don’t read it the other way around or you’ll get confused. (It’s not executing the
code only if the condition is satisfied.)

Storing conditions in the _data folder
Here’s an example of using conditional logic based on a value in a data file:

{% ifif site.data.options.output ==== "alpha" %}
show this content...
{% elsifelsif site.data.options.output ==== "beta" %}
show this content...
{% elseelse %}
this shows if neither of the above two if conditions are met.
{% endifendif %}

To use this, I would need to have a _data folder called options where the output
property is stored.

Specifying the location for _data
You can also specify a data_source for your data location in your configuration
file. Then you aren’t limited to simply using _data to store your data files.

For example, suppose you have 2 projects: alpha and beta. You might store all the
data files for alpha inside data_alpha, and all the data files for beta inside
data_beta.

In your alpha configuration file, specify the data source like this:

data_source: data_amydoc_content_reuselpha

Then create a folder called _data_alpha.

For your beta configuratoin file, specify the data source like this:

Conditional logic PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 63

data_source: data_beta

Then create a folder called _data_beta.

Conditions versus includes
If you have a lot of conditions in your text, it can get confusing. As a best practice,
whenever you insert an if condition, add the endif at the same time. This will
reduce the chances of forgetting to close the if statement. Jekyll won’t build if
there are problems with the liquid logic.

If your text is getting busy with a lot of conditional statements, consider putting a
lot of content into includes so that you can more easily see where the conditions
begin and end.

Conditional logic PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 64

Content reuse
Summary: You can reuse chunks of content by storing these files in
the includes folder. You then choose to include the file where you
need it. This works similar to conref in DITA, except that you can
include the file in any content type.

About content reuse
You can embed content from one file inside another using includes. Put the file
containing content you want to reuse (e.g., mypage.html) inside the _includes/
custom folder and then use a tag like this:

{% include custom/mypage.html %}

With content in your _includes folder, you don’t add any frontmatter to these
pages because they will be included on other pages already containing
frontmatter.

Also, when you include a file, all of the file’s contents get included. You can’t
specify that you only want a specific part of the file included. However, you can
use parameters with includes. See the following Jekyll cast for more info about
using parameters with includes:

Content reuse PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 65

Page-level variables
You can also create custom variables in your frontmatter like this:

title: Page-level variables
permalink: page_level_variables/
thing1: Joe
thing2: Dave

You can then access the values in those custom variables using the page
namespace, like this:

thing1: {{page.thing1}}
thing2: {{page.thing2}}

<div class="player-unavailable"><h1 class="message">An error occurred.</h1><div
class="submessage">Try
watching this video on www.youtube.com, or enable JavaScript if it is disabled in your
browser.</div></div>

Content reuse PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 66

I use includes all the time. Most of the includes in the _includes directory are
pulled into the theme layouts. For those includes that change, I put them inside
custom and then inside a specific project folder.

Content reuse PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 67

Collections
Summary: Collections are useful if you want to loop through a special
folder of pages that you make available in a content API. You could
also use collections if you have a set of articles that you want to treat
differently from the other content, with a different layout or format.

What are collections
Collections are custom content types different from pages and posts. You might
create a collection if you want to treat a specific set of articles in a unique way,
such as with a custom layout or listing. For more detail on collections, see Ben
Balter’s explanation of collections here
(http://ben.balter.com/2016/02/20/jekyll-collections/).

Create a collection
To create a collection, add the following in your configuration file:

collections:
tooltips:

output: true

In this example, “tooltips”” is the name of the collection.

Interacting with collections
You can interact with collections by using the site.collectionname
namespace, where collectionname is what you’ve configured. In this case, if I
wanted to loop through all tooltips, I would use site.tooltips instead of
site.pages or site.posts .

See Collections in the Jekyll documentation (http://jekyllrb.com/docs/collections/) for
more information.

Collections PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 68

http://ben.balter.com/2016/02/20/jekyll-collections/
http://ben.balter.com/2016/02/20/jekyll-collections/
http://ben.balter.com/2016/02/20/jekyll-collections/
http://ben.balter.com/2016/02/20/jekyll-collections/
http://jekyllrb.com/docs/collections/
http://jekyllrb.com/docs/collections/

How to use collections
I haven’t found a huge use for collections in normal documentation. However, I did
find a use for collections in generating a tooltip file that would be used for
delivering tooltips to a user interface from text files in the documentation. See
Help APIs and UI tooltips (page 0) for details.

Video tutorial on collections
See this video tutorial on Jekyll.tips
(http://jekyll.tips/jekyll-casts/introduction-to-collections/) for more details on
collections.

Collections PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 69

http://127.0.0.1:4010/mydoc_help_api.html
http://jekyll.tips/jekyll-casts/introduction-to-collections/
http://jekyll.tips/jekyll-casts/introduction-to-collections/
http://jekyll.tips/jekyll-casts/introduction-to-collections/

Sidebar Navigation
Summary: The sidebar navigation uses a jQuery component called
Navgoco. The sidebar is a somewhat complex part of the theme that
remembers your current page, highlights the active item, stays in a
fixed position on the page, and more. This page explains a bit about
how the sidebar was put together.

Navgoco foundation
The sidebar uses the Navgoco jQuery plugin (https://github.com/tefra/navgoco) as its
basis. Why not use Bootstrap? Navgoco provides a few features that I couldn’t
find in Bootstrap:

• Navgoco sets a cookie to remember the user’s position in the sidebar. If
you refresh the page, the cookie allows the plugin to remember the state.

• Navgoco inserts an active class based on the navigation option that’s
open. This is essential for keeping the accordion open.

• Navgoco includes the expand and collapse features of a sidebar.

In short, the sidebar has some complex logic here. I’ve integrated Navgoco’s
features with the sidebar.html and sidebar data files to build the sidebar. It’s
probably the most impressive part of this theme. (Other themes usually aren’t
focused on creating hierarchies of pages, but this kind of hierarchy is important in
a documentation site.)

Accordion sidebar feature
The sidebar.html file (inside the _includes folder) contains the .navgoco method
called on the #mysidebar element.

There are some options to set within the .navgoco method. The only noteworthy
option is accordion . This option makes it so when you expand a section, the
other sections collapse. It’s a way of keeping your navigation controls condensed.

Sidebar Navigation PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 70

https://github.com/tefra/navgoco
https://github.com/tefra/navgoco

The value for accordion is a Boolean (true or false). By default, the
accordion option is set as true . If you don’t want the accordion, set it to
false . Note that there’s also a block of code near the bottom of sidebar.html

that is commented out. Uncomment out that section to have the Collapse all and
Expand All buttons appear.

There’s a danger with setting the accordion to false . If you click Expand All and
the sidebar expands beyond the dimensions of the browser, users will be stuck.
When that happens, it’s hard to collapse it. As a best practice, leave the sidebar’s
accordion option set to true .

Fixed position sidebar
The sidebar has one other feature — this one from Bootstrap. If the user’s
viewport is tall enough, the sidebar remains fixed on the page. This allows the user
to scroll down the page and still keep the sidebar in view.

In the customsscripts.js file in the js folder, there’s a function that adds an affix
class if the height of the browser window is greater than 800 pixels. If the
browser’s height is less than 800 pixels, the nav affix class does not get
inserted. As a result, the sidebar can slide up and down as the user scrolls up and
down the page.

Depending on your content, you may need to adjust 800 pixel number. If your
sidebar is so long that having it in a fixed position makes it so the bottom of the
sidebar gets cut off, increase the 800 pixel number here to a higher number.

Opening sidebar links into external pages
In the attributes for each sidebar item, if you use external_url instead of url ,
the theme will insert the link into an a href element that opens in a blank target.

For example, the sidebar.html file contains the following code:

{% ifif subfolderitem.external_url %}
<a href="{{subfolderitem.external_url}}" target="_blan
k">{{deeplevel.title}}

You can see that the external_url is a condition that applies a different
formatting. Although this feature is available, I recommend putting any external
navigation links in the top navigation bar instead of the side navigation bar.

Sidebar Navigation PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 71

Sidebar item highlighting
The sidebar.html file inserts an active class into the sidebar element when the
url attribute in the sidebar data file matches the page URL.

For example, the sidebar.html file contains the following code:

{% elsifelsif page.url ==== subfolderitem.url %}
<li class="active"><a href="{{subfolderitem.url | prependprepend: si

te.baseurl}}">{{subfolderitem.title}}

If the page.url matches the subfolderitem.url , then an active class gets
applied. If not, the active class does not get applied.

The page.url in Jekyll is a site-wide variable. If you insert {{page.url}} on a
page, it will render as follows: /mydoc_sidebar_navigation. The url attribute in
the sidebar item must match the page URL in order to get the active class
applied.

This is why the url value in the sidebar data file looks something like this:

- title: Understanding how the sidebar works
url: /mydoc_understand_sidebar/
output: web, pdf

Note that the url does not include the project folder where the file is stored. This is
because the site uses permalinks, which pulls the topics out of subfolders and
places them into the root directory when the site builds.

Now the page.url and the item.url can match and the active class can get
applied. With the active class applied, the sidebar section remains open.

Sidebar Navigation PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 72

YAML tutorial in the context of Jekyll
Summary: YAML is a format that relies on white spacing to separate
out the various elements of content. Jekyll lets you use Liquid with
YAML as a way to parse through the data. Storing items for your table
of contents is one of the most common uses of YAML with Jekyll.

Overview
One of the most interesting features of Jekyll is the ability to separate out data
elements from formatting elements using a combination of YAML and Liquid. This
setup is most common when you’re trying to create a table of contents.

Not many Jekyll themes actually have a robust table of contents, which is critical
when you are creating any kind of documentation or reference material that has a
lot of pages.

Here’s the basic approach in creating a table of contents. You store your data
items in a YAML file using YAML syntax. (I’ll go over more about YAML syntax in a
later section.) You then create your HTML structure in another file, such as
sidebar.html. You might leverage one of the many different table of content
frameworks (such as Navgoco (https://github.com/tefra/navgoco)) that have been
created for this HTML structure.

Then, using Liquid syntax for loops and conditions, you access all of those values
from the data file and splice them into HTML formatting. This will become more
clear as we go through some examples.

YAML overview
Rather than just jump into YAML at the most advanced level, I’m going to start
from ground zero with an introduction to YAML and how you access basic values
in your data files using Jekyll.

Note that you don’t actually have to use Jekyll when using YAML. YAML is used in
a lot of other systems and is a format completely independent of Jekyll. However,
because Jekyll uses Liquid, it gives you a lot of power to parse through your
YAML data and make use of it.

YAML itself doesn’t do anything on its own — it’s just a way of storing your data in
a specific structure that other utilities can parse.

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 73

https://github.com/tefra/navgoco
https://github.com/tefra/navgoco

YAML basics
You can read about YAML from a lot of different sources. Here are some basic
characteristics of YAML:

• YAML (“YAML Ain’t Markup Language”) doesn’t use markup tags. This
means you won’t see any kind of angle brackets. It uses white space as a
way to form the structure. This makes YAML much more human readable.

• Because YAML does use white space for the structure, YAML is
extremely picky about the exactness of spaces. If you have just one extra
space somewhere, it can cause the whole file to be invalid.

• For each new level in YAML, you indent two spaces. Each level provides
a different access point for the content. You use dot notation to access
each new level.

• Because tabs are not universally implemented the same way in editors, a
tab might not equate to two spaces. In general, it’s best to manually type
two spaces to create a new level in YAML.

• YAML has several types of elements. The most common are mappings
and lists. A mapping is simply a key-value pair. A list is a sequence of
items. List start with hyphens.

• Items at each level can have various properties. You can create
conditions based on the properties.

• You can use “for” loops to iterate through a list.

I realize a lot of this vague and general; however, it will become a lot more clear as
we go through some concrete examples.

In the _data/mydoc folder, there’s a file called samplelist.yml. All of these
examples come from that file.

Example 1: Simple mapping
YAML:

name:
husband: Tom
wife: Shannon

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 74

Markdown + Liquid:

Husband's name: {{site.data.samplelist.name.husband}}

Wife's name: {{site.data.samplelist.name.wife}}

Notice that in order to access the data file, you use site.data.samplelist .
mydoc is the folder, and samplelist is the name of the YAML file.

Result:

Husband’s name: Tom

Wife’s name: Shannon

Example 2: Line breaks
YAML:

feedback: >
This is my feedback to you.
Even if I include linebreaks here,
all of the linebreaks will be removed when the value is inser

ted.

block: |
This pipe does something a little different.
It preserves the breaks.
This is really helpful for code samples,
since you can format the code samples with

the appropriate

Markdown:

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 75

Feedback
This is my feedback to you. Even if I include linebreaks here,
all of the linebreaks will be removed when the value is inserte
d.

Block
This pipe does something a little different.
It preserves the breaks.
This is really helpful for code samples,
since you can format the code samples with

the appropriate
white spacing.

Result:

Feedback This is my feedback to you. Even if I include linebreaks here, all of the
linebreaks will be removed when the value is inserted.

Block This pipe does something a little different. It preserves the breaks. This is
really helpful for code samples, since you can format the code samples with the
appropriate white spacing.

The right angle bracket > allows you to put the value on the next lines (which
must be indented). Even if you create a line break, the output will remove all of
those line breaks, creating one paragraph.

The pipe | functions like the angle bracket in that it allows you to put the values
for the mapping on the next lines (which again must be indented). However, the
pipe does preserve all of the line breaks that you use. This makes the pipe method
ideal for storing code samples.

Example 3: Simple list
YAML:

bikes:
- title: mountain bikes
- title: road bikes
- title: hybrid bikes

Markdown + Liquid:

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 76

{% for item in site.data.samplelist.bikes %}
* {{item.title}}
{% endfor %}

Result:

• mountain bikes

• road bikes

• hybrid bikes

Here we use a “for” loop to get each item in the bikes list. By using .title we
only get the title property from each list item.

Example 4: List items
YAML:

salesteams:
- title: Regions
subfolderitems:

- location: US
- location: Spain
- location: France

Markdown + Liquid:

{% for item in site.data.samplelist.salesteams %}
<h3>{{item.title}}</h3>

{% for entry in item.subitems %}
{{entry.location}}
{% endfor %}

{% endfor %}

Result:

Regions

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 77

Hopefully you can start to see how to wrap more complex formatting around the
YAML content. When you use a “for” loop, you choose the variable of what to call
the list items. The variable you choose to use becomes how you access the
properties of each list item. In this case, I decided to use the variable item . In
order to get each property of the list item, I used item.subitems .

Each list item starts with the hyphen – . You cannot directly access the list item
by referring to a mapping. You only loop through the list items. If you wanted to
access the list item, you would have to use something like [1] , which is how you
access the position in an array. You cannot access a list item like you can access
a mapping key.

Example 5: Table of contents
YAML:

toc:
- title: Group 1

subfolderitems:
- page: Thing 1
- page: Thing 2
- page: Thing 3

- title: Group 2
subfolderitems:

- page: Piece 1
- page: Piece 2
- page: Piece 3

- title: Group 3
subfolderitems:

- page: Widget 1
- page: Widget 2 it's
- page: Widget 3

Markdown + Liquid:

{% for item in site.data.samplelist.toc %}
<h3>{{item.title}}</h3>

{% for entry in item.subfolderitems %}
{{entry.page}}
{% endfor %}

{% endfor %}

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 78

Result:

Group 1

• Thing 1

• Thing 2

• Thing 3

Group 2

• Piece 1

• Piece 2

• Piece 3

Group 3

• Widget 1

• Widget 2

• Widget 3

This example is similar to the previous one, but it’s more developed as a real table
of contents.

Example 6: Variables
YAML:

something: &hello Greetings earthling!
myref: *hello

Markdown:

{{ site.data.samplelist.myref }}

Result:

Greetings earthling!

This example is notably different. Here I’m showing how to reuse content in YAML
file. If you have the same value that you want to repeat in other mappings, you can
create a variable using the & symbol. Then when you want to refer to that
variable’s value, you use an asterisk * followed by the name of the variable.

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 79

In this case the variable is &hello and its value is Greetings earthling! In
order to reuse that same value, you just type *hello .

I don’t use variables much, but that’s not to say they couldn’t be highly useful. For
example, let’s say you put name of the product in parentheses after each title
(because you have various products that you’re providing documentation for in
the same site). You could create a variable for that product name so that if you
change how you’re referring to it, you wouldn’t have to change all instances of it in
your YAML file.

Example 7: Positions in lists
YAML:

about:
- zero
- one
- two
- three

Markdown:

{{ site.data.samplelist.about[0] }}

Result:

zero

You can see that I’m accessing one of the items in the list using [0] . This refers
to the position in the array where a list item is. Like most programming languages,
you start counting at zero, not one.

I wanted to include this example because it points to the challenge in getting a
value from a specific list item. You can’t just call out a specific item in a list like
you can with a mapping. This is why you usually iterate through the list items
using a “for” loop.

Example 8: Properties from list items at
specific positions
YAML:

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 80

numbercolors:
- zero:

properties: red
- one:

properties: yellow
- two:

properties: green
- three:

properties: blue

Markdown + Liquid:

{{ site.data.samplelist.numbercolors[0].properties }}

Result:

red

This example is similar as before; however, in this case were getting a specific
property from the list item in the zero position.

Example 9: Conditions
YAML:

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 81

mypages:
- section1: Section 1

audience: developers
product: acme
url: facebook.com

- section2: Section 2
audience: writers
product: acme
url: google.com

- section3: Section 3
audience: developers
product: acme
url: amazon.com

- section4: Section 4
audience: writers
product: gizmo
url: apple.com

- section5: Section 5
audience: writers
product: acme
url: microsoft.com

Markdown + Liquid:

{% for sec in site.data.samplelist.mypages %}
{% ifif sec.audience ==== "writers" %}
* {{sec.url}}
{% endifendif %}
{% endfor %}

Result:

• google.com

• apple.com

• microsoft.com

This example shows how you can use conditions in order to selectively get the
YAML content. In your table of contents, you might have a lot of different pages.
However, you might only want to get the pages for a particular audience.
Conditions lets you get only the items that meet those audience attributes.

Now let’s adjust the condition just a little. Let’s add a second condition so that the
audience property has to be writers and the product property has to be

gizmo. This is how you would write it:

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 82

{% for sec in site.data.samplelist.mypages %}
{% ifif sec.audience ==== "writers" and sec.product ==== "gizmo" %}
* {{sec.url}}
{% endifendif %}
{% endfor %}

And here is the result:

• apple.com

More resources
For more examples and explanations, see this helpful post on tournemille.com:
How to create data-driven navigation in Jekyll
(http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll/).

YAML tutorial in the context of Jekyll PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 83

http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll/
http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll/
http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll/

Tags
Summary: Tags provide another means of navigation for your
content. Unlike the table of contents, tags can show the content in a
variety of arrangements and groupings. Implementing tags in this
Jekyll theme is somewhat of a manual process.

Add a tag to a page
You can add tags to pages by adding tags in the frontmatter with values inside
brackets, like this:

title: 2.0 Release Notes
permalink: release_notes_2_0/
tags: [formatting, single_sourcing]

Tags overview

 Note: With posts, tags have a namespace that you can access with
posts.tags.tagname, where tagname is the name of the tag. You can then
list all posts in that tag namespace. But pages don’t off this same tag
namespace, so you could actually use another key instead of tags.
Nevertheless, I’m using the same tags approach for posts as with pages.

To prevent tags from getting out of control and inconsistent, first make sure the
tag appears in the _data/tags.yml file. If it’s not there, the tag you add to a page
won’t be read. I added this check just to make sure I’m using the same tags
consistently and not adding new tags that don’t have tag archive pages.

 Note: In contrast to WordPress, with Jekyll to get tags on pages you have
to build out the functionality for tags so that clicking a tag name shows you
all pages with that tag. Tags in Jekyll are much more manual.

Tags PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 84

Additionally, you must create a tag archive page similar to the other pages named
tag_{tagname}.html folder. This theme doesn’t auto-create tag archive pages.

For simplicity, make all your tags single words (connect them with hyphens if
necessary).

Setting up tags
Tags have a few components.

1. In the _data/tags.yml file, add the tag names you want to allow. For
example:

allowed-tags:
- getting_started
- overview
- formatting
- publishing
- single_sourcing
- special_layouts
- content types

2. Create a tag archive file for each tag in your tags_doc.yml list. Name the
file following the same pattern in the tags folder, like this:
tag_collaboration.html.

Each tag archive file needs only this:

title: "Collaboration pages"
tagName: collaboration
search: exclude
permalink: tag_collaboration/
sidebar: tags_sidebar

{% include taglogic.html %}

 Note: In the _includes/mydoc folder, there’s a taglogic.html file.
This file (included in each tag archive file) has common logic for
getting the tags and listing out the pages containing the tag in a
table with summaries or truncated excerpts. You don’t have to do

Tags PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 85

anything with the file — just leave it there because the tag archive
pages reference it.

3. Change the title, tagName, and permalink values to be specific to the tag
name you just created.

By default, the _layouts/page.html file will look for any tags on a page and
insert them at the bottom of the page using this code:

<div class="tags">
{% if page.tags != null %}
Tags:
{% assign projectTags = site.data.tags.allowed-tags %}
{% for tag in page.tags %}
{% if projectTags contains tag %}
<a href="{{ "/tag_" | prepend: site.baseurl | append: t

ag }}" class="btn btn-default navbar-btn cursorNorm" rol
e="button">{{page.tagName}}{{tag}}
{% endif %}
{% endfor %}
{% endif %}

</div>

Because this code appears on the _layouts/page.html file by default, you don’t
need to do anything in your page to get the tags to appear. However, if you want
to alter the placement or change the button color, you can do so within the
_includes/taglogic.html file.

You can change the button color by changing the class on the button from
btn-info to one of the other button classes bootstrap provides. See page (page

112) for more options on button class names.

Retrieving pages for a specific tag
If you want to retrieve pages outside of a particular tag_archive page, you could
use this code:

Tags PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 86

Getting started pages:

{% for page in site.pages %}
{% for tag in page.tags %}
{% ifif tag ==== "getting_started" %}
{{page.titl
e}}
{% endifendif %}
{% endfor %}
{% endfor %}

Here’s how that code renders:

Getting started pages:

• About the theme author (page 0)

• About Ruby, Gems, Bundler, and other prerequisites (page 0)

• Install Jekyll on Mac (page 0)

• Pages (page 0)

• Posts (page 0)

• Release notes 5.0 (page 0)

• Sample formatting (page 0)

• Sidebar Navigation (page 0)

• Support (page 0)

• Supported features (page 0)

If you want to sort the pages alphabetically, you have to apply a sort filter:

Tags PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 87

http://127.0.0.1:4010/mydoc_about
http://127.0.0.1:4010/mydoc_about_ruby_gems_etc
http://127.0.0.1:4010/mydoc_install_jekyll_on_mac
http://127.0.0.1:4010/mydoc_pages
http://127.0.0.1:4010/mydoc_posts
http://127.0.0.1:4010/mydoc_release_notes_50
http://127.0.0.1:4010/mydoc_sample_formatting
http://127.0.0.1:4010/mydoc_sidebar_navigation
http://127.0.0.1:4010/mydoc_support
http://127.0.0.1:4010/mydoc_supported_features

Getting started pages:

{% assign sorted_pages == (site.pages | sortsort: 'title') %}
{% for page in sorted_pages %}
{% for tag in page.tags %}
{% ifif tag ==== "getting_started" %}
{{page.titl
e}}
{% endifendif %}
{% endfor %}
{% endfor %}

Here’s how that code renders:

Getting started pages:

• About Ruby, Gems, Bundler, and other prerequisites (page 0)

• About the theme author (page 0)

• Install Jekyll on Mac (page 0)

• Pages (page 0)

• Posts (page 0)

• Release notes 5.0 (page 0)

• Sample formatting (page 0)

• Sidebar Navigation (page 0)

• Support (page 0)

• Supported features (page 0)

Efficiency
Although the tag approach here uses for loops, these are somewhat inefficient
on a large site. Most of my tech doc projects don’t have hundreds of pages (like
my blog does). If your project does have hundreds of pages, this for loop
approach with tags is going to slow down your build times.

Without the ability to access pages inside a universal namespace with the page
type, there aren’t many workarounds here for faster looping.

With posts (instead of pages), since you can access just the posts inside
posts.tag.tagname , you can be a lot more efficient with the looping.

Tags PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 88

http://127.0.0.1:4010/mydoc_about_ruby_gems_etc
http://127.0.0.1:4010/mydoc_about
http://127.0.0.1:4010/mydoc_install_jekyll_on_mac
http://127.0.0.1:4010/mydoc_pages
http://127.0.0.1:4010/mydoc_posts
http://127.0.0.1:4010/mydoc_release_notes_50
http://127.0.0.1:4010/mydoc_sample_formatting
http://127.0.0.1:4010/mydoc_sidebar_navigation
http://127.0.0.1:4010/mydoc_support
http://127.0.0.1:4010/mydoc_supported_features

Still, if the build times are getting long (e.g., 1 or 2 minutes per build), look into
reducing the number of for loops on your site.

Empty tags?
If your page shows “tags:” at the bottom without any value, it could mean a
couple of things:

• You’re using a tag that isn’t specified in your allowed tags list in your
tags.yml file.

• You have an empty tags: [] property in your frontmatter.

If you don’t want tags to appear at all on your page, remove the tags property
from your frontmatter.

Remembering the right tags
Since you may have many tags and find it difficult to remember what tags are
allowed, I recommend creating a template that prepopulates all your frontmatter
with all possible tags. Then just remove the tags that don’t apply.

See WebStorm Text Editor (page 0) for tips on creating file templates in
WebStorm.

Tags PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 89

http://127.0.0.1:4010/mydoc-pdf/mydoc_webstorm_text_editor

Series
Summary: You can automatically link together topics belonging to
the same series. This helps users know the context within a particular
process.

Using series for pages
You create a series by looking for all pages within a tag namespace that contain
certain frontmatter. Here’s a demo.

1. Create the series button
First create an include that contains your series button:

<div class="seriesContext">
<div class="btn-group">

<button type="button" data-toggle="dropdown" class="bt
n btn-primary dropdown-toggle">Series Demo <span class="care
t"></button>

<ol class="dropdown-menu">
{% assign pages = site.pages | sort:"weight" %}
{% for p in pages %}
{% if p.series == "ACME series" %}
{% if p.url == page.url %}
<li class="active"> → {{p.weight}}. {{p.title}}</l

i>
{% else %}

{{p.weigh
t}}. {{p.title}}

{% endif %}
{% endif %}
{% endfor %}

</div>

</div>

Series PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 90

http://127.0.0.1:4010/mydoc-pdf/mydoc_seriesdemo1

Change “ACME series” to the name of your series.

Save this in your _includes/custom folder as something like series_acme.html.

 Warning: With pages, there isn’t a universal namespace created from tags
or categories like there is with Jekyll posts. As a result, you have to loop
through all pages. If you have a lot of pages in your site (e.g., 1,000+), then
this looping will create a slow build time. If this is the case, you will need to
rethink the approach to looping here.

2. Create the “next” include
Now create another include for the Next button at the bottom of the page. Copy
the following code, changing the series name to your series’name:

<p>{% assign series_pages = site.tags.series_acme %}
{% for p in pages %}
{% if p.series == "ACME series" %}
{% assign nextTopic = page.weight | plus: "1" %}
{% if p.weight == nextTopic %}
<button type="button" c

lass="btn btn-primary">Next: {{p.weight}} {{p.title}}</butto
n>

{% endif %}
{% endif %}
{% endfor %}

</p>

Change “acme” to the name of your series.

Save this in your _includes/custom/mydoc folder as series_acme_next.html.

3. Add the correct frontmatter to each of your
series pages
Now add the following frontmatter to each page in the series:

series: "ACME series"
weight: 1.0

Series PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 91

With weights, Jekyll will treat 10 as coming after 1. If you have more than 10
items, consider changing plus: "1.0" to plus: "0.1" .

Additionally, if your page names are prefaced with numbers, such as “1.
Download the code,” then the {{p.weight}} will create a duplicate number. In
that case, just remove the {{p.weight}} from both code samples here.

4. Add links to the series button and next
button on each page.
On each series page, add a link to the series button at the top and a link to the
next button at the bottom.

<!-- your frontmatter goes here -->

{% include custom/series_acme.html %}

<!-- your page content goes here ... -->

{% include custom/series_acme_next.html %}

Changing the series drop-down color
The Bootstrap menu uses the primary class for styling. If you change this class
in your theme, the Bootstrap menu should automatically change color as well. You
can also just use another Bootstrap class in your button code. Instead of
btn-primary , use btn-info or btn-warning . See Labels (page 112)for more

Bootstrap button classes.

Using a collection with your series
Instead of copying and pasting the button includes on each of your series, you
could also create a collection and define a layout for the collection that has the
include code. For more information on creating collections, see Collections (page
68).

Series PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 92

Tooltips
Summary: You can add tooltips to any word, such as an acronym or
specialized term. Tooltips work well for glossary definitions, because
you don't have to keep repeating the definition, nor do you assume
the reader already knows the word's meaning.

Creating tooltips
Because this theme is built on Bootstrap, you can simply use a specific attribute
on an element to insert a tooltip.

Suppose you have a glossary.yml file inside your _data folder. You could pull in
that glossary definition like this:

<a href="#" data-toggle="tooltip" data-original-title="{{site.d
ata.glossary.jekyll_platform}}">Jekyll is my favorite tool
for building websites.

This renders to the following:

Jekyll is my favorite tool for building websites.

Tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 93

Alerts
Summary: You can insert notes, tips, warnings, and important alerts
in your content. These notes make use of Bootstrap styling and are
available through data references such as site.data.alerts.note.

About alerts
Alerts are little warnings, info, or other messages that you have called out in
special formatting. In order to use these alerts or callouts, reference the
appropriate value stored in the alerts.yml file as described in the following
sections.

Alerts
Similar to inserting images (page 0)), you insert alerts through various includes that
have been developed. These includes provide templates through which you pass
parameters to easily populate the right HTML code.

{% include note.html content="This is my note. All the content
I type here is treated as a single paragraph." %}

Here’s the result:

 Note: This is my note. All the content I type here is treated as a single
paragraph.

With alerts, there’s just one include property:

Property description

content The content for the alert.

Alerts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 94

http://127.0.0.1:4010/mydoc_images.html

If you need multiple paragraphs, enter

 tags. This is because block
level tags aren’t allowed here, as Kramdown is processing the content as
Markdown despite the fact that the content is surrounded by HTML tags. Here’s
an example with a break:

{% include note.html content="This is my note. All the content
I type here is treated as a single paragraph.

 Now
I'm typing on a new line." %}

Here’s the result:

 Note: This is my note. All the content I type here is treated as a single
paragraph.

Now I’m typing on a new line.

Types of alerts available
There are four types of alerts you can leverage:

• note.html

• tip.html

• warning.html

• important.html

They function the same except they have a different color, icon, and alert word.
You include the different types by selecting the include template you want. Here
are samples of each alert:

 Note: This is my note.

 Tip: This is my tip.

 Warning: This is my warning.

 Important: This is my important info.

Alerts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 95

These alerts leverage includes stored in the _include folder. The content option
is a parameter that you pass to the include. In the include, the parameter is
passed like this:

<div markdown="span" class="alert alert-info" role="alert"><i c
lass="fa fa-info-circle"></i> Note: {{include.conten
t}}</div>

The content in content="This is my note." gets inserted into the
{{include.content}}} part of the template. You can follow this same pattern to

build additional includes. See this Jekyll screencast on includes
(http://jekyll.tips/jekyll-casts/includes/) or this screencast
(https://www.youtube.com/watch?v=TJcn_PJ2100) for more information.

Callouts
There’s another type of callout available called callouts. This format is typically
used for longer callout that spans more than one or two paragraphs, but really it’s
just a stylistic preference whether to use an alert or callout.

Here’s the syntax for a callout:

{% include callout.html content="This is my callout. It has a b
order on the left whose color you define by passing a type para
meter. I typically use this style of callout when I have more i
nformation that I want to share, often spanning multiple paragr
aphs. " type="primary" %}

Here’s the result:

This is my callout. It has a border on the left whose color you define by
passing a type parameter. I typically use this style of callout when I have
more information that I want to share, often spanning multiple paragraphs.

The available properties for callouts are as follows:

Property description

content The content for the callout.

Alerts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 96

http://jekyll.tips/jekyll-casts/includes/
http://jekyll.tips/jekyll-casts/includes/
http://jekyll.tips/jekyll-casts/includes/
https://www.youtube.com/watch?v=TJcn_PJ2100
https://www.youtube.com/watch?v=TJcn_PJ2100
https://www.youtube.com/watch?v=TJcn_PJ2100

Property description

type The style for the callout. Options are danger ,
default , primary , success , info , and warning .

The types just define the color of the left border. Each of these callout types get
inserted as a class name in the callout template. These class names correspond
with styles in Bootstrap. These classes are common Bootstrap class names
whose style attributes differ depending on your Bootstrap theme and style
definitions.

Here’s an example of each different type of callout:

This is my danger type callout. It has a border on the left whose color you
define by passing a type parameter.

This is my default type callout. It has a border on the left whose color you
define by passing a type parameter.

This is my primary type callout. It has a border on the left whose color you
define by passing a type parameter.

This is my success type callout. It has a border on the left whose color
you define by passing a type parameter.

This is my info type callout. It has a border on the left whose color you
define by passing a type parameter.

This is my warning type callout. It has a border on the left whose color you
define by passing a type parameter.

Alerts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 97

Now that in contrast to alerts, callouts don’t include the alert word (note, tip,
warning, or important). You have to manually include it inside content if you
want it.

To include paragraph breaks, use

 inside the callout:

{% include callout.html content="**Important information**: Thi
s is my callout. It has a border on the left whose color you de
fine by passing a type parameter. I typically use this style o
f callout when I have more information that I want to share, of
ten spanning multiple paragraphs.

Here I am starting
a new paragraph, because I have lots of information to share. Y
ou may wonder why I'm using line breaks instead of paragraph ta
gs. This is because Kramdown processes the Markdown here as a s
pan rather than a div (for whatever reason). Be grateful that y
ou can be using Markdown at all inside of HTML. That's usually
not allowed in Markdown syntax, but it's allowed here." type="p
rimary" %}

Here’s the result:

Important information: This is my callout. It has a border on the left
whose color you define by passing a type parameter. I typically use this
style of callout when I have more information that I want to share, often
spanning multiple paragraphs.

Here I am starting a new paragraph, because I have lots of information to
share. You may wonder why I’m using line breaks instead of paragraph
tags. This is because Kramdown processes the Markdown here as a span
rather than a div (for whatever reason). Be grateful that you can be using
Markdown at all inside of HTML. That’s usually not allowed in Markdown
syntax, but it’s allowed here.

Use Liquid variables inside parameters with
includes
Suppose you have a product name or some other property that you’re storing as a
variable in your configuration file (_congfig.yml), and you want to use this variable
in the content parameter for your alert or callout. You will get an error if you use
Liquid syntax inside a include parameter. For example, this syntax will produce an
error:

Alerts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 98

{% include note.html content="The {{site.company}} is pleased t
o announce an upcoming release." %}

The error will say something like this:

Liquid Exception: Invalid syntax for include tag. File contain
s invalid characters or sequences: ... Valid syntax: {% includ
e file.ext param='value' param2='value' %}

To use variables in your include parameters, you must use the “variable
parameter” approach. First you use a capture tag to capture some content.
Then you reference this captured tag in your include. Here’s an example.

In my site configuration file (_congfig.yml), I have a property called
company_name .

company_name: Your company

I want to use this variable in my note include.

First, before the note I capture the content for my note’s include like this:

{% capture company_note %}The {{site.company_name}} company is
pleased to announce an upcoming release.{% endcapture %}

Now reference the company_note in your include parameter like this:

{% include note.html content=company_note}

Here’s the result:

 Note: The Your company is pleased to announce an upcoming release.

Note the omission of quotation marks with variable parameters.

Also note that instead of storing the variable in your site’s configuration file, you
could also put the variable in your page’s frontmatter. Then instead of using
{{site.company_name}} you would use {{page.company_name}} .

Alerts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 99

Markdown inside of callouts and alerts
You can use Markdown inside of callouts and alerts, even though this content
actually gets inserted inside of HTML in the include. This is one of the advantages
of kramdown Markdown. The include template has an attribute of
markdown="span" that allows for the processor to parse Markdown inside of

HTML.

Validity checking
If you have some of the syntax wrong with an alert or callout, you’ll see an error
when Jekyll tries to build your site. The error may look like this:

Liquid Exception: Invalid syntax for include tag: content="Thi
s is my **info** type callout. It has a border on the left whos
e color you define by passing a type parameter. type="info" Val
id syntax: {% include file.ext param='value' param2='value' %}
in mydoc/mydoc_alerts.md

These errors are a good thing, because it lets you know there’s an error in your
syntax. Without the errors, you may not realize that you coded something
incorrectly until you see the lack of alert or callout styling in your output.

In this case, the quotation marks aren’t set correctly. I forgot the closing quotation
mark for the content parameter include.

Blast a warning to users on every page
If you want to blast a warning to users on every page, add the alert or callout to
the _layouts/page.html page right below the frontmatter. Every page using the
page layout (all, by defaut) will show this message.

Alerts PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 100

Icons
Summary: You can integrate font icons through the Font Awesome
and Glyphical Halflings libraries. These libraries allow you to embed
icons through their libraries delivered as a link reference. You don't
need any image libraries downloaded in your project.

Font icon options
The theme has two font icon sets integrated: Font Awesome and Glyphicons
Halflings. The latter is part of Bootstrap, while the former is independent. Font
icons allow you to insert icons drawn as vectors from a CDN (so you don’t have
any local images on your own site).

See Font Awesome icons available
Go to the Font Awesome library (http://fortawesome.github.io/Font-Awesome/icons/) to
see the available icons.

The Font Awesome icons allow you to adjust their size by simply adding fa-2x ,
fa-3x and so forth as a class to the icon to adjust their size to two times or three

times the original size. As vector icons, they scale crisply at any size.

Here’s an example of how to scale up a camera icon:

<i class="fa fa-camera-retro"></i> normal size (1x)
<i class="fa fa-camera-retro fa-lg"></i> fa-lg
<i class="fa fa-camera-retro fa-2x"></i> fa-2x
<i class="fa fa-camera-retro fa-3x"></i> fa-3x
<i class="fa fa-camera-retro fa-4x"></i> fa-4x
<i class="fa fa-camera-retro fa-5x"></i> fa-5x

Here’s what they render to:

 1x fa-lg fa-2x fa-3x fa-4x fa-5x

Icons PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 101

http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/

With Font Awesome, you always use the i tag with the appropriate class. You
also implement fa as a base class first. You can use font awesome icons inside
other elements. Here I’m using a Font Awesome class inside a Bootstrap alert:

<div class="alert alert-danger" role="alert"><i class="fa fa-ex
clamation-circle"></i> Warning: This is a special warnin
g message.

Here’s the result:

 This is a special warning message.

The notes, tips, warnings, etc., are pre-coded with Font Awesome and stored in
the alerts.yml file. That file includes the following:

tip: '<div class="alert alert-success" role="alert"><i class="f
a fa-check-square-o"></i> Tip: '
note: '<div class="alert alert-info" role="alert"><i class="fa
fa-info-circle"></i> Note: '
important: '<div class="alert alert-warning" role="alert"><i cl
ass="fa fa-warning"></i> Important: '
warning: '<div class="alert alert-danger" role="alert"><i clas
s="fa fa-exclamation-circle"></i> Warning: '
end: '</div>'

callout_danger: '<div class="bs-callout bs-callout-danger">'
callout_default: '<div class="bs-callout bs-callout-default">'
callout_primary: '<div class="bs-callout bs-callout-primary">'
callout_success: '<div class="bs-callout bs-callout-success">'
callout_info: '<div class="bs-callout bs-callout-info">'
callout_warning: '<div class="bs-callout bs-callout-warning">'

hr_faded: '<hr class="faded"/>'
hr_shaded: '<hr class="shaded"/>'

This means you can insert a tip, note, warning, or important alert simply by using
these tags.

{% include note.html content=="Add your note here." %}

Icons PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 102

{% include tip.html content=="Add your tip here." %}

{% include important.html content=="Add your important info her
e." %}

{% include warning.html content=="Add your warning here." %}

Here’s the result:

 Note: Add your note here.

 Tip: Here’s my tip.

 Important: This information is very important.

 Warning: If you overlook this, you may die.

The color scheme is the default colors from Bootstrap. You can modify the icons
or colors as needed.

Creating your own combinations
You can innovate with your own combinations. Here’s a similar approach with a
file download icon:

<div class="alert alert-success" role="alert"><i class="fa fa-d
ownload fa-lg"></i> This is a special tip about some file to do
wnload....</div>

And the result:

 This is a special tip about some file to download....

Icons PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 103

Grab the right class name from the Font Awesome library
(http://fortawesome.github.io/Font-Awesome/icons/) and then implement it by
following the pattern shown previously.

If you want to make your fonts even larger than the 5x style, add a custom style to
your stylesheet like this:

.fa-10x.fa-10x{font-size:1700%;}

Then any element with the attribute fa-10x will be enlarged 1700%.

Glyphicon icons available
Glyphicons work similarly to Font Awesome. Go to the Glyphicons library
(http://getbootstrap.com/components/#glyphicons) to see the icons available.

Although the Glyphicon Halflings library doesn’t provide the scalable classes like
Font Awesome, there’s a StackOverflow trick
(http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-

size)

to make the icons behave in a similar way. This theme’s stylesheet
(customstyles.css) includes the following to the stylesheet:

.gi-2x.gi-2x{font-size: 2em;}

.gi-3x.gi-3x{font-size: 3em;}

.gi-4x.gi-4x{font-size: 4em;}

.gi-5x.gi-5x{font-size: 5em;}

Now you just add gi-5x or whatever to change the size of the font icon:

And here’s the result:

Glypicons use the span element instead of i to attach their classes.

Here’s another example:

Icons PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 104

http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
http://getbootstrap.com/components/#glyphicons
http://getbootstrap.com/components/#glyphicons
http://getbootstrap.com/components/#glyphicons
http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size
http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size
http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size

And magnified:

You can also put glyphicons inside other elements:

<div class="alert alert-danger" role="alert">
<span class="glyphicon glyphicon-exclamation-sign" aria-hidde

n="true">
Error: Enter a valid email address

</div>

 Error: Enter a valid email address

Callouts
The previously shown alerts might be fine for short messages, but with longer
notes, the solid color takes up a bit of space. In this theme, you also have the
option of using callouts, which are pretty common in Bootstrap’s documentation
but surprisingly not offered as an explicit element. Their styles have been copied
into this theme, in a way similar to the alerts:

<div class="bs-callout bs-callout-info">
This is a special info message. This is a special info messag

e. This is a special info message. This is a special info messa
ge. This is a special info message. This is a special info mess
age. This is a special info message. This is a special info mes
sage. This is a special info message. </div>

Icons PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 105

 This is a special info message. This is a special info message. This is a
special info message. This is a special info message. This is a special info
message. This is a special info message. This is a special info message. This
is a special info message. This is a special info message.

And here’s the shortcode:

{{site.data.alerts.callout_info}This is a special callout infor
mation message.

Here’s the result:

This is a special callout information message. You can use any of the
following: ``` {{site.data.alerts.callout_default}}
{{site.data.alerts.callout_primary}} {{site.data.alerts.callout_success}}
{{site.data.alerts.callout_info}} {{site.data.alerts.callout_warning}} ``` The
only difference is the color of the left bar. Callouts are explained in a bit
more detail in Alerts (page 94). [news]: /news.html [mydoc_introduction]:
/mydoc_introduction.html [p1_landing_page]: /p1_landing_page.html
[p2_landing_page]: /p2_landing_page.html [titlepage]: /titlepage.html
[tocpage]: /tocpage.html [home]: /home.html [mydoc_release_notes_50]:
/mydoc_release_notes_50.html [mydoc_sample_formatting]:
/mydoc_sample_formatting.html [mydoc_introduction]:
/mydoc_introduction.html [mydoc_supported_features]:
/mydoc_supported_features.html [mydoc_about]: /mydoc_about.html
[mydoc_support]: /mydoc_support.html [mydoc_about_ruby_gems_etc]:
/mydoc_about_ruby_gems_etc.html [mydoc_install_jekyll_on_mac]:
/mydoc_install_jekyll_on_mac.html [mydoc_install_jekyll_on_windows]:
/mydoc_install_jekyll_on_windows.html [mydoc_pages]:
/mydoc_pages.html [mydoc_posts]: /mydoc_posts.html
[mydoc_conditional_logic]: /mydoc_conditional_logic.html
[mydoc_content_reuse]: /mydoc_content_reuse.html [mydoc_collections]:
/mydoc_collections.html [mydoc_sidebar_navigation]:
/mydoc_sidebar_navigation.html [mydoc_yaml_tutorial]:
/mydoc_yaml_tutorial.html [mydoc_tags]: /mydoc_tags.html
[mydoc_series]: /mydoc_series.html [mydoc_adding_tooltips]:
/mydoc_adding_tooltips.html [mydoc_alerts]: /mydoc_alerts.html
[mydoc_icons]: /mydoc_icons.html [mydoc_images]: /mydoc_images.html
[mydoc_labels]: /mydoc_labels.html [mydoc_hyperlinks]:

Icons PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 106

/mydoc_hyperlinks.html [mydoc_navtabs]: /mydoc_navtabs.html
[mydoc_tables]: /mydoc_tables.html [mydoc_syntax_highlighting]:
/mydoc_syntax_highlighting.html [mydoc_commenting_on_files]:
/mydoc_commenting_on_files.html [mydoc_build_arguments]:
/mydoc_build_arguments.html [mydoc_themes]: /mydoc_themes.html
[mydoc_title_checker]: /mydoc_title_checker.html
[mydoc_generating_pdfs]: /mydoc_generating_pdfs.html
[mydoc_help_api]: /mydoc_help_api.html [mydoc_search_configuration]:
/mydoc_search_configuration.html [mydoc_iterm_profiles]:
/mydoc_iterm_profiles.html [mydoc_push_build_to_server]:
/mydoc_push_build_to_server.html [mydoc_no_password_prompts_scp]:
/mydoc_no_password_prompts_scp.html
[mydoc_publishing_github_pages]: /mydoc_publishing_github_pages.html
[mydoc_kb_layout]: /mydoc_kb_layout.html [mydoc_glossary]:
/mydoc_glossary.html [mydoc_faq_layout]: /mydoc_faq_layout.html
[mydoc_troubleshooting]: /mydoc_troubleshooting.html
[mydoc_tag_archives_overview]: /mydoc_tag_archives_overview.html
[tag_formatting]: /tag_formatting.html [tag_navigation]:
/tag_navigation.html [tag_content_types]: /tag_content_types.html
[tag_publishing]: /tag_publishing.html [tag_special_layouts]:
/tag_special_layouts.html [tag_collaboration]: /tag_collaboration.html
[tag_troubleshooting]: /tag_troubleshooting.html
[mydoc_hyperlinks.html#managed-links]:
/mydoc_hyperlinks.html#managed-links.html [index.html#variable-
includes]: /index.html#variable-includes.html [index.html#htmltables]:
/index.html#htmltables.html [index.html#someIdTag]:
/index.html#someIdTag.html [titlepage]: /titlepage.html [tocpage]:
/tocpage.html [p1_landing_page]: /p1_landing_page.html [p1_sample1]:
/p1_sample1.html [p1_sample2]: /p1_sample2.html [p1_sample3]:
/p1_sample3.html [p1_sample4]: /p1_sample4.html [p1_sample5]:
/p1_sample5.html [p1_sample6]: /p1_sample6.html [p1_sample7]:
/p1_sample7.html [titlepage]: titlepage.html [tocpage]: tocpage.html
[p2_landing_page]: /p2_landing_page.html [p2_sample1]:
/p2_sample1.html [p2_sample2]: /p2_sample2.html [p2_sample3]:
/p2_sample3.html [p2_sample4]: /p2_sample4.html [p2_sample5]:
/p2_sample5.html [p2_sample6]: /p2_sample6.html [p2_sample7]:
/p2_sample7.html [p2_sample8]: /p2_sample8.html [p2_sample9]:
/p2_sample9.html [p2_sample10]: /p2_sample10.html [p2_sample11]:
/p2_sample11.html [p2_sample12]: /p2_sample12.html [p2_sample13]:
/p2_sample13.html [p2_sample14]: /p2_sample14.html [news]: /news.html
[mydoc_introduction]: /mydoc_introduction.html [p1_landing_page]:
/p1_landing_page.html [p2_landing_page]: /p2_landing_page.html

Icons PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 107

Icons PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 108

Images
Summary: Store images in the images folder and use the image.html
include to insert images. This include has several options, including
figcaptions, that extract the content from the formatting.

Image Include Template
Instead of using Markdown or HMTL syntax directly in your page for images, the
syntax for images has been extracted out into an image include that allows you to
pass the parameters you need. Include the image.html like this:

{% include image.html file=="jekyll.png" url=="http://jekyllrb.co
m" alt=="Jekyll" caption=="This is a sample caption" %"}

The available include properties are as follows:

Property description

file The name of the file. Store it in the /images folder.

url Whether to link the image to a URL

alt Alternative image text for accessibility and SEO

caption A caption for the image

max-width a maximum width for the image (in pixels). Just specify
the number, not px.

The properties of the include get populated into the image.html template.

Here’s the result:

Jekyll

This is a sample caption

Images PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 109

http://jekyllrb.com
http://jekyllrb.com

SVG Images
You can also embed SVG graphics. If you use SVG, you need to use the HTML
syntax so that you can define a width/container for the graphic. Here’s a sample
embed:

{% include image.html file=="helpapi.svg" url=="http://idratherbe
writing.com/documentation-theme-jekyll/mydoc_help_api/" alt=="Bu
ilding a Help API" caption=="A help API provides a JSON file at
a web URL with content that can be pulled into different target
s" max-width=="600" %}

Here’s the result:

Building a Help API

A help API provides a JSON file at a web URL with content that can be
pulled into different targets

The stylesheet even handles SVG display in IE 9 and earlier through the following
style (based on this gist (https://gist.github.com/larrybotha/7881691)):

/*
* Let's target IE to respect aspect ratios and sizes for img t

ags containing SVG files
*
* [1] IE9
* [2] IE10+
*/

/* 1 */
.ie9.ie9 img[[src$==".svg.svg"]] {

width: 100%;
}
/* 2 */
@media@media screen and (-ms-high-contrast: active), (-ms-high-contra
st: none) {

img[[src$==".svg.svg"]] {
width: 100%;

}
}

Images PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 110

http://idratherbewriting.com/documentation-theme-jekyll/mydoc_help_api/
http://idratherbewriting.com/documentation-theme-jekyll/mydoc_help_api/
https://gist.github.com/larrybotha/7881691
https://gist.github.com/larrybotha/7881691

Also, if you’re working with SVG graphics, note that Firefox does not support SVG
fonts. In Illustrator, when you do a Save As with your AI file and choose SVG, to
preserve your fonts, in the Font section, select “Convert to outline” as the Type
(don’t choose SVG in the Font section).

Also, remove the check box for “Use textpath element for text on a path”. And
select “Embed” rather than “Link.” The following screenshot shows the settings I
use. Your graphics will look great in Firefox.

Images PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 111

Labels
Summary: Labels are just a simple Bootstrap component that you
can include in your pages as needed. They represent one of many
Bootstrap options you can include in your theme.

About labels
Labels might come in handy for adding button-like tags next to elements, such as
POST, DELETE, UPDATE methods for endpoints. You can use any classes from
Bootstrap in your content.

Default
Primary
Success
Info
Warning
Danger

Default Primary Success Info Warning Danger

You can have a label appear within a heading simply by including the span tag in
the heading. However, you can’t mix Markdown syntax with HTML, so you’d have
to hard-code the heading ID for the auto-TOC to work.

Labels PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 112

Links
Summary: When creating links, you can use standard HTML or
Markdown formatting. Note that this approach is susceptible to errors
and broken links, so check your outputs for broken links.

Create an external link
When linking to an external site, use Markdown formatting because it’s simplest:

[Google](http://google.com)

If you need to use HTML, use the normal syntax:

Google

Linking to internal pages
When linking to internal pages, you can use this same syntax:

[Sample](/mydoc-pdf/permalink)

OR

page

Managed Links
You can also adopt an indirect-reference systems for managing links.

Links PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 113

Navtabs
Summary: Navtabs provide a tab-based navagation directly in your
content, allowing users to click from tab to tab to see different panels
of content. Navtabs are especially helpful for showing code samples
for different programming languages. The only downside to using
navtabs is that you must use HTML instead of Markdown.

Common uses
Navtabs are particularly useful for scenarios where you want to show a variety of
options, such as code samples for Java, .NET, or PHP, on the same page.

While you could resort to single-source publishing to provide different outputs for
each unique programming language or role, you could also use navtabs to allow
users to select the content you want.

Navtabs are better for SEO since you avoid duplicate content and drive users to
the same page.

Navtabs demo
The following is a demo of a navtab. Refresh your page to see the tab you
selected remain active.

Profile
Praesent sit amet fermentum leo. Aliquam feugiat, nibh in u ltrices mattis, felis
ipsum venenatis metus, vel vehicula libero mauris a enim. Sed placerat est ac
lectus vestibulum tempor. Quisque ut condimentum massa. Proin venenatis
leo id urna cursus blandit. Vivamus sit amet hendrerit metus.

Profile About Match

Navtabs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 114

Code
Here’s the code for the above (with the filler text abbreviated):

<ul id="profileTabs" class="nav nav-tabs">
<li class="active">Pro

file
About
Match

<div class="tab-content">

<div role="tabpanel" class="tab-pane active" id="profile">
<h2>Profile</h2>

<p>Praesent sit amet fermentum leo....</p>
</div>

<div role="tabpanel" class="tab-pane" id="about">
<h2>About</h2>
<p>Lorem ipsum ...</p></div>

<div role="tabpanel" class="tab-pane" id="match">
<h2>Match</h2>
<p>Vel vehicula</p>

</div>
</div>

Design constraints
Bootstrap automatically clears any floats after the navtab. Make sure you aren’t
trying to float any element to the right of your navtabs, or there will be some
awkward space in your layout.

Appearance in the mini-TOC
If you put a heading in the navtab content, that heading will appear in the mini-
TOC as long as the heading tag has an ID. If you don’t want the headings for each
navtab section to appear in the mini-TOC, omit the ID attribute from the heading
tag. Without this ID attribute in the heading, the mini-TOC won’t insert the heading
title into the mini-TOC.

Navtabs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 115

Must use HTML
You must use HTML within the navtab content because each navtab section is
surrounded with HTML, and you can’t use Markdown inside of HTML.

Match up ID tags
Each tab’s href attribute must match the id attribute of the tab content’s div
section. So if your tab has href="#acme" , then you add acme as the ID attribute
in <div role="tabpanel" class="tab-pane" id="acme"> .

Set an active tab
One of the tabs needs to be set as active, depending on what tab you want to be
open by default (usually the first one).

<div role="tabpanel" class="tab-pane active" id="acme">

Sets a cookie
The navtabs are part of Bootstrap, but this theme sets a cookie to remember the
last tab’s state. The js/customscripts.js file has a long chunk of JavaScript that
sets the cookie. The JavaScript comes from this StackOverflow thread
(http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-

twitter-bootstrap-after-a-page-reload)

.

By setting a cookie, if the user refreshes the page, the active tab is the tab the
user last selected (rather than defaulting to the default active tab).

Functionality to implement
One piece of functionality I’d like to implement is the ability to set site-wide nav
tab options. For example, if the user always chooses PHP instead of Java in the
code samples, it would be great to set this option site-wide by default. However,
this functionality isn’t yet coded.

Navtabs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 116

http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload
http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload
http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload

Tables
Summary: You can format tables using either multimarkdown syntax
or HTML. You can also use jQuery datatables (a plugin) if you need
more robust tables.

Multimarkdown Tables
You can use Multimarkdown syntax for tables. The following shows a sample:

Column 1 | Column 2
--------|----------
cell 1a | cell 1b
cell 2a | cell 2b

This renders to the following:

Column 1 Column 2

cell 1a cell 1b

cell 2a cell 2b

jQuery datables
You also have the option of using a jQuery datatable (https://www.datatables.net/),
which gives you some more options. If you want to use a jQuery datatable, then
add datatable: true in a page’s frontmatter. This will load the right jQuery
datatable scripts for the table on that page only (rather than loading the scripts on
every page of the site.)

Also, you need to add this script to trigger the jQuery table on your page:

Tables PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 117

https://www.datatables.net/
https://www.datatables.net/

<<script>>
$(document).ready(functionfunction(){

$('table.display').DataTable({
paging: truetrue,
stateSave: truetrue,
searching: truetrue

}
);

});
<</script>

The available options for the datable are described in the datatable
documentation (https://www.datatables.net/manual/options), which is excellent.

Additionally, you must add a class of display to your tables. (You can change
the class, but then you’ll need to change the trigger above from table.display
to whatever class you want to you. You might have different triggers with different
options for different tables.)

Since Markdown doesn’t allow you to add classes to tables, you’ll need to use
HTML for any datatables. Here’s an example:

Tables PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 118

https://www.datatables.net/manual/options
https://www.datatables.net/manual/options
https://www.datatables.net/manual/options

<table id="sampleTable" class="display">
<thead>

<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default Value</th>

</tr>
</thead>
<tbody>

<tr>
<td>Parameter 1</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 2</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 3</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 4</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
</tbody>

</table>

This renders to the following:

Tables PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 119

Food Description Category Sample
type

Apples A small, somewhat round and
often red-colored, crispy fruit
grown on trees.

Fruit Fuji

Bananas A long and curved, often-yellow,
sweet and soft fruit that grows in
bunches in tropical climates.

Fruit Snow

Kiwis A small, hairy-skinned sweet
fruit with green-colored insides
and seeds.

Fruit Golden

Oranges A spherical, orange-colored
sweet fruit commonly grown in
Florida and California.

Fruit Navel

Notice a few features:

• You can keyword search the table. When you type a word, the table filters
to match your word.

• You can sort the column order.

• You can page the results so that you show only a certain number of
values on the first page and then require users to click next to see more
entries.

Read more of the datatable documentation
(https://www.datatables.net/manual/options) to get a sense of the options you can
configure. You should probably only use datatables when you have long, massive
tables full of information.

 Note: Try to keep the columns to 3 or 4 columns only. If you add 5+
columns, your table may create horizontal scrolling with the theme.
Additionally, keep the column heading titles short.

Tables PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 120

https://www.datatables.net/manual/options
https://www.datatables.net/manual/options
https://www.datatables.net/manual/options

Syntax highlighting
Summary: You can apply syntax highlighting to your code. This
theme uses pygments and applies color coding based on the lexer
you specify.

About syntax highlighting
For syntax highlighting, use fenced code blocks optionally followed by the
language syntax you want:

```ruby
def foo

puts 'foo'
end

```

This looks as follows:

defdef foofoo
puts 'foo'

endend

Fenced code blocks require a blank line before and after.

If you’re using an HTML file, you can also use the highlight command with
Liquid markup:

{% highlight ruby %}
def foo

puts 'foo'
end

{% endhighlight %}

It renders the same:

Syntax highlighting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 121

defdef foofoo
puts 'foo'

endend

The theme has syntax highlighting specified in the configuration file as follows:

highlighter: rouge

The syntax highlighting is done via the css/syntax.css file.

Available lexers
The keywords you must add to specify the highlighting (in the previous example,
ruby) are called “lexers.” You can search for “lexers.” Here are some common

ones I use:

• js

• html

• yaml

• css

• json

• php

• java

• cpp

• dotnet

• xml

• http

Syntax highlighting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 122

Commenting on files
Summary: You can add a button to your pages that allows people to
add comments.

About the review process
If you’re using the doc as code approach, you might also consider using the same
techniques for reviewing the doc as people use in reviewing code. This approach
will involve using Github to edit the files.

There’s an Edit me button on each page on this theme. This button allows
collaborators to edit the content on Github.

Here’s the code for that button on the page.html layout:

{% unless jekyll.environment == "production" %}

{% if site.github_editme_path %}

<a target="_blank" href="https://github.com/{{site.github_e
ditme_path}}/{{page.folder}}{{page.url | append: ".md"}}{% endi
f %}" class="btn btn-default githubEditButton" role="butto
n"><i class="fa fa-github fa-lg"></i> Edit me

This code is only active if you’re publishing in a development environment, which
is the default.

To activate the production environment, add the production environment flag
(http://jekyllrb.com/docs/configuration/) in your build command:

JEKYLL_ENV=production jekyll serve

In your configuration file, edit the value for github_editme_path . For example,
you might create a branch called “reviews” on your Github repo. Then you would
add something like this in your configuration file for the ‘github_editme_path’:

Commenting on files PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 123

http://jekyllrb.com/docs/configuration/
http://jekyllrb.com/docs/configuration/
http://jekyllrb.com/docs/configuration/

tomjohnson1492/documentation-theme-jekyll/edit/reviews. Here
“tomjohnson1492” is my github account name. The repo name is “documentation-
theme-jekyll”. The “reviews” name is the branch.

Add reviewers as collaborators
If you want people to collaborate on your project so that their edits get committed
to a branch on your project, you need to add them as collaborators. For your
Github repo, click Settings and add the collaborators on the Collaborators tab
using their Github usernames.

If you don’t want to allow anyone to commit to your Github branch, don’t add the
reviewers as collaborators. When someone makes an edit, Github will fork the
theme. The person’s edit then will appear as a pull request to your repo. You can
then choose to merge the change indicated in the pull or not.

 Note: When you process pull requests, you have to accept everything or
nothing. You can’t pick and choose which changes you’ll merge. Therefore
you’ll probably want to edit the branch you’re planning to merge or ask the
contributor to make some changes to the fork before processing the pull
request.

Workflow
Users will make edits in your “reviews” branch (or whatever you want to call it).
You can then commit those edits as you make updates.

When you’re finished making all updates in the branch, you can merge the branch
into the master.

Note that if you’re making updates online, those updates will be out of sync with
any local edits.

 Warning: Don’t make edits both online using Github’s browser-based
interface AND offline on your local machine using your local tools. When you
try to push from your local, you’ll likely get a merge conflict error. Instead,
make sure you do a pull and update on your local after making any edits
online.

Commenting on files PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 124

Prose.io
Prose.io is an overlay on Github that would allow people to make comments in an
easier interface. If you simply go to prose.io (http://prose.io), it asks to authorize
your Github account, and so it will read files directly from Github but in the
Prose.io interface.

Commenting on files PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 125

http://prose.io
http://prose.io

Build arguments
Summary: You use various build arguments with your Jekyll project.
You can also create shell scripts to act as shortcuts for long build
commands. You can store the commands in iTerm as profiles as well.

How to build Jekyll sites
The normal way to build the Jekyll site is through the build command:

jekyll build

To build the site and view it in a live server so that Jekyll rebuilds that site each
time you make a change, use the serve command:

jekyll serve

By default, the _config.yml in the root directory will be used, Jekyll will scan the
current directory for files, and the folder _site will be used as the output. You
can customize these build commands like this:

jekyll serve --config configs/myspecialconfig.yml --destinatio
n ../doc_outputs

Here the configs/myspecialconfig.yml file is used instead of _config.yml .
The destination directory is ../doc_outputs , which would be one level up from
your current directory.

Shortcuts for the build arguments
If you have a long build argument and don’t want to enter it every time in Jekyll,
noting all your configuration details, you can create a shell script and then just run
the script. Simply put the build argument into a text file and save it with the .sh
extension (for Mac) or .bat extension (for Windows). Then run it like this:

Build arguments PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 126

. myscript.sh

My preference is to add the scripts to profiles in iTerm. See iTerm Profiles (page 0)
for more details.

Stop a server
When you’re done with the preview server, press Ctrl+C to exit out of it. If you exit
iTerm or Terminal without shutting down the server, the next time you build your
site, or if you build multiple sites with the same port, you may get a server-
already-in-use message.

You can kill the server process using these commands:

ps aux | grep jekyll

Find the PID (for example, it looks like “22298”).

Then type kill -9 22298 where “22298” is the PID.

To kill all Jekyll instances, use this:

kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')

I recommend creating a profile in iTerm that stores this command. Here’s what the
iTerm settings look like:

Build arguments PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 127

http://127.0.0.1:4010/mydoc_iterm_profiles.html

Build arguments PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 128

Themes
Summary: You can choose between two different themes (one green,
the other blue) for your projects. The theme CSS is stored in the CSS
folder and configured in the configuration file for each project.

Theme options
You can choose a green or blue theme, or you can create your own. In the css
folder, there are two theme files: theme-blue.css and theme-green.css. These files
have the most common CSS elements extracted in their own CSS file. Just
change the hex colors to the ones you want.

In the _includes/head.html file, specify the theme file you want the output to use
— for example, theme_file: theme-green.css . See this line:

<link rel="stylesheet" href="/mydoc-pdf/css/theme-green.css">

Theme differences
The differences between the themes is fairly minimal. The main navigation bar,
sidebar, buttons, and heading colors change color. That’s about it.

In a more sophisticated theming approach, you could use Sass files to generate
rules based on options set in a data file, but I kept things simple here.

Themes PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 129

Generating PDFs
Summary: You can generate a PDF from your Jekyll project. You do
this by creating a web version of your project that is printer friendly.
You then use utility called Prince to iterate through the pages and
create a PDF from them. It works quite well and gives you complete
control to customize the PDF output through CSS, including page
directives and dynamic tags from Prince.

PDF overview
This process for creating a PDF relies on Prince XML to transform the HTML
content into PDF. Prince costs about $500 per license. That might seem like a lot,
but if you’re creating a PDF, you’re probably working for a company that sells a
product, so you likely have access to some resources.

The basic approach is to generate a list of all pages that need to be added to the
PDF, and then add leverage Prince to package them up into a PDF.

It may seem like the setup is somewhat cumbersome, but it doesn’t take long.
Once you set it up, building a pdf is just a matter of running a couple of
commands.

Also, creating a PDF this way gives you a lot more control and customization
capabilities than with other methods for creating PDFs. If you know CSS, you can
entirely customize the output.

Demo
You can see an example of the finished product here:

 PDF Download

1. Set up Prince
Download and install Prince (http://www.princexml.com/doc/installing/).

You can install a fully functional trial version. The only difference is that the title
page will have a small Prince PDF watermark.

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 130

http://127.0.0.1:4010/mydoc-pdf/pdf/mydoc.pdf
http://127.0.0.1:4010/mydoc-pdf/pdf/mydoc.pdf
http://www.princexml.com/doc/installing/
http://www.princexml.com/doc/installing/

2. Create a new configuration file for each of
your PDF targets
The PDF configuration file will build on the settings in the regular configuration file
but will some additional fields. Here’s the configuration file for the mydoc product
within this theme. This configuration file is located in the pdfconfigs folder.

destination: _site/
url: "http://127.0.0.1:4010"
baseurl: "/mydoc-pdf"
port: 4010
output: pdf
product: mydoc
print_title: Jekyll theme for documentation — mydoc product
print_subtitle: version 5.0
output: pdf
defaults:

-
scope:

path: ""
type: "pages"

values:
layout: "page_print"
comments: true
search: true

 Note: Although you’re creating a PDF, you must still build an HTML web
target before running Prince. Prince will pull from the HTML files and from the
file-list for the TOC.

Note that the default page layout specified by this configuration file is
page_print . This layout strips out all the sections that shouldn’t appear in the

print PDF, such as the sidebar and top navigation bar.

Also note that there’s a output: pdf toggle in case you want to make some of
your content unique to PDF output. For example, you could add conditional logic
that checks whether site.output is pdf or web . If it’s pdf , then include
information only for the PDF, and so on. If you’re using nav tabs, you’ll definitely
want to create an alternative experience in the PDF.

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 131

In the configuration file, customize the values for the print_title and
print_subtitle that you want. These will appear on the title page of the PDF.

3. Make sure your sidebar_doc.yml file has a
titlepage.html and tocpage.html
There are two template pages in the root directory that are critical to the PDF:

• titlepage.html

• tocpage.html

These pages should appear in your sidebar YML file (in this product,
mydoc_sidebar.yml):

- title:
output: pdf
type: frontmatter
folderitems:
- title:

url: /titlepage/
output: pdf
type: frontmatter

- title:
url: /tocpage/
output: pdf
type: frontmatter

Leave these pages here in your sidebar. (The output: pdf property means they
won’t appear in your online TOC because the conditional logic of the sidebar.html
checks whether web is equal to pdf or not before including the item in the web
version of the content.)

The code in the tocpage.html is mostly identical to that of the sidebar.html page.
This is essential for Prince to create the page numbers correctly with cross
references.

There’s another file (in the root directory of the theme) that is critical to the PDF
generation process: prince-list.txt. This file simply iterates through the items in
your sidebar and creates a list of links. Prince will consume the list of links from
prince-list.txt and create a running PDF that contains all of the pages listed, with
appropriate cross references and styling for them all.

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 132

 Note: If you have any files that you do not want to appear in the PDF, add
output: web (rather than output: pdf) in the list of attributes in your
sidebar. The prince-list.txt file that loops through the mydoc_sidebar.yml file
to grab the URLs of each page that should appear in the PDF will skip over
any items that do not list output: pdf in the item attributes. For example,
you might not want your tag archives to appear in the PDF, but you probably
will want to list them in the online help navigation.

4. Customize your headers and footers
Open up the css/printstyles.css file and customize what you want for the headers
and footers. At the very least, customize the email address
(youremail@domain.com) that appears in the bottom left.

Exactly how the print styling works here is pretty nifty. You don’t need to
understand the rest of the content in this section unless you want to customize
your PDFs to look different from what I’ve configured. But I’m adding this
information here in case you want to understand how to customize the look and
feel of the PDF output.

This style creates a page reference for a link:

a[[href]]::after {
content: " (page " target-counter(attr(href), page) ")"

}

You don’t want cross references for any link that doesn’t reference another page,
so this style specifies that the content after should be blank:

a[[href*=*="mailto"]]::after,, a[[data-toggle=="tooltip"]]::after,, a[[hr
ef]].noCrossRef.noCrossRef::after {

content: "";
}

 Tip: If you have a link to a file download, or some other link that shouldn’t
have a cross reference (such as link used in JavaScript for navtabs or
collapsible sections, for example, add noCrossRef as a class to the link to
avoid having it say “page 0” in the cross reference.

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 133

This style specifies that after links to web resources, the URL should be inserted
instead of the page number:

a[[href^=^="http::"]]::after,, a[[href^=^="https::"]]::after {
content: " (" attr(href) ")";

}

This style sets the page margins:

@page@page {
margin: 60pt 90pt 60pt 90pt;
font-family: sans-serif;
font-style:none;
color: gray;

}

To set a specific style property for a particular page, you have to name the page.
This allows Prince to identify the page.

First you add frontmatter to the page that specifies the type. For the
titlepage.html, here’s the frontmatter:

type: title

For the tocpage, here’s the frontmatter:

type: frontmatter

For the index.html page, we have this type tag (among others):

type: first_page

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 134

The default_print.html layout will change the class of the body element based on
the type value in the page’s frontmatter:

<body class="{% ifif page.type ==== "title"%}title{% elsifelsif page.typ
e ==== "frontmatter" %}frontmatter{% elsifelsif page.type ==== "first_pa
ge" %}first_page{% endifendif %} print">

Now in the css/printstyles.css file, you can assign a page name based on a
specific class:

body.title.title { page: title }

This means that for content inside of body class="title" , we can style this
page in our stylesheet using @page title .

Here’s how that title page is styled:

@page@page title {
@top-left@top-left {

content: " ";
}
@top-right@top-right {

content: " "
}
@bottom-right@bottom-right {

content: " ";
}
@bottom-left@bottom-left {

content: " ";
}

}

As you can see, we don’t have any header or footer content, because it’s the title
page.

For the tocpage.html, which has the type: frontmatter , this is specified in the
stylesheet:

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 135

body.frontmatter.frontmatter { page: frontmatter }
body.frontmatter.frontmatter {counter-reset: page 1}

@page@page frontmatter {
@top-left@top-left {

content: prince-script(guideName);
}
@top-right@top-right {

content: prince-script(datestamp);
}
@bottom-right@bottom-right {

content: counter(page, lower-roman);
}
@bottom-left@bottom-left {

content: "youremail@domain.com"; }
}

With counter(page, lower-roman) , we reset the page count to 1 so that the
title page doesn’t start the count. Then we also add some header and footer info.
The page numbers start counting in lower-roman numerals.

Finally, for the first page (which doesn’t have a specific name), we restart the
counting to 1 again and this time use regular numbers.

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 136

body.first_page.first_page {counter-reset: page 1}

h1 { string-set: doctitle content() }

@page@page {
@top-left@top-left {

content: string(doctitle);
font-size: 11px;
font-style: italic;

}
@top-right@top-right {

content: prince-script(datestamp);
font-size: 11px;

}

@bottom-right@bottom-right {
content: "Page " counter(page);
font-size: 11px;

}
@bottom-left@bottom-left {

content: prince-script(guideName);
font-size: 11px;

}
}

You’ll see some other items in there such as prince-script . This means we’re
using JavaScript to run some functions to dynamically generate that content.
These JavaScript functions are located in the _includes/head_print.html:

<<script>>
Prince.addScriptFunc("datestamp", functionfunction() {

returnreturn "PDF last generated: July 03, 2016";
});

<</script>

<<script>>
Prince.addScriptFunc("guideName", functionfunction() {

returnreturn "Jekyll theme for documentation — mydoc product
User Guide";

});
<</script>

There are a couple of Prince functions that are default functions from Prince. This
gets the heading title of the page:

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 137

content: string(doctitle);

This gets the current page:

content: "Page " counter(page);

Because the theme uses JavaScript in the CSS, you have to add the
--javascript tag in the Prince command (detailed later on this page).

5. Customize the PDF script
Duplicate the pdf-mydocf.sh file in the root directory and customize it for your
specific configuration files.

echo 'Killing all Jekyll instances'
kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')
clear

echo "Building PDF-friendly HTML site for Mydoc ...";
jekyll serve --detach --config _config.yml,pdfconfigs/config_my
doc_pdf.yml;
echo "done";

echo "Building the PDF ...";
prince --javascript --input-list=_site/pdfconfigs/prince-list.t
xt -o _pdf/mydoc.pdf;
echo "done";

Note that the first part kills all Jekyll instances. This way you won’t try to serve
Jekyll at a port that is already occupied.

The jekyll serve command serves up the HTML-friendly PDF configurations
for our two projects. This web version is where Prince will go to get its content.

The prince script issues a command to the Prince utility. JavaScript is enabled
(--javascript), and we tell it exactly where to find the list of files
(--input-list) — just point to the prince-list.txt file. Then we tell it where and
what to output (-o).

Make sure that the path to the prince-list.txt is correct. For the output directory, I
like to output the PDF file into my project’s source (into the files folder). Then
when I build the web output, the PDF is included and something I can refer to.

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 138

 Note: You might not want to include the PDF in your project files, since
you’re likely committing the PDF to Github and as a result saving the
changes from one PDF version to another with each save.

6. Add conditions for your new builds in the
sidebarconfigs.html file
In the _includes/custom/sidebarconfigs.html file, there’s a section that looks like
this:

Add your own condition here that points to your sidebar.

What this does is allow the prince-list.txt and toc.html files to use a variable for the
sidebar (called sidebar_pdf) when iterating through the sidebar. Otherwise, you
would need to create a unique prince-list.txt and toc.html file for each separate
PDF output you have.

7. Add a download button for the PDF
You can add a download button for your PDF using some Bootstrap button code:

<bu
tton type="button" class="btn btn-default" aria-label="Left Ali
gn"><span class="glyphicon glyphicon-download-alt" aria-hidde
n="true"> PDF Download</button>

Here’s what that looks like:

 PDF Download

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 139

JavaScript conflicts
If you have JavaScript on any of your pages, Prince will note errors in Terminal like
this:

error: TypeError: value is not an object

However, the PDF will still build.

You need to conditionalize out any JavaScript from your PDF web output before
building your PDFs. Make sure that the PDF configuration files have the
output: pdf property.

Then surround the JavaScript with conditional tags like this:

{% unless site.output == "pdf" %}
javascript content here ...
{% endunless %}

For more detail about using unless in conditional logic, see Conditional logic
(page 0). What this code means is “run this code unless this value is the case.”

Overriding Bootstrap Print Styles
The theme relies on Bootstrap’s CSS for styling. However, for print media,
Bootstrap applies the following style:

@media print{*,:after,:before{color:#000!important;text-shado
w:none!important;background:0 0!important;-webkit-box-shadow:no
ne!important;box-shadow:none!important}

This is minified, but basically the * (asterisk) means select all, and applied the
color #000 (black). As a result, the Bootstrap style strips out all color from the PDF
(for Bootstrap elements).

This is problematic for code snippets that have syntax highlighting. I decided to
remove this de-coloring from the print output. I commented out the Bootstrap
style:

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 140

http://127.0.0.1:4010/mydoc_conditional_logic.html
http://127.0.0.1:4010/mydoc_conditional_logic.html

@media print{*,:after,:before{/*color:#000!important;*/text-sha
dow:none!important;/*background:0 0!important*/;-webkit-box-sha
dow:none!important;box-shadow:none!important}

If you update Bootrap, make sure you make this edit. (Sorry, admittedly I couldn’t
figure out how to simply overwrite the * selector with a later style.)

I did, however, remove the color from the alerts and lighten the background
shading for pre elements. The printstyles.css has this setting.

Generating PDFs PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 141

Help APIs and UI tooltips
Summary: You can loop through files and generate a JSON file that
developers can consume like a help API. Developers can pull in
values from the JSON into interface elements, styling them as
popovers for user interface text, for example. The beauty of this
method is that the UI text remains in the help system (or at least in a
single JSON file delivered to the dev team) and isn't hard-coded into
the UI.

Full code demo of content API
You can create a help API that developers can use to pull in content.

For the full code demo, see the notes in the tooltip demo.

In this demo, the popovers pull in and display content from the information in a
tooltips.json (page 0) file located in the same directory.

Instead of placing the JSON source in the same directory, you could also host the
JSON file on another site.

Additionally, instead of tooltip popovers, you could also print content directly to
the page. Basically, whatever you can stuff into a JSON file, developers can
integrate it onto a page.

Diagram overview
Here’s a diagram showing the basic idea of the help API:

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 142

http://127.0.0.1:4010/mydoc-pdf/tooltips
http://127.0.0.1:4010/mydoc-pdf/tooltips.json

sample help text sample help
text sample help text sample
help text sample help text
sample help text sample help

Getting Started
text sample help text
sample help text sample
help text sample help
text sample help text
sample help text sample

Learning Course
sample help text sample help
text sample help text sample
help text sample help text
sample help text sample help

sample help
text sample
help text
sample help
text sample
help text
sample help
text sample

Help API

 pullin
g fr

om A
PI

 p
ul

lin
g

fr
om

 A
PI

 pulling from API

 pulling from
 A

PI

website #1

website #2

website #4

website #3

Is this really an API? Well, sort of. The help content is pushed out into a JSON file
that other websites and applications can easily consume. The endpoints don’t
deliver different data based on parameters added to a URL. But the overall
concept is similar to an API: you have a client requesting resources from a server.

Note that in this scenario, the help is openly accessible on the web. If you have a
private system, it’s more complicated.

To deliver help this way using Jekyll, follow the steps in each of the sections
below.

1. Create a “collection” for the help content
A collection is another content type that extends Jekyll beyond the use of pages
and posts. Call the collection “tooltips.”

Add the following information to your configuration file to declare your collection:

collections:
tooltips:

output: false

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 143

In your Jekyll project’s root directory, create a new folder called “_tooltips” and
put every page that you want to be part of that tooltips collection inside that
folder.

In Jekyll, folders that begin with an underscore (“_”) aren’t included in the output.
However, in the collection information that you add to your configuration file, if you
change output to true , the tooltips folder will appear in the output, and each
page inside tooltips will be generated. You most likely don’t want this for tooltips
(you just want the JSON file), so make the output setting false .

2. Create tooltip definitions in a YAML file
Inside the _data folder, create a YAML file called something like definitions.yml.
Add the definitions for each of your tooltips here like this:

basketball: "Basketball is a sport involving two teams of five
players each competing to put a ball through a small circular r
im 10 feet above the ground. Basketball requires players to be
in top physical condition, since they spend most of the game ru
nning back and forth along a 94-foot-long floor."

The definition of basketball is stored this data file so that you can re-use it in other
parts of the help as well. You’ll likely want the definition to appear not only in the
tooltip in the UI, but also in the regular documentation as well.

3. Create pages in your collection
Create pages inside your new tooltips collection (that is, inside the _tooltips
folder). Each page needs to have a unique id in the frontmatter as well as a
product . Then reference the definition you created in the definitions.yml file.

Here’s an example:

```liquid
---
id: basketball
product: mydoc
---

{{site.data.definitions.basketball}}
```

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 144

You need to create a separate page for each tooltip you want to deliver.

The product attribute is required in the frontmatter to distinguish the tooltips
produced here from the tooltips for other products in the same _tooltips folder.
When creating the JSON file, Jekyll will iterate through all the pages inside
_tooltips, regardless of any subfolders included here.

4. Create a JSON file that loops through your
collection pages
Now it’s time to create a JSON file with Liquid code that iterates through our
tooltip collection and grabs the information from each tooltip file.

Inside your project’s pages directory (e.g., mydoc), add a file called “tooltips.json.”
(You can use whatever name you want.) Add the following to your JSON file:

layout: none
search: exclude

{
"entries":
[
{% for page in site.tooltips %}
{% ifif page.product ==== "mydoc" %}
{
"id" : "{{ page.id }}",
"body": "{{ page.content | strip_newlinesstrip_newlines | replacereplace: '\',
'\\\\' | replacereplace: '"', '\\"' }}"
} {% unlessunless forloop.last %},{% endunlessendunless %}
{% endifendif %}
{% endfor %}
]
}

Change “mydoc” to the product name you used in each of the tooltip files. The
template here will only include content in the JSON file if it meets the product
attribute requirements. We need this if statement to prevent tooltips from other
products from being included in the JSON file.

This code will loop through all pages in the tooltips collection and insert the id
and body into key-value pairs for the JSON code. Here’s an example of what that
looks like after it’s processed by Jekyll in the site build:

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 145

{
"entries": [

{
"id": "baseball",
"body": "Baseball is considered America's pasttime spor

t, though that may be more of a historical term than a current
one. There's a lot more excitement about football than basebal
l. A baseball game is somewhat of a snooze to watch, for the mo
st part."

},
{

"id": "basketball",
"body": "Basketball is a sport involving two teams of fiv

e players each competing to put a ball through a small circula
r rim 10 feet above the ground. Basketball requires players to
be in top physical condition, since they spend most of the gam
e running back and forth along a 94-foot-long floor."

},
{

"id": "football",
"body": "No doubt the most fun sport to watch, football a

lso manages to accrue the most injuries with the players. From
concussions to blown knees, football players have short sport l
ives."

},
{

"id": "soccer",
"body": "If there's one sport that dominates the world la

ndscape, it's soccer. However, US soccer fans are few and far b
etween. Apart from the popularity of soccer during the World Cu
p, most people don't even know the name of the professional soc
cer organization in their area."

}
]

}

You can also view the same JSON file here: tooltips.json (page 0).

You can add different fields depending on how you want the JSON to be
structured. Here we just have to fields: id and body . And the JSON is looking
just in the tooltips collection that we created.

 Tip: Check out Google’s style guide
(https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml) for
JSON. These best practices can help you keep your JSON file valid.

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 146

http://127.0.0.1:4010/mydoc-pdf/tooltips.json
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml

Note that you can create different JSON files that specialize in different content.
For example, suppose you have some getting started information. You could put
that into a different JSON file. Using the same structure, you might add an if tag
that checks whether the page has frontmatter that says
type: getting_started or something. Or you could put the content into

separate collection entirely (different from tooltips).

By chunking up your JSON files, you can provide a quicker lookup. (I’m not sure
how big the JSON file can be before you experience any latency with the jQuery
lookup.)

5. Build your site and look for the JSON file
When you build your site, Jekyll will iterate through every page in your _tooltips
folder and put the page id and body into this format. In the output, look for the
JSON file in the tooltips.json file. You’ll see that Jekyll has populated it with
content. This is because of the triple hyphen lines in the JSON file — this instructs
Jekyll to process the file.

6. Allow CORS access to your help if stored
on a remote server
You can simply deliver the JSON file to devs to add to the project. But if you have
the option, it’s best to keep the JSON file stored in your own help system.
Assuming you have the ability to update your content on the fly, this will give you
completely control over the tooltips without being tied to a specific release
window.

When people make calls to your site from other domains, you must allow them
access to get the content. To do this, you have to enable something called CORS
(cross origin resource sharing) within the server where your help resides.

In other words, people are going to be executing calls to reach into your site and
grab your content. Just like the door on your house, you have to unlock it so
people can get in. Enabling CORS is unlocking it.

How you enable CORS depends on the type of server.

If your server setup allows htaccess files to override general server permissions,
create an .htaccess file and add the following:

Header set Access-Control-Allow-Origin "*"

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 147

Store this in the same directory as your project. This is what I’ve done in a
directory on my web host (bluehost.com). Inside http://idratherassets.com/wp-
content/apidemos/, I uploaded a file called “.htaccess” with the preceding code.

After I uploaded it, I renamed it to .htaccess, right-clicked the file and set the
permissions to 774.

To test whether your server permissions are set correctly, open a terminal and run
the following curl command pointing to your tooltips.json file:

curl -I http://idratherassets.com/wp-content/apidemos/tooltip
s.json

The -I command tells cURL to return the request header only.

If the server permissions are set correctly, you should see the following line
somewhere in the response:

Access-Control-Allow-Origin: *

If you don’t see this response, CORS isn’t allowed for the file.

If you have an AWS S3 bucket, you can supposedly add a CORS configuration to
the bucket permissions. Log into AWS S3 and click your bucket. On the right, in
the Permissions section, click Add CORS Configuration. In that space, add the
following policy:

<CORSConfiguration>
<CORSRule>

<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>

</CORSRule>
</CORSConfiguration>

(Although this should work, in my experiment it doesn’t. And I’m not sure why…)

In other server setups, you may need to edit one of your Apache configuration
files. See Enable CORS (http://enable-cors.org/server.html) or search online for ways
to allow CORS for your server.

If you don’t have CORS enabled, users will see a CORS error/warning message in
the console of the page making the request.

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 148

http://enable-cors.org/server.html
http://enable-cors.org/server.html

 Tip: If enabling CORS is problematic, you could always just send
developers the tooltips.json file and ask them to place it on their own server.

7. Explain how developers can access the
help
Developers can access the help using the .get method from jQuery, among
other methods. Here’s an example of how to get a page with the ID of
basketball :

<<script type=="text/javascript">>
$(document).ready(functionfunction(){

varvar url == "mydoc_tooltips_source.json";

$.get(url, functionfunction(data) {

$.each(data.entries, functionfunction(i, page) {
ifif (page.id ==== "basketball") {
$("#basketball").attr("data-content", page.body

);
}

});
});

});
<</script>

View the tooltip demo for a demo.

The url in the demo is relative, but you could equally point it to an absolute path
on a remote host assuming CORS is enabled on the host.

The each method looks through all the JSON content to find the item whose
page.id is equal to basketball . It then looks for an element on the page

named #basketball and adds a data-content attribute to that element.

 Warning: Make sure your JSON file is valid. Otherwise, this method won’t
work. I use the JSON Formatter extension for Chrome

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 149

http://127.0.0.1:4010/mydoc-pdf/tooltips
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en

(https://chrome.google.com/webstore/detail/json-formatter/

bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en)

. When I go to the tooltips.json page in my browser, the JSON content — if
valid — is nicely formatted (and includes some color coding). If the file isn’t
valid, it’s not formatted and there isn’t any color. You can also check the
JSON formatting using JSON Formatter and Validator
(http://jsonformatter.curiousconcept.com/). If your JSON file isn’t valid, identify
the problem area using the validator and troubleshoot the file causing issues.
It’s usually due to some code that isn’t escaping correctly.

Why data-content ? Well, in this case, I’m using Bootstrap popovers
(http://getbootstrap.com/javascript/#popovers) to display the tooltip content. The
data-content attribute is how Bootstrap injects popovers.

Here’s the section on the page where the popover is inserted:

<p>Basketball <span class="glyphicon glyphicon-info-sign" id="b
asketball" data-toggle="popover"></p>

Notice that I just have id="basketball" added to this popover element.
Developers merely need to add a unique ID to each tooltip they want to pull in the
help content. Either you tell developers the unique ID they should add, or ask
them what IDs they added (or just tell them to use an ID that matches the field’s
name).

In order to use jQuery and Bootstrap, you’ll need to add the appropriate
references in the head tags of your page:

<<link rel=="stylesheet" href=="https://maxcdn.bootstrapcdn.com/bo
otstrap/3.3.2/css/bootstrap.min.css">>
<<script src=="https://ajax.googleapis.com/ajax/libs/jquery/1.1
1.2/jquery.min.js"><></script>
<<script src=="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/j
s/bootstrap.min.js"><></script>

<<script type=="text/javascript">>
$(document).ready(functionfunction(){

$('[data-toggle="popover"]').popover({
placement : 'right',
trigger: 'hover',
html: truetrue

});

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 150

https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
http://jsonformatter.curiousconcept.com/
http://jsonformatter.curiousconcept.com/
http://jsonformatter.curiousconcept.com/
http://getbootstrap.com/javascript/#popovers
http://getbootstrap.com/javascript/#popovers
http://getbootstrap.com/javascript/#popovers

Again, see the Tooltip Demo for a demo of the full code.

Note that even though you reference a Bootstrap JS script, Bootstrap’s popovers
require you to initialize them using the above code as well — they aren’t turned on
by default.

View the source code of the tooltip demo for the full comments.

8. Create easy links to embed the help in your
help site
You might also want to insert the same content into different parts of your help
site. For example, if you have tooltips providing definitions for fields, you’ll
probably want to create a page in your help that lists those same definitions.

You could use the same method developers use to pull help content into their
applications. But it will probably be easier to simply use Jekyll’s tags for doing it.

Here’s how you would reuse the content:

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 151

http://127.0.0.1:4010/tooltips
http://127.0.0.1:4010/mydoc-pdf/tooltips

<h2>Reuse Demo</h2>

<table>
<thead>
<tr>
<th>Sport</th>
<th>Comments</th>
</tr>
</thead>
<tbody>

<tr>
<td>Basketball</td>
<td>{{site.data.definitions.basketball}}</td>
</tr>

<tr>
<td>Baseball</td>
<td>{{site.data.definitions.baseball}}</td>
</tr>

<tr>
<td>Football</td>
<td>{{site.data.definitions.football}}</td>
</tr>

<tr>
<td>Soccer</td>
<td>{{site.data.definitions.soccer}}</td>
</tr>
</tbody>
</table>

And here’s the code:

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 152

Reuse Demo
Sport Comments

Basketball Basketball is a sport involving two teams of five players
each competing to put a ball through a small circular
rim 10 feet above the ground. Basketball requires play-
ers to be in top physical condition, since they spend
most of the game running back and forth along a
94-foot-long floor.

Baseball Baseball is considered America's pasttime sport,
though that may be more of a historical term than a
current one. There's a lot more excitement about foot-
ball than baseball. A baseball game is somewhat of a
snooze to watch, for the most part.

Football No doubt the most fun sport to watch, football also
manages to accrue the most injuries with the players.
From concussions to blown knees, football players
have short sport lives.

Soccer If there's one sport that dominates the world land-
scape, it's soccer. However, US soccer fans are few
and far between. Apart from the popularity of soccer
during the World Cup, most people don't even know
the name of the professional soccer organization in
their area.

Now you have both documentation and UI tooltips generated from the same
definitions file.

Help APIs and UI tooltips PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 153

Search configuration
Summary: The search feature uses JavaScript to look for keyword
matches in a JSON file. The results show instant matches, but it
doesn't provide a search results page like Google. Also, sometimes
invalid formatting can break the JSON file.

About search
The search is configured through the search.json file in the root directory. The
search is a simple search that looks at content in pages. It looks at titles,
summaries, keywords, and tags.

However, the search doesn’t work like google — you can’t hit return and see a list
of results on the search results page, with the keywords in bold. Instead, this
search shows a list of page titles that contain keyword matches. It’s fast, but
simple.

Excluding pages from search
By default, every page is included in the search. Depending on the type of content
you’re including, you may find that some pages will break the JSON formatting. If
that happens, then the search will no longer work.

If you want to exclude a page from search add search: exclude in the page’s
frontmatter.

Troubleshooting search
You should exclude any files from search that you don’t want appearing in the
search results. For example, if you have a tooltips.json file or prince-list.txt, don’t
include it, as the formatting will break the JSON format.

If any formatting in the search.json file is invalid (in the build), search won’t work.
You’ll know that search isn’t working if no results appear when you start typing in
the search box.

Search configuration PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 154

If this happens, go directly to the search.json file in your browser, and then copy
the content. Go to a JSON validator (http://jsonlint.com/) and paste in the content.
Look for the line causing trouble. Edit the file to either exclude the page from
search or fix the syntax so that it doesn’t invalidate the JSON. (Note that tabs in
the body will invalidate JSON.)

The search.json file already tries to strip out content that would otherwise make
the JSON invalid.

Including the body field in search
I’ve found that include the body field in the search creates too many problems,
and so I’ve removed body from the search. You can see the results of including
the body by adding this along with the other fields in search.json:

"body": "{{ page.content | strip_html | strip_newlines |
replace: '\', '\\\\' | replace: '"', '\\"' | replace: '^t',
' ' }}",

Note that the last replace, | replace: '^t', ' ' , looks for any tab character
and replaces it with four spaces. (Tab characters invalidate JSON.) If you run into
other problematic formatting, you can use regex expressions to find and replace
the content. See Regular Expressions
(http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html)

for details on finding and replacing code.

It’s possible that the formatting may not account for all the scenarios that would
invalidate the JSON. (Sometimes it’s an extra comma after the last item that
makes it invalid.)

Note that including the body in the search creates other problems as well. The
search results show the most immediate matches in the JSON file. If several
topics have matches for the keyword in the body, these matches might appear
before other files that have matches in the title, summary, or keywords. This is
because this simple search does not provide any weighting mechanisms for the
content.

Customizing search results
At some point, you may want to customize the search results more. Here’s a little
more detail that will be helpful. The search.json file retrieves various page values:

Search configuration PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 155

http://jsonlint.com/
http://jsonlint.com/
http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html
http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html
http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html

title: search
layout: none
search: exclude

[
{% for page in site.pages %}
{% unless page.search == "exclude" %}
{
"title": "{{ page.title | escape }}",
"tags": "{{ page.tags }}",
"keywords": "{{page.keywords}}",
"url": "{{ page.url | prepend: site.baseurl }}",
"summary": "{{page.summary | strip }}"
},
{% endunless %}
{% endfor %}

{% for post in site.posts %}

{
"title": "{{ post.title | escape }}",
"tags": "{{ post.tags }}",
"keywords": "{{post.keywords}}",
"url": "{{ post.url | prepend: site.baseurl }}",
"summary": "{{post.summary | strip }}"
}
{% unless forloop.last %},{% endunless %}
{% endfor %}

]

The _includes/topnav.html file then makes use of these values:

Search configuration PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 156

<!--start search-->
<div id="search-demo-container">

<input type="text" id="search-input" placeholder="searc
h...">

<ul id="results-container">
</div>
<script src="/mydoc-pdf/js/jekyll-search.js" type="text/jav

ascript"></script>
<script type="text/javascript">

SimpleJekyllSearch.init({
searchInput: document.getElementById('search-in

put'),
resultsContainer: document.getElementById('resu

lts-container'),
dataSource: '/mydoc-pdf/search.json',
searchResultTemplate: '<a href="{url}" titl

e="Search configuration">{title}',
noResultsText: 'No results found.',

limit: 10,
fuzzy: truetrue,

})
</script>
<!--end search-->

Where you see {url} and {title} , the search is retrieving the values for these
as specified in the search.json file.

More robust search
For more robust search, consider integrating either Algolia (http://algolia.com) or
Swifttype (http://swiftype.com).

Search configuration PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 157

http://algolia.com
http://algolia.com
http://swiftype.com
http://swiftype.com

iTerm profiles
Summary: You can set up profiles in iTerm to facilitate the build
process with just a few clicks. This can make it a lot easier to quickly
build multiple outputs.

About iTerm profiles
When you’re working with tech docs, a lot of times you have builds that push files
onto different servers, or that build the content for different environments. It can
be a hassle to type out these commands each time. Instead, it’s easier to
configure iTerm with profiles that initiate the scripts.

Set up profiles
1. Open iTerm and go to Profiles > Open Profiles.

2. Click Edit Profiles.

3. Click the + button in the lower-left corner to create a new profile.

4. In the Name field, type a name describing the output, such as
Doc theme -- designers .

5. In the Send text at start field, type the command for the build script,
such as this:

JEKYLL_ENV=production jekyll serve

Leave the Login shell option selected.

6. In the Working Directory section, select Directory and enter the directory
for your project, such as /Users/tjohnson/projects/documentation-
theme-jekyll.

7. Close the profiles panel.

Here’s an example:

iTerm profiles PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 158

Launching a profile
1. In iTerm, make sure the Toolbar is shown. Go to View > Toggle Toolbar.

2. Click the New button and select your profile.

 Tip: When you’re done with the session, make sure to click Ctrl+C.

iTerm profiles PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 159

Pushing builds to server
Summary: You can push your build to AWS using commands from
the command line. By including your copy commands in commands,
you can package all of the build and deploy process into executable
scripts.

Pushing to AWS S3
If you have the AWS Command Line Interface installed and are pushing your
builds to AWS, the following commands show how you can build and push to an
AWS location from the command line:

aws s3 cp ~/users/tjohnson/projects/mydocproject/ s3://[aws pat
h]docpath/mydocproject --recursive

aws s3 cp ~/users/tjohnson/projects/anotherdocproject2/ s3://[a
ws path]docpath/anotherdocproject --recursive

The first path in the argument is the local location; the second path is the
destination.

Pushing to a regular server
If you’re pushing to a regular server that you can ssh into, you can use scp
commands to push your build. Here’s an example:

scp -r /users/tjohnson/projects/mydocproject/ name@domain:/var/
www/html/mydocproject

Similar to the above, the first path is the local location; the second path is the
destination.

Pushing builds to server PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 160

Getting around the password prompts
in SCP

Summary: You can publish your docs via SSH through a Terminal
window or more likely, via a shell script that you simply execute as
part of the publishing process. However, you will be prompted for
your password with each file transfer unless you configure
passwordless SSH. The basic process for setting up password less
SSH is to create a key on your own machine that you also transfer to
the remote machine. When you use the SCP command, the remote
machine checks that you have the authorized key and allows access
without a password prompt.

Get rid of password prompts
To remove the password prompts when connecting to servers via SSH:

1. On your local machine, go to your .ssh directory:

cd ~/.ssh

Note that any directory that starts with a dot, like .ssh, is hidden. You can
view hidden folders by enabling them on your Mac. See this help topic
(http://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-

mavericks/)

. Additionally, when you look at the files in a directory, use ls -a instead of
just ls to view the hidden files.

If you don’t have an .ssh directory, create one with mkdir .ssh .

2. Create a new key inside your .ssh directory:

ssh-keygen -t rsa

3. Press Enter. When prompted about “Enter file in which to save the key
…”, press Enter again.

Getting around the password prompts in SCP PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 161

http://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/
http://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/
http://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/

This will create a file called id_rsa.pub (the key) and id_rsa (your
identification) in this .ssh folder.

When prompted for a passphrase for the key, just leave it empty and
press Enter twice. You should see something like this:

tjohnson-mbpr13:.ssh tjohnson$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/yourname/.s
sh/id_rsa.
Your public key has been saved in /Users/yourname/.ssh/i
d_rsa.pub.
The key fingerprint is:
9a:8f:b5:495:39:78:t5:dc:19:d6:29:66:02:e8:02:a0 yournam
e@yourname-mbpr99.local

The key’s randomart image is:

+--[RSA 2048]----+
|. |
|+ |
|E |
|o. . |
|.. = o S |
|.&^ + 7i = o |
| = B . |
| o O + |
| *.o |
+-----------------+

As you can see, RSA draws a picture for you. Take a screenshot of the
picture, print it out, and put it up on your fridge.

4. Open up another terminal window (in iTerm, open another tab), and SSH
in to your remote server:

ssh <your_username>@remoteserver.com

5. Change <your_username> to your actual username, such as tjohnson.

When you connect, you’ll be prompted for your password.

Getting around the password prompts in SCP PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 162

When you connect, by default you are routed to the personal folder on the
directory. For example, /home/remoteserver/<your_username> . To
see this directory, type pwd (or dir on Windows).

6. Create a new directory called .ssh on remoteserver.com server inside the
/home/remoteserver/<your_username> directory.

mkdir -p .ssh

You can ensure that it’s there with this command:

ls -a

Without the -a, the hidden directory won’t be shown.

7. Open another Terminal window and browse to /Users//.ssh on your local
machine.

cd ~/.ssh

8. Copy the id_rsa.pub from the /.ssh directory on your local machine to the
/home/remoteserver//.ssh directory on the remoteserver server:

scp id_rsa.pub <your-username>@yourserver.com:/home/remo
teserver/<your-username>/.ssh

9. Switch back into your terminal window that is connected to
remoteserver.com, change directory to the .ssh directory, and rename the
file from id_rsa.pub to authorized_keys (without any file extension):

mv id_rsa.pub authorized_keys

10. Change the file permissions to 700:

chmod 700 authorized_keys

Getting around the password prompts in SCP PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 163

Now you should be able to SSH onto remoteserver without any password
prompts.

11. Open another terminal (which is not already SSH’d into
remoteserver.com) and try the following:

ssh <your_username>@remoteserver.com

If successful, you shouldn’t be prompted for a password.

Now that you can connect without password prompts, you can use the
scp scripts to transfer files to the server without password prompts. For
example:

scp -r ../doc_outputs/mydoc/writers <your-username>@remo
teserver:/var/www/html/

Getting around the password prompts in SCP PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 164

Publishing on Github Pages
Summary: You can publish your project on Github Pages, which is a
free web hosting service provided by Github. All you need is to put
your content into a Github repo branch called gh-pages and make
this your default branch in your repo. With a Jekyll site, you just
commit your entire project into the gh-pages branch and Github
Pages will build the site for you.

Set up your Github repo
1. Make sure you have Git installed. You can download and install Git for

Windows here (https://git-scm.com/download/win) and Git for Mac here
(https://git-scm.com/download/mac). If you’re on a Mac, chances are you
might already have git installed. You can check by opening up a terminal
and typing which git .

2. Go to Github.com (http://github.com) and sign up for an account.

3. Click the + button in the upper-right corner and select New repository.

4. Name the repository something like mydoctheme.

5. Type a description..

6. Select the Initialize this repository with a README check box.

7. Add a license if desired.

8. Leave the other options at the defaults and click Create repository.

9. Click the Settings button.

10. Go to your repository’s home page, and click the branch drop-down
menu.

11. Create a new branch called gh-pages.

12. Click Settings and change the default branch to gh-pages.

13. Go back to your repository’s homepage. With the gh-pages branch
selected, copy the https clone url:

14. Open a terminal, browse to a convenient location for your project, and
type

Publishing on Github Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 165

https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
http://github.com
http://github.com

git clone https://github.com/tomjohnson1492/myreponame.git ,
replacing the https://github.com/tomjohnson1492/myreponame.git
with your repository’s https clone URL that you copied.

15. Move the jekyll theme files into this new folder that you just created in the
previous step.

16. Open the _config.yml file and add the following:

url: tomjohnson1492.github.io baseurl: /myreponame

Change the url to your github account name, and the baseurl to your repo name.

Install Bundler
Bundler is a package manager for Ruby that will install all dependencies you might
need to build your site locally. I recommend installing Bundler through homebrew.
(Sorry, these instructions apply to Mac only.)

1. Install homebrew (http://brew.sh/):

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercon
tent.com/Homebrew/install/master/install)"

2. Install Bundler:

gem install bundler

Add the github pages gem
1. In terminal, browse to your Jekyll project directory.

2. Type bundle init . This creates a Gemfile and Gemfile.lock in your
project.

3. Type open gemfile . This opens the gemfile in your default text editor.

4. Add the following in the gemfile (replacing the existing contents):

source 'https://rubygems.org'
gem 'github-pages'

5. Run bundle install .

Publishing on Github Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 166

http://brew.sh/
http://brew.sh/

6. Add the new jekyll files to git: git add --all .

7. Commit the files: git commit -m "committing my jekyll theme" .

8. Push the files up to your github repo: git push .

Github Pages will now automatically build your site. Wait a minute or two, and
then visit tomjohnson1492.github.io/yourreponame, replacing this path with your
github account and branch.

Customize your URL
You can also customize your Github URL. More instructions on this later….

Publishing on Github Pages PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 167

Knowledge-base layout
Summary: This shows a sample layout for a knowledge base. Each
square could link to a tag archive page. In this example, font icons
from Font Awesome are used for the graphics, and the layout is
pulled from the Modern Business theme. .

Here’s the sample knowledge-base style layout:

Knowledge Base Categories

Getting started

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Learn More (page 0)

Knowledge-base layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 168

http://127.0.0.1:4010/mydoc-pdf/tag_getting_started

Generating a list of all pages with a certain tag
If you don’t want to link to a tag archive index, but instead want to list all pages
that have a certain tag, you could use this code:

Navigation

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Learn More (page 0)

Single sourcing

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Learn More (page 0)

Formatting

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Learn More (page 0)

Knowledge-base layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 169

http://127.0.0.1:4010/mydoc-pdf/tag_navigation
http://127.0.0.1:4010/mydoc-pdf/tag_single_sourcing
http://127.0.0.1:4010/mydoc-pdf/tag_formatting

Getting started pages:

{% assign sorted_pages = (site.pages | sort: 'title') %}
{% for page in sorted_pages %}
{% for tag in page.tags %}
{% if tag == "getting_started" %}
{{page.titl
e}}
{% endif %}
{% endfor %}
{% endfor %}

Here’s the result:

Getting started pages:

• About Ruby, Gems, Bundler, and other prerequisites (page 38)

• About the theme author (page 36)

• Install Jekyll on Mac (page 45)

• Pages (page 52)

• Posts (page 58)

• Release notes 5.0 (page 11)

• Sample formatting (page 13)

• Sidebar Navigation (page 70)

• Support (page 37)

• Supported features (page 31)

Knowledge-base layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 170

Glossary layout
Summary: Your glossary page can take advantage of definitions
stored in a data file. This gives you the ability to reuse the same
definition in multiple places. Additionally, you can use Bootstrap
classes to arrange your definition list horizontally.

You can create a glossary for your content. First create your glossary items in a
data file such as glossary.yml.

Then create a page and use definition list formatting, like this:

fractious

Like a little mischevious child, full of annoying and constant trouble.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

haughty

Proud and flaunting it. Holding your head high up like a snooty, too-good-for-
everything rich person.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

impertinent

Brave and courageous especially in a difficult, dangerous situation.

Here’s the code:

Glossary layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 171

fractious
: {{site.data.glossary.fractious}}

gratuitous
: {{site.data.glossary.gratuitous}}

haughty
: {{site.data.glossary.haughty}}

gratuitous
: {{site.data.glossary.gratuitous}}

impertinent
: {{site.data.glossary.intrepid}}

The glossary works well as a link in the top navigation bar.

Horizontally styled definiton lists
You can also change the definition list (dl) class to dl-horizontal . This is a
Bootstrap specific class. If you do, the styling looks like this:

fractious

Like a little mischevious child, full of annoying and constant trouble.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

haughty

Proud and flaunting it. Holding your head high up like a snooty, too-good-for-
everything rich person.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

Glossary layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 172

impertinent

Someone acting rude and insensitive to others.

intrepid

Brave and courageous especially in a difficult, dangerous situation.

For this type of list, you must use HTML. The list would then look like this:

<dl class="dl-horizontal">

<dt id="fractious">fractious</dt>
<dd>{{site.data.glossary.fractious}}</dd>

<dt id="gratuitous">gratuitous</dt>
<dd>{{site.data.glossary.gratuitous}}</dd>

<dt id="haughty">haughty</dt>
<dd>{{site.data.glossary.haughty}}</dd>

<dt id="benchmark_id">gratuitous</dt>
<dd>{{site.data.glossary.gratuitous}}</dd>

<dt id="impertinent">impertinent</dt>
<dd>{{site.data.glossary.impertinent}}</dd>

<dt id="intrepid">intrepid</dt>
<dd>{{site.data.glossary.intrepid}}</dd>

</dl>

If you squish your screen small enough, at a certain breakpoint this style reverts to
the regular dl class.

Although I like the side-by-side view for shorter definitions, I found it problematic
with longer definitions.

Glossary layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 173

FAQ layout
Summary: You can use an accordion-layout that takes advantage of
Bootstrap styling. This is useful for an FAQ page.

If you want to use an FAQ format, use the syntax shown on the faq.html page.
Rather than including code samples here (which are bulky with a lot of nested
div tags), just look at the source in the mydoc_faq.html theme file.

Lorem ipsum dolor sit amet, consectetur adipiscing elit?

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus?

Aenean consequat lorem ut felis ullamcorper?

Lorem ipsum dolor sit amet, consectetur adipiscing elit?

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus?

Aenean consequat lorem ut felis ullamcorper?

Lorem ipsum dolor sit amet, consectetur adipiscing elit?

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus?

Aenean consequat lorem ut felis ullamcorper?

[news]: /news.html [mydoc_introduction]: /mydoc_introduction.html
[p1_landing_page]: /p1_landing_page.html [p2_landing_page]:
/p2_landing_page.html [titlepage]: /titlepage.html [tocpage]: /tocpage.html [home]:
/home.html [mydoc_release_notes_50]: /mydoc_release_notes_50.html
[mydoc_sample_formatting]: /mydoc_sample_formatting.html
[mydoc_introduction]: /mydoc_introduction.html [mydoc_supported_features]:
/mydoc_supported_features.html [mydoc_about]: /mydoc_about.html
[mydoc_support]: /mydoc_support.html [mydoc_about_ruby_gems_etc]:
/mydoc_about_ruby_gems_etc.html [mydoc_install_jekyll_on_mac]:

FAQ layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 174

/mydoc_install_jekyll_on_mac.html [mydoc_install_jekyll_on_windows]:
/mydoc_install_jekyll_on_windows.html [mydoc_pages]: /mydoc_pages.html
[mydoc_posts]: /mydoc_posts.html [mydoc_conditional_logic]:
/mydoc_conditional_logic.html [mydoc_content_reuse]:
/mydoc_content_reuse.html [mydoc_collections]: /mydoc_collections.html
[mydoc_sidebar_navigation]: /mydoc_sidebar_navigation.html
[mydoc_yaml_tutorial]: /mydoc_yaml_tutorial.html [mydoc_tags]:
/mydoc_tags.html [mydoc_series]: /mydoc_series.html [mydoc_adding_tooltips]:
/mydoc_adding_tooltips.html [mydoc_alerts]: /mydoc_alerts.html [mydoc_icons]:
/mydoc_icons.html [mydoc_images]: /mydoc_images.html [mydoc_labels]:
/mydoc_labels.html [mydoc_hyperlinks]: /mydoc_hyperlinks.html
[mydoc_navtabs]: /mydoc_navtabs.html [mydoc_tables]: /mydoc_tables.html
[mydoc_syntax_highlighting]: /mydoc_syntax_highlighting.html
[mydoc_commenting_on_files]: /mydoc_commenting_on_files.html
[mydoc_build_arguments]: /mydoc_build_arguments.html [mydoc_themes]:
/mydoc_themes.html [mydoc_title_checker]: /mydoc_title_checker.html
[mydoc_generating_pdfs]: /mydoc_generating_pdfs.html [mydoc_help_api]:
/mydoc_help_api.html [mydoc_search_configuration]:
/mydoc_search_configuration.html [mydoc_iterm_profiles]:
/mydoc_iterm_profiles.html [mydoc_push_build_to_server]:
/mydoc_push_build_to_server.html [mydoc_no_password_prompts_scp]:
/mydoc_no_password_prompts_scp.html [mydoc_publishing_github_pages]:
/mydoc_publishing_github_pages.html [mydoc_kb_layout]:
/mydoc_kb_layout.html [mydoc_glossary]: /mydoc_glossary.html
[mydoc_faq_layout]: /mydoc_faq_layout.html [mydoc_troubleshooting]:
/mydoc_troubleshooting.html [mydoc_tag_archives_overview]:
/mydoc_tag_archives_overview.html [tag_formatting]: /tag_formatting.html
[tag_navigation]: /tag_navigation.html [tag_content_types]:
/tag_content_types.html [tag_publishing]: /tag_publishing.html
[tag_special_layouts]: /tag_special_layouts.html [tag_collaboration]:
/tag_collaboration.html [tag_troubleshooting]: /tag_troubleshooting.html
[mydoc_hyperlinks.html#managed-links]: /mydoc_hyperlinks.html#managed-
links.html [index.html#variable-includes]: /index.html#variable-includes.html
[index.html#htmltables]: /index.html#htmltables.html [index.html#someIdTag]:
/index.html#someIdTag.html [titlepage]: /titlepage.html [tocpage]: /tocpage.html
[p1_landing_page]: /p1_landing_page.html [p1_sample1]: /p1_sample1.html
[p1_sample2]: /p1_sample2.html [p1_sample3]: /p1_sample3.html [p1_sample4]:
/p1_sample4.html [p1_sample5]: /p1_sample5.html [p1_sample6]:
/p1_sample6.html [p1_sample7]: /p1_sample7.html [titlepage]: titlepage.html
[tocpage]: tocpage.html [p2_landing_page]: /p2_landing_page.html [p2_sample1]:
/p2_sample1.html [p2_sample2]: /p2_sample2.html [p2_sample3]:
/p2_sample3.html [p2_sample4]: /p2_sample4.html [p2_sample5]:
/p2_sample5.html [p2_sample6]: /p2_sample6.html [p2_sample7]:
/p2_sample7.html [p2_sample8]: /p2_sample8.html [p2_sample9]:

FAQ layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 175

/p2_sample9.html [p2_sample10]: /p2_sample10.html [p2_sample11]:
/p2_sample11.html [p2_sample12]: /p2_sample12.html [p2_sample13]:
/p2_sample13.html [p2_sample14]: /p2_sample14.html [news]: /news.html
[mydoc_introduction]: /mydoc_introduction.html [p1_landing_page]:
/p1_landing_page.html [p2_landing_page]: /p2_landing_page.html

FAQ layout PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 176

Troubleshooting
Summary: This page lists common errors and the steps needed to
troubleshoot them.

Issues building the site

Address already in use

When you try to build the site, you get this error in iTerm:

jekyll 2.5.3 | Error: Address already in use - bind(2)

This happens if a server is already in use. To fix this, edit your config file and
change the port to a unique number.

If the previous server wasn’t shut down properly, you can kill the server process
using these commands:

ps aux | grep jekyll

Find the PID (for example, it looks like “22298”).

Then type kill -9 22298 where “22298” is the PID.

Alternatively, type the following to stop all Jekyll servers:

kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')

shell file not executable

If you run into permissions errors trying to run a shell script file (such as
mydoc_multibuild_web.sh), you may need to change the file permissions to make
the sh file executable. Browse to the directory containing the shell script and run
the following:

chmod +x build_writer.sh

Troubleshooting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 177

shell file not runnable
If you’re using a PC, rename your shell files with a .bat extension.

“page 0” cross references in the PDF

If you see “page 0” cross-references in the PDF, the URL doesn’t exist. Check to
make sure you actually included this page in the build.

If it’s not a page but rather a file, you need to add a noCrossRef class to the file
so that your print stylesheet excludes the counter from it. Add
class="noCrossRef" as an attribute to the link. In the css/printstyles.css file,

there is a style that should remove the counter from anchor elements with this
class.

The PDF is blank

Check the prince-list.txt file in the output to see if it contains links. If not, you have
something wrong with the logic in the prince-list.txt file. Check the conditions.html
file in your _includes to see if the audience specified in your configuration file
aligns with the buildAudience in the conditions.html file

Sidebar not appearing

If you build your site but the sidebar doesn’t appear, check the following:

Look in _includes/custom/sidebarconfigs.html and make sure the conditional
values there match up with values you’re using in each page’s frontmatter.

Make sure each TOC item has an output property that specifies web or pdf.

Understanding how the theme works can be helpful in troubleshooting. The
_includes/sidebar.html file loops through the values in the _data/sidebar.yml file.
There are if statements that check whether the conditions (as specified in the
conditions.html file) are met. If the sidebar.yml item doesn’t have the right output,
then it won’t get displayed in the sidebar. It would instead get skipped.

Sidebar isn’t collapsed

If the sidebar levels aren’t collapsed, usually your JavaScript is broken
somewhere. Open the JavaScript Console and look to see where the problem is. If
one script breaks, then other scripts will break too, so troubleshooting it is a little
tricky.

Troubleshooting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 178

Search isn’t working

If the search isn’t working, check the JSON validity in the search.json file in your
output folder. Usually something is invalid. Identify the problematic line, fix the file,
or put search: exclude in the frontmatter of the file to exclude it from search.

Troubleshooting PDF last generated: July 03, 2016

Jekyll theme for documentation — mydoc product User Guide Page 179

	
	
	Table of Contents
	Quick start guide
	Build this theme
	Customize the Gemfile
	Configure the sidebar
	Sidebar syntax
	Page frontmatter
	Where to store your documentation topics
	Configure the top navigation
	Generating PDF
	Blogs / News
	Markdown
	Managing links
	Other instructions

	Release notes 5.0
	Unique sidebars for each product
	Permalinks
	Kramdown and Rouge
	Blog feature
	Updated documentation
	Fixed errors
	Accessing the old theme

	Sample formatting
	Jekyll Overview
	Make Updates to Previous Theme Versions
	Atom Editor
	Atom Shortcuts

	Git Clients
	Clone the GenericDocs Project
	Install Jekyll
	Run the Build Commands
	Edit the Table of Contents
	Add Navigation Between Doc Sets

	Introduction
	Overview
	Survey of features
	Getting started

	Supported features
	Supported feautres
	Features not available

	About the theme author
	Support
	About Ruby, Gems, Bundler, and other prerequisites
	About Ruby
	About Ruby Gems
	Rubygem package managers
	Gemfiles
	Gemfile.lock

	Install Jekyll on Mac
	Ruby and RubyGems
	Install Homebrew
	Install Ruby through Homebrew
	Install the Jekyll gem
	Installing dependencies through Bundler
	Serve the Jekyll Documentation theme

	Install Jekyll on Windows
	Install Ruby
	Install Ruby Development Kit
	Install the Jekyll gem
	Installing dependencies through Bundler
	Install Bundler
	Serve the Jekyll Documentation theme

	Pages
	Where to author content
	Page names and excluding files from outputs
	Frontmatter
	Automatic mini-TOCs
	Specify a particular page layout
	Comments
	Custom keyboard shortcuts

	Posts
	About posts
	Allowed frontmatter

	Conditional logic
	About Liquid and conditional statements
	Where to store filtering values
	Conditional logic based on config file value
	Or operator
	Unless operator
	Storing conditions in the _data folder
	Specifying the location for _data
	Conditions versus includes

	Content reuse
	About content reuse
	Page-level variables

	Collections
	What are collections
	Create a collection
	Interacting with collections
	How to use collections
	Video tutorial on collections

	Sidebar Navigation
	Navgoco foundation
	Accordion sidebar feature
	Fixed position sidebar
	Opening sidebar links into external pages
	Sidebar item highlighting

	YAML tutorial in the context of Jekyll
	Overview
	YAML overview
	YAML basics
	Example 1: Simple mapping
	Example 2: Line breaks
	Example 3: Simple list
	Example 4: List items
	Regions

	Example 5: Table of contents
	Group 1
	Group 2
	Group 3

	Example 6: Variables
	Example 7: Positions in lists
	Example 8: Properties from list items at specific positions
	Example 9: Conditions
	More resources

	Tags
	Add a tag to a page
	Tags overview
	Setting up tags
	Retrieving pages for a specific tag
	Efficiency
	Empty tags?
	Remembering the right tags

	Series
	Using series for pages
	1. Create the series button
	2. Create the “next” include
	3. Add the correct frontmatter to each of your series pages
	4. Add links to the series button and next button on each page.
	Changing the series drop-down color
	Using a collection with your series

	Tooltips
	Creating tooltips

	Alerts
	About alerts
	Alerts
	Types of alerts available
	Callouts
	Use Liquid variables inside parameters with includes
	Markdown inside of callouts and alerts
	Validity checking
	Blast a warning to users on every page

	Icons
	Font icon options
	See Font Awesome icons available
	Creating your own combinations
	Glyphicon icons available
	Callouts

	Images
	Image Include Template
	SVG Images

	Labels
	About labels

	Links
	Create an external link
	Linking to internal pages
	Managed Links

	Navtabs
	Common uses
	Navtabs demo
	Profile
	Code
	Design constraints
	Appearance in the mini-TOC
	Must use HTML
	Match up ID tags
	Set an active tab
	Sets a cookie
	Functionality to implement

	Tables
	Multimarkdown Tables
	jQuery datables

	Syntax highlighting
	About syntax highlighting
	Available lexers

	Commenting on files
	About the review process
	Add reviewers as collaborators
	Workflow
	Prose.io

	Build arguments
	How to build Jekyll sites
	Shortcuts for the build arguments
	Stop a server

	Themes
	Theme options
	Theme differences

	Generating PDFs
	PDF overview
	Demo
	1. Set up Prince
	2. Create a new configuration file for each of your PDF targets
	3. Make sure your sidebar_doc.yml file has a titlepage.html and tocpage.html
	4. Customize your headers and footers
	5. Customize the PDF script
	6. Add conditions for your new builds in the sidebarconfigs.html file
	7. Add a download button for the PDF
	JavaScript conflicts
	Overriding Bootstrap Print Styles

	Help APIs and UI tooltips
	Full code demo of content API
	Diagram overview
	1. Create a “collection” for the help content
	2. Create tooltip definitions in a YAML file
	3. Create pages in your collection
	4. Create a JSON file that loops through your collection pages
	5. Build your site and look for the JSON file
	6. Allow CORS access to your help if stored on a remote server
	7. Explain how developers can access the help
	8. Create easy links to embed the help in your help site
	Reuse Demo

	Search configuration
	About search
	Excluding pages from search
	Troubleshooting search
	Including the body field in search
	Customizing search results
	More robust search

	iTerm profiles
	About iTerm profiles
	Set up profiles
	Launching a profile

	Pushing builds to server
	Pushing to AWS S3
	Pushing to a regular server

	Getting around the password prompts in SCP
	Get rid of password prompts

	Publishing on Github Pages
	Set up your Github repo
	Install Bundler
	Add the github pages gem
	Customize your URL

	Knowledge-base layout
	Knowledge Base Categories
	Getting started
	Navigation
	Single sourcing
	Formatting

	Generating a list of all pages with a certain tag

	Glossary layout
	Horizontally styled definiton lists

	FAQ layout
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?

	Troubleshooting
	Issues building the site
	Address already in use
	shell file not executable

	shell file not runnable
	“page 0” cross references in the PDF
	The PDF is blank
	Sidebar not appearing
	Sidebar isn’t collapsed
	Search isn’t working

