
Jekyll theme for
documentation — mydoc
product
version 5.0
Last generated: March 18, 2016

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

© 2016 Your company. This is a boilerplate copyright statement... All rights
reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or
other electronic or mechanical methods, without the prior written permission of
the publisher, except in the case of brief quotations embodied in critical reviews
and certain other noncommercial uses permitted by copyright law.

Table of Contents

Overview
Introduction .. 3

Supported features .. 4

Get started ... 10

About the theme author ... 16

Support... 17

Authoring
Pages ... 18

Posts .. 24

WebStorm Text Editor.. 26

Conditional logic... 29

Content reuse... 34

Collections.. 36

Navigation
Sidebar navigation.. 38

YAML tutorial in the context of Jekyll... 41

Tags.. 52

Series.. 58

Formatting
Tooltips... 61

Alerts .. 62

Icons... 66

Images.. 72

Labels ... 77

Links ... 78

Navtabs .. 82

Tables... 85

Jekyll theme for documentation — mydoc product User Guide PDF last generated: March 18, 2016

youremail@domain.com i

Syntax highlighting ... 89

Handling reviews
Commenting on files .. 91

Publishing
Build arguments ... 94

Themes... 97

Check page title consistency ... 98

Generating PDFs .. 99

Help APIs and UI tooltips ... 110

Search configuration .. 122

iTerm profiles.. 124

Pushing builds to server... 126

Getting around the password prompts in SCP.. 127

Special layouts
Knowledge-base layout.. 131

Glossary layout... 133

Troubleshooting
Troubleshooting ... 136

Adding all project dependencies.. 139

Jekyll theme for documentation — mydoc product User Guide PDF last generated: March 18, 2016

youremail@domain.com ii

Introduction

Overview
This site provides documentation, training, and other notes for the Jekyll
Documentation theme. There’s a lot of information about how to do a variety of
things here, and it’s not all unique to this theme. But by and large, understanding
how to do things in Jekyll depends on how your theme is coded. As a result, these
additional details are provided.

The instructions here are geared towards technical writers working on
documentation. You may have a team of one or more technical writers working on
documentation for multiple projects. You can use this same theme to author all of
your documentation for each of your products. The theme is built to
accommodate documentation for multiple products on the same site.

Survey of features
Some of the more prominent features of this theme include the following:

• Bootstrap framework

• Navgoco multi-level sidebar (http://www.komposta.net/article/navgoco) for
table of contents

• Ability to specify different sidebars for different products

• Top navigation bar with drop-down menus

• Notes, tips, and warning information notes

• Tags for alternative navigation

• Advanced landing page layouts from the Modern Business theme
(http://startbootstrap.com/template-overviews/modern-business/).

Getting started
To get started, see Get started (page 0).

Introduction PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 3

http://www.komposta.net/article/navgoco
http://www.komposta.net/article/navgoco
http://startbootstrap.com/template-overviews/modern-business/
http://startbootstrap.com/template-overviews/modern-business/
http://startbootstrap.com/template-overviews/modern-business/
http://127.0.0.1:4010/mydoc-pdf/mydoc_getting_started

Supported features
Summary: If you're not sure whether Jekyll and this theme will
support your requirements, this list provides a semi-comprehensive
overview of available features.

Before you get into exploring Jekyll as a potential platform for help content, you
may be wondering if it supports some basic features needed to fulfill your tech
doc requirements. The following table shows what is supported in Jekyll and this
theme.

Supported feautres
FEATURES SUPPORTED NOTES

Content re-use Yes Supports re-use through Liquid. You
can re-use variables, snippets of code,
entire pages, and more. In DITA speak,
this includes conref and keyref.

Markdown Yes You can author content using Mark-
down syntax. This is a wiki-like syntax
for HTML that you can probably pick
up in 10 minutes. Where Markdown
falls short, you can use HTML. Where
HTML falls short, you use Liquid,
which is a scripting that allows you to
incorporate more advanced logic.

Responsive design Yes Uses Bootstrap framework for respon-
sive design.

Translation Yes I haven’t done a translation project yet
(just a pilot test). Here’s the basic ap-
proach: Export the HTML pages and
send them to a translation agency.
Then create a new project for that lan-
guage and insert the translated pages.
Everything will be translated.

Supported features PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 4

FEATURES SUPPORTED NOTES

Collaboration Yes You collaborate with Jekyll projects
the same way that developers collabo-
rate with software projects. (You don’t
need a CMS.) Because you’re working
with text file formats, you can use any
version control software (Git, Mercur-
ial, Perforce, Bitbucket, etc.) as a CMS
for your files.

Scalability Yes Your site can scale to any size. It’s up
to you to determine how you will de-
sign the information architecture for
your thousands of pages. You can
choose what you display at first, sec-
ond, third, fourth, and more levels, etc.
Note that when your project has thou-
sands of pages, the build time will be
longer (maybe 1 minute per thousand
pages?). It really depends on how
many for loops you have iterating
through the pages.

Lightweight architec-
ture

Yes You don’t need a LAMP stack (Linux,
Apache, MySQL, PHP) architecture to
get your site running. All of the building
is done on your own machine, and you
then push the static HTML files onto a
server.

Skinnability Yes You can skin your Jekyll site to look
identical to pretty much any other site
online. If you have a UX team, they can
really skin and design the site using all
the tools familiar to the modern de-
signer – JavaScript, HTML5, CSS,
jQuery, and more. Jekyll is built on the
modern web development stack rather
than the XML stack (XSLT, XPath,
XQuery).

Supported features PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 5

FEATURES SUPPORTED NOTES

Support Yes The community for your Jekyll site isn’t
so much other tech writers (as is the
case with DITA) but rather the wider
web development community. Jekyll
Talk (http://talk.jekyllrb.com) is a great
resource. So is Stack Overflow.

Blogging features Yes There is a simple blogging feature. This
appears as “news” and is intended to
promote news that applies across
products.

Versioning Yes Jekyll doesn’t version your files. You
upload your files to a version control
system such as Github. Your files are
versioned there.

PC platform Yes Jekyll runs on Windows. Although the
experience working on the command
line is better on a Mac, Windows also
works, especially now that Jekyll 3.0
dropped dependencies on Python,
which wasn’t available by default on
Windows.

jQuery plugins Yes You can use any jQuery plugins you
and other JavaScript, CMS, or tem-
plating tools. However, note that if you
use Ruby plugins, you can’t directly
host the source files on Github Pages
because Github Pages doesn’t allow
Ruby plugins. Instead, you can just
push your output to any web server. If
you’re not planning to use Github
Pages, there are no restrictions on any
plugins of any sort. Jekyll makes it su-
per easy to integrate every kind of plu-
gin imaginable. This theme doesn’t ac-
tually use any plugins, so you can pub-
lish on Github if you want.

Supported features PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 6

http://talk.jekyllrb.com
http://talk.jekyllrb.com
http://talk.jekyllrb.com

FEATURES SUPPORTED NOTES

Bootstrap integration Yes This theme is built on Bootstrap
(http://getbootstrap.com/). If you don’t
know what Bootstrap is, basically this
means there are hundreds of pre-built
components, styles, and other ele-
ments that you can simply drop into
your site. For example, the responsive
quality of the site comes about from
the Bootstrap code base.

Fast-loading pages Yes This is one of the Jekyll’s strengths.
Because the files are static, they load-
ing extremely fast, approximately 0.5
seconds per page. You can’t beat this
for performance. (A typically database-
driven site like WordPress averages
about 2.5 + seconds loading time per
page.) Because the pages are all stat-
ic, it means they are also extremely se-
cure. You won’t get hacked like you
might with a WordPress site.

Themes Yes You can have different themes for dif-
ferent outputs. If you know CSS, them-
ing both the web and print outputs is
pretty easy.

Open source Yes This theme is entirely open source.
Every piece of code is open, viewable,
and editable. Note that this openness
comes at a price — it’s easy to make
changes that break the theme or other-
wise cause errors.

Features not available
The following features are not available.

Supported features PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 7

http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/

FEATURES SUPPORTED NOTES

CMS interface No Unlike with WordPress, you don’t log
into an interface and navigate to your
files. You work with text files and pre-
view the site dynamically in your
browser. Don’t worry – this is part of
the simplicy that makes Jekyll awe-
some. I recommend using WebStorm
as your text editor.

WYSIWYG interface No I use WebStorm to author content, be-
cause I like working in text file formats.
But you can use any Markdown editor
you want (e.g., Lightpaper for Mac,
Marked) to author your content.

Different outputs No This theme provides a single website
output that contains documentation for
multiple products. Unlike previous iter-
ations of the theme, it’s not intended
to support different outputs from the
same content.

Robust search No The search feature is a simplistic
JSON search. For more robust search,
you should integrate Swiftype or Algo-
lia. However, those services aren’t cur-
rently integrated into the theme.

Standardized tem-
plates

No You can create pages with any struc-
ture you want. The theme does not en-
force topic types such as a task or
concept as the DITA specification
does.

Integration with
Swagger

No You can link to a SwaggerUI output,
but there is no built-in integration of
SwaggerUI into this documentation
theme.

Supported features PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 8

FEATURES SUPPORTED NOTES

Templates for end-
points

No Although static site generators work
well with API documentation, there
aren’t any built-in templates specific to
endpoints in this theme. You could
construct your own, though.

eBook output No There isn’t an eBook output for the
content.

Supported features PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 9

Getting started
Summary: To get started with this theme, first make sure you have all
the prerequisites in place; then build the theme following the sample
build commands.

Getting up and running
To get up and running with this theme, make sure you can build a vanilla jekyll site
first. See the Jekyll docs (http://jekyllrb.com/).

If you’re in Windows, you might want to install Jekyll using Chocolately
(https://www.google.com/search?q=install+jekyll+using+chocolately).

After ensuring you can run Jekyll on your machine, you can build this site using
the usual Jekyll command: jekyll serve .

Configuring the theme
There are several products in this theme. Each product uses a different sidebar.
This is the essence of what makes this theme unique – different sidebars for
different product documentation. The idea is that when users are reading
documentation for a specific product, the sidebar navigation should be specific to
that product. The top navigation remains the same, because it allows users to
navigate across products. But the sidebar navigation adapts to the product.

Where to store your documentation topics
Store your files for each product inside subfolders following the pattern shown in
the theme. For example, product1, product2, etc. You can store your topics inside
sub-subfolders to your heart’s content. When Jekyll builds your site, it will pull the
topics into the root directory and use the permalink for the URL.

Configuring the sidebar
Because each product uses a different sidebar, you’ll need to set up your
sidebars. There’s a file inside _includes/custom called “sidebarconfigs.html”. This
file controls which sidebar gets associated with which product.

Getting started PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 10

http://jekyllrb.com/
http://jekyllrb.com/
https://www.google.com/search?q=install+jekyll+using+chocolately
https://www.google.com/search?q=install+jekyll+using+chocolately
https://www.google.com/search?q=install+jekyll+using+chocolately

The sidebarconfigs.html file uses simple if elsif logic to set a variable that the
sidebar.html file uses to read the sidebar data file. The code in
sidebarconfigs.html looks like this:

{% ifif page.sidebar ==== "home_sidebar" %}
{% assign sidebar == site.data.sidebars.home_sidebar.entries %}

{% elsifelsif page.sidebar ==== "product1_sidebar" %}
{% assign sidebar == site.data.sidebars.product1_sidebar.entrie
s %}

{% elsifelsif page.sidebar ==== "product2_sidebar" %}
{% assign sidebar == site.data.sidebars.product2_sidebar.entrie
s %}

{% elsifelsif page.sidebar ==== "mydoc_sidebar" %}
{% assign sidebar == site.data.sidebars.mydoc_sidebar.entries %}

{% elsifelsif page.sidebar ==== "tags_sidebar" %}
{% assign sidebar == site.data.sidebars.tags_sidebar.entries %}

{% elseelse %}
{% assign sidebar == site.data.sidebars.home_sidebar.entries %}
{% endifendif %}

In each page’s frontmatter, you must specify the sidebar you want that page to
use. Here’s an example of the page frontmatter showing the sidebar property:

title: Alerts
tags: [formatting]
keywords: notes, tips, cautions, warnings, admonitions
last_updated: March 20, 2016
summary: "You can insert notes, tips, warnings, and important a
lerts in your content. These notes are stored as shortcodes mad
e available through the linksrefs.hmtl include."
sidebar: mydoc_sidebar
permalink: /mydoc_alerts/

The sidebar: mydoc_sidebar refers to the _data/sidebars/mydoc_sidebar.yml
file.

Getting started PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 11

If no sidebar assignment is found in the page frontmatter, the default sidebar
(specified by the else statement) will be shown:
site.data.sidebars.home_sidebar.entries .

Note that your sidebar can only have 2 levels. Given that each product has its own
sidebar, this depth should be sufficient. Deeper nesting goes against usability
recommendations.

Sidebar syntax
The sidebar data file uses a specific YAML syntax that you must follow. Follow the
sample pattern shown:

- title: Overview
output: web, pdf
items:
- title: Mydoc home

url: /mydoc_landing_page/
output: web

Each heading must contain a title and output property. Each item must contain a
title, url, and output property.

The two outputs available are web and pdf. (Even if you aren’t publishing PDF,
you still need to specify output: web).

The YAML syntax depends on exact spacing, so make sure you follow the pattern
shown in the sample sidebars. See my YAML tutorial (page 0) for more details
about how YAML works.

To accommodate the title page and table of contents in PDF outputs, each
product sidebar must list these pages before any other:

Getting started PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 12

http://127.0.0.1:4010/mydoc-pdf/mydoc_getting_started/mydoc_yaml_tutorial

- title:
output: pdf
type: frontmatter
items:
- title:

url: /titlepage/
output: pdf
type: frontmatter

- title:
url: /tocpage/
output: pdf
type: frontmatter

Leave the output as output: pdf so that they don’t appear in the web output.

Page frontmatter
When you write pages, include this same frontmatter in each page:

title: "Some title"
tags: [sample1, sample2]
keywords: keyword1, keyword2, keyword3
last_updated: Month day, year
summary: "optional summary here"
sidebar: sidebar name
permalink: /yoururl/

(If you’re using Webstorm, you can set up a template to auto-populate this code
when you create a new file.)

For titles, surrounding the title in quotes is optional, but if you have a colon in the
title, you must surround the title with quotation marks.

Keywords get populated into the metadata of the page for SEO.

Tags must be defined in your _data/tags.yml list. You also need a corresponding
tag file inside the tags folder that follows the same pattern as the other tag files
shown in the tags folder. (Jekyll wont auto-create these tag files.) ```

If you don’t want the mini-TOC to show on a page (such as for the homepage or
landing pages), add toc: none in the frontmatter.

Getting started PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 13

Configure the top navigation
The top navigation bar’s menu items are set through the _data/topnav.yml file.
Use the top navigation bar to provide links for navigating from one product to
another, or to navigate to external resources.

For external URLs, use external_url in the item property, as shown in the
example topnav.yml file. For internal links, use url as usual.

Note that the topnav has two sections: topnav and topnav_dropdowns. The
topnav section contains single links, while the topnav_dropdowns section
contains dropdown menus. The two sections are independent of each other.

Generating PDF
If you want to generate PDF, you’ll need a license for Prince XML
(http://www.princexml.com/). You will also need to install Prince
(http://www.princexml.com/doc/installing/). You can generate PDFs by product (but
not for every product on the site combined together into one massive PDF). Prince
will work even without a license, but it will imprint a small Prince image on the first
page.

Open up the css/printstyles.css file and customize the email address
(youremail@domain.com) that is listed there. This email address appears in the
bottom left footer of the PDF output. You’ll also need to create a PDF
configuration file following the examples shown in the pdfconfigs folder, and also
customize some build scripts following the same pattern shown in the root: pdf-
product1.sh

See the section on generating PDFs (page 0) for more details about setting the
theme up for this output.

Blogs / News
For blog posts, create your markdown files in the _posts folder following the
sample formats. Post file names always begin with the date (YYYY-MM-DD-title).

The news/news.html file displays the posts, and the news_archive.html file shows
a yearly history of posts. In documentation, you might use the news to highlight
product features outside of your documentation, or to provide release notes and
other updates.

Getting started PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 14

http://www.princexml.com/
http://www.princexml.com/
http://www.princexml.com/
http://www.princexml.com/doc/installing/
http://www.princexml.com/doc/installing/
http://www.princexml.com/doc/installing/
http://127.0.0.1:4010/mydoc-pdf/mydoc_getting_started/mydoc_generating_pdfs

Markdown
This theme uses Kramdown markdown. Kramdown is similar to Github-flavored
Markdown, except that when you have text that intercepts list items, the spacing
of the intercepting text must align with the spacing of the first character after the
space of a numbered list item.

Other instructions
For other details in working with the theme, see the various sections in the
sidebar.

Getting started PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 15

About the theme author
Summary: I have used this theme for projects that I've worked on as
a professional technical writer.

My name is Tom Johnson, and I’m a technical writer, blogger, and podcaster
based in San Jose, California. My blog is here: http://idratherbewriting.com
(http://idratherbewriting.com). I write several posts there a week. See my blog’s
about page (http://idratherbewriting.com/aboutme/) for more details about me.

I have used this theme and variations of it for various documentation projects.
This theme has undergone several major iterations, and now it’s fairly stable and
full of all the features that I need. You are welcome to use it for your
documentation projects for free.

I think this theme does pretty much everything that you can do with something like
OxygenXML, but without the constraints of structured authoring. Everything is
completely open and changeable, so if you start tinkering around with the theme’s
files, you can break things. But it’s completely empowering as well!

With a completely open architecture and code base, you can modify the code to
make it do exactly what you want, without having to jump through all kinds of
confusing or proprietary code.

If there’s a feature you need but it isn’t available here, let me know and I might
add it. Alternatively, if you fork the theme, I would love to see your modifications
and enhancements.

About the theme author PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 16

http://idratherbewriting.com
http://idratherbewriting.com
http://idratherbewriting.com
http://idratherbewriting.com/aboutme/
http://idratherbewriting.com/aboutme/
http://idratherbewriting.com/aboutme/

Support
Summary: Contact me for any support issues.

Let me know about any bugs or other issues that you find. Just email me at
tomjohnson1492@gmail.com. You can also create issues directly within the
Github repository here (https://github.com/tomjohnson1492/jekyll-doc/issues).

Support PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 17

mailto:tomjohnson1492@gmail.com
https://github.com/tomjohnson1492/jekyll-doc/issues
https://github.com/tomjohnson1492/jekyll-doc/issues
https://github.com/tomjohnson1492/jekyll-doc/issues

Pages
Summary: This theme primarily uses pages. You need to make sure
your pages have the appropriate frontmatter. One frontmatter tag
your users might find helpful is the summary tag. This functions
similar in purpose to the shortdesc element in DITA.

Where to author content
Use a text editor such as Sublime Text, WebStorm, IntelliJ, or Atom to create
pages.

My preference is IntelliJ/WebStorm, since it will treat all files in your theme as
belonging to a project. This allows you to easily search for instances of keywords,
do find-and-replace operations, or do other actions that apply across the whole
project.

Page names and excluding files from outputs
By default, everything in your project is included in the output. You can exclude all
files that don’t belong to that project by specifying the file name, the folder name,
or by using wildcards in your configuration file:

exclude:

• filename.md

• subfolder_name/

• mydoc_*

These wildcards will exclude every match after the * .

Frontmatter
Make sure each page has frontmatter at the top like this:

Pages PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 18

title: Alerts
tags: [formatting]
keywords: notes, tips, cautions, warnings, admonitions
last_updated: March 20, 2016
summary: "You can insert notes, tips, warnings, and important a
lerts in your content. These notes are stored as shortcodes mad
e available through the linksrefs.hmtl include."
sidebar: mydoc_sidebar
permalink: /mydoc_alerts/

Frontmatter is always formatted with three hyphens at the top a
nd bottom. Your frontmatter must have a `title` value. All the
other values are optional. If you omit them, the theme won't br
eak.

Note that you cannot use variables in frontmatter.

The following table describes each of the frontmatter that you
can use with this theme:

Frontmatter	Required?	Description
title	Required	The title for the page
tags	Optional	Tags for the page. Make all tags singl
e words, with underscores if needed (rather than spaces). Separ		
ate them with commas. Enclose the whole list within brackets. A		
lso, note that tags must be added to _data/tags_doc.yml to be		
allowed entrance into the page. This prevents tags from becomin		
g somewhat random and unstructured. You must create a tag page		
for each one of your tags following the pattern shown in the ta		
gs folder. (Tag pages aren't automatically created.)		
keywords	Optional	Synonyms and other keywords for th
e page. This information gets stuffed into the page's metadata		
to increase SEO. The user won't see the keywords, but if you se		
arch for one of the keywords, it will be picked up by the searc		
h engine.		
last_updated	Optional	The date the page was last upd
ated. This information could helpful for readers trying to eval		
uate how current and authoritative information is. If include		
d, the last_updated date appears in the footer of the page in r		
ather small font.		
summary	Optional	A 1-2 word sentence summarizing the
content on the page. This gets formatted into the summary secti
on in the page layout. Adding summaries is a key way to make yo

Pages PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 19

ur content more scannable by users (check out [Jakob Nielsen's
site](http://www.nngroup.com/articles/corporate-blogs-front-pag
e-structure/) for a great example of page summaries.) The only
drawback with summaries is that you can't use variables in the
m. |
| **permalink**| Required | This theme uses permalinks to facil
itate the linking. You specify the permalink want for the pag
e, and the _site output will put the page into the root direct
ory when you publish. The page will appear inside a folder by t
he same name, with the actual page being index.html. Browsers w
ill automatically show the index.html file inside of any folde
r, so permalinks avoid the .html extension with file names. Per
malink names don't have to match your file names, but it might
be easier to keep them in sync. If you don't use permalinks, Je
kyll automatically uses the file name and folder path as the li
nk.|
| **datatable** | Optional | 'active'. If you add `datatable: a
ctive` in the frontmatter, scripts for the [jQuery Datatables p
lugin](https://www.datatables.net/) get included on the page. Y
ou can see the scripts that conditionally appear by looking in
the _layouts/default.html page. |
| toc | Optional | If you specify `toc: none` in the frontmatte
r, the page won't have the table of contents that appears belo
w the title. The toc refers to the list of jump links below th
e page title, not the sidebar navigation. You probably want to
hide the TOC on the homepage and product landing pages.|

Colons in page titles

If you want to use a colon in your page title, you must enclos
e the title's value in quotation marks.

Saving pages as drafts

If you add `published: false` in the frontmatter, your page wo
n't be published. You can also move draft pages into the _draf
ts folder to exclude them from the build. With posts, you can a
lso keep them as drafts by omitting the date in the title.

<div class="alert alert-success" role="alert"><i class="fa fa-c
heck-square-o"></i> Tip: You can create file templates
in WebStorm that have all your common frontmatter, such as all
possible tags, prepopulated. See <a href="/mydoc-pdf/mydoc_webs
torm_text_editor">WebStorm Text Editor for details. </div>

Markdown or HTML format

Pages PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 20

Pages can be either Markdown or HTML format (specified through
either an .md or .html file extension).

If you use Markdown, you can also include HTML formatting wher
e needed. But not vice versa — if you use HTML (as your f
ile extension), you can't insert Markdown content in the file.

Also, if you use HTML inside a Markdown file, you cannot use Ma
rkdown inside of HTML. But you can use HTML inside of Markdown.

For your Markdown files, note that a space or two indent will s
et text off as code or blocks, so avoid spacing indents unless
intentional.

If you have a lot of HTML, as long as the top and bottom tags o
f the HTML are flesh left in a Markdown file, all the tags insi
de those bookend HTML tags will render as HTML, regardless of t
heir indentation.

Where to save pages

You can store your pages in any folder structures you want, wit
h any level of folder nesting. The site output will pull all o
f those pages out of their folders and put them into the root d
irectory. Check out the _site folder, which is where Jekyll i
s generated, to see the difference between your project's struc
ture and the resulting site output.

Page names

I recommend prefixing your page names with the product, such a
s "mydoc_pages" instead of just "pages." This way if you have o
ther products that also hae topics with generic names such as
"pages," there won't be naming conflicts.

Additionally, consider adding the product name in parentheses a
fter the title, such as "Pages (Mydoc)" so that users can clear
ly navigate different topics for each product.

Kramdown Markdown

Kramdown is the Markdown flavor used in the theme. This mostly
aligns with Github-flavored Markdown, but with some difference
s in the indentation allowed within lists. Basically, Kramdown
requires you to line up the indent between list items with the
first starting character after the space in your list item numb
ering. See this [blog post on Kramdown and Rouge](http://idrath

Pages PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 21

erbewriting.com/2016/02/21/bug-with-kramdown-and-rouge-with-git
hub-pages/) for more details.

You can use standard Multimarkdown syntax for tables. You can a
lso use fenced code blocks with lexers specifying the type of c
ode. The configuration file shows the Markdown processor and ex
tensiosn:

```yaml
highlighter: rouge
markdown: kramdown
kramdown:
input: GFM
auto_ids: true
hard_wrap: false
syntax_highlighter: rouge

Automatic mini-TOCs
By default, a TOC appears at the top of your pages and posts. If you don’t want
the TOC to appear for a specific page, such as for a landing page or other
homepage, add toc: none in the frontmatter of the page.

The mini-TOC requires you to use the ## Markdown syntax for headings. If you
use <h2> elements, you must add an ID attribute for the heading element in order
for it to appear in the mini-TOC (for example,
<h2 id="mysampleid">Heading</h2> .

Specify a particular page layout
The configuration file sets the default layout for pages as the “page” layout.

You can create other layouts inside the layouts folder. If you create a new layout,
you can specify that your page use your new layout by adding
layout: mylayout.html in the page’s frontmatter. Whatever layout you specify

in the frontmatter of a page will override the layout default set in the configuration
file.

Comments
Disqus, a commenting system, is integrated into the theme. In the configuration
file, specify the Disqus code for the universal code, and Disqus will appear. If you
don’t add a Disqus value, the Disqus form isn’t included.

Pages PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 22



Custom keyboard shortcuts
Some of the Jekyll syntax can be slow to create. Using a utility such as aText
(https://www.trankynam.com/atext/) can make creating content a lot of faster.

For example, with my aText configuration, when I type jlink , aText replaces it
with <a href="{{ "/page" | prepend: site.baseurl }}">page</a> .

You get aText from the App Store on a Mac for about $5. However, the Mac Store
version of aText won’t work on Mac OSX El Capitan due to sandbox security
restrictions, so you need to download the app outside of the App Store to make it
work.

There are alternatives to aText, such as Typeitforme. But aText seems to work the
best. You can read more about aText on Lifehacker
(http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac).

Pages PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 23

https://www.trankynam.com/atext/
https://www.trankynam.com/atext/
https://www.trankynam.com/atext/
http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac
http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac
http://lifehacker.com/5843903/the-best-text-expansion-app-for-mac


Posts
Summary: You can use posts when you want to create blogs or news
type of content.

About posts
Posts are typically used for blogs or other news information because they contain
a date and are sorted in reverse chronological order.

You create a post by adding a file in the _posts folder that is named yyyy-mm-
dddd-permalink.md, which might be 2016-02-25-my-latest-updates.md. You can
use any number of subfolders here that you want.

Posts use the post.html layout in the _layouts folder when you are viewing the
post.

The news.html file in the root directory shows a reverse chronological listing of the
10 latest posts

Allowed frontmatter
The frontmatter you can use with posts is as follows:

title: My sample post keywords: pages, authoring, exclusion, frontmatter
summary: “This is some summary frontmatter for my sample post.” sidebar:
mydoc_sidebar permalink: /mydoc_pages/ tags: content_types —

FRONTMATTER REQUIRED? DESCRIPTION

title Required The title for the page

Posts PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 24



FRONTMATTER REQUIRED? DESCRIPTION

tags Optional Tags for the page. Make all tags single words, with underscores
if needed. Separate them with commas. Enclose the whole list
within brackets. Also, note that tags must be added to _data/
tags_doc.yml to be allowed entrance into the page. This prevents
tags from becoming somewhat random and unstructured. You
must create a tag page for each one of your tags following the
sample pattern in the tabs folder. (Tag pages aren’t automatically
created.)

keywords Optional Synonyms and other keywords for the page. This information
gets stuffed into the page’s metadata to increase SEO. The user
won’t see the keywords, but if you search for one of the key-
words, it will be picked up by the search engine.

summary Optional A 1-2 word sentence summarizing the content on the page. This
gets formatted into the summary section in the page layout.
Adding summaries is a key way to make your content more
scannable by users (check out Jakob Nielsen’s site
(http://www.nngroup.com/articles/corporate-blogs-front-page-structure/)

for a great example of page summaries.) The only drawback with
summaries is that you can’t use variables in them.

permalink Required This theme uses permalinks to facilitate the linking. You specify
the permalink want for the page, and the _site output will put the
page into the root directory when you publish. The page will ap-
pear inside a folder by the same name, with the actual page be-
ing index.html. Browsers will automatically show the index.html
file inside of any folder, so permalinks avoid the .html extension
with file names. Permalink names don’t have to match your file
names, but it might be easier to keep them in sync.

Posts PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 25

http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
http://www.nngroup.com/articles/corporate-blogs-front-page-structure/


WebStorm Text Editor
Summary: You can use a variety of text editors when working with a
Jekyll project. WebStorm from IntelliJ offers a lot of project-specific
features, such as find and replace, that make it ideal for working with
tech comm projects.

About text editors and WebStorm
There are a variety of text editors available, but I like WebStorm the best because
it groups files into projects, which makes it easy to find all instances of a text
string, to do find and replace operations across the project, and more.

If you decide to use WebStorm, here are a few tips on configuring the editor.

Remove unnecessary plugins
By default, WebStorm comes packaged with a lot more functionality than you
probably need. You can lighten the editor by removing some of the plugins. Go to
WebStorm > Preferences > Plugins and clear the check boxes of plugins you
don’t need.

Add the Markdown Support plugin
Since you’ll be writing in Markdown, having color coding and other support for
Markdown is important. Install the Markdown Support plugin by going to
WebStorm > Preferences > Plugins and clicking Install JetBrains Plugin.
Search for Markdown Support. (I would avoid the Multimarkdown plugin — it
seemed to make all my dashes in frontmatter tags extend half way across the
page.)

Enable Soft Wraps (word wrapping)
Most likely you’ll want to enable soft wraps, which wraps lines rather than
extending them out forever and requiring you to scroll horizontally to see the text.
To enable softwrapping, go to WebStorm > Preferences > Editor > General and
see the Soft Wraps section. Select the Use soft wraps in editor check box.

WebStorm Text Editor PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 26



Exclude a directory
When you’re searching for content, you don’t want to edit any file that appears in
the _site directory. You can exclude a directory from Webstorm by right-clicking
the directory and choosing Mark Directory As and then selecting Excluded.

Shortcuts
It can help to learn a few key shortcuts:

COMMAND SHORTCUTS

Shift + Shift Allows you to find a file by searching for its name.

Shift + Command +
F

Find in whole project. (WebStorm uses the term “Find
in path”.)

Shift + Command +
R

Replace in whole project. (Again, WebStorm calls it
“Replace in path.”)

Command + F Find on page

Shift + R Replace on page

Right-click > Add to
Favorites

Allows you to add files to a Favorites section, which ex-
pands below the list of files in the project pane.

Shift + tab Applies outdenting (opposite of tabbing)

Shift + Function + F6 Rename a file

Command + Delete Delete a file

Command + 2 Show Favorites pane

Shift + Option + F Add to Favorites

 Tip: If these shortcut keys aren't working for you, make sure you have the
"Max OS X 10.5+" keymap selected. Go to WebStorm > Preferences >
Keymap and select it there.

WebStorm Text Editor PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 27



Finding files
When I want to find a file, I browse to the file in the preview site and copy the page
name in the URL. Then in Webstorm I press Shift twice and paste in the file name.
The search feature automatically highlights the file I want, and I press Enter.

Identifying changed files
When you have the Git and Github integration, changed files appear in blue. This
lets you know what needs to be committed to your repository.

Creating file templates
Rather than insert the frontmatter by hand each time, it’s much faster to simply
create a Jekyll template. To create a Jekyll template in WebStorm:

1. Right-click a file in the list of project files, and select New > Edit File
Templates.

If you don’t see the Edit File Templates option, you may need to create a
file template first. Go to File > Default Settings > Editor > File and Code
Templates. Create a new file template with an md extension, and then
close and restart WebStorm. Then repeat this step and you will see the
File Templates option appear in the right context menu.

2. In the upper-left corner of the dialog box that appears, click the + button
to create a new template.

3. Name it something like Jekyll page. Insert the frontmatter you want, and
save it.

To use the Jekyll template, when you create a new file in your WebStorm
project, you can select your Jekyll file template.

Disable pair quotes
By default, each time you type ' , WebStorm will pair the quote (creating two
quotes). You can disable this by going to WebStorm > Preferences > Editor >
Smartkeys. Clear the Insert pair quotes check box.

WebStorm Text Editor PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 28



Conditional logic
Summary: You can implement advanced conditional logic that
includes if statements, or statements, unless, and more. This
conditional logic facilitates single sourcing scenarios in which you're
outputting the same content for different audiences.

About Liquid and conditional statements
If you want to create different outputs for different audiences, you can do all of
this using a combination of Jekyll’s Liquid markup and values in your configuration
file. This is how I previously configured the theme. I had different configuration
files for each output. Each configuration file specified different values for product,
audience, version, and so on. Then I had different build processes that would
leverage the different configuration files. It seemed like a perfect implementation
of DITA-like techniques with Jekyll.

But I soon found that having lots of separate outputs for a project was
undesirable. If you have 10 different outputs that have different nuances for
different audiences, it’s hard to manage and maintain. In this latest version of the
theme, I consolidated all information into the same output to explicitly do away
with the multi-output approach.

As such, the conditional logic won’t have as much play as it previously did.
Instead of conditions, you’ll probably want to incorporate navtabs (page 0) to split
up the information.

However, you can still of course use conditional logic as needed.

 Tip: Definitely check out Liquid's documentation
(http://docs.shopify.com/themes/liquid-documentation/basics) for more details
about how to use operators and other liquid markup. The notes here are a
small, somewhat superficial sample from the site.

Conditional logic PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 29

http://127.0.0.1:4010/mydoc-pdf/mydoc_conditional_logic/mydoc_navtabs
http://docs.shopify.com/themes/liquid-documentation/basics
http://docs.shopify.com/themes/liquid-documentation/basics
http://docs.shopify.com/themes/liquid-documentation/basics


Where to store filtering values
You can filter content based on values that you have set either in your page’s
frontmatter, a config file, or in a file in your _data folder. If you set the attribute in
your config file, you need to restart the Jekyll server to see the changes. If you set
the value in a file in your _data folder or page frontmatter, you don’t need to
restart the server when you make changes.

Conditional logic based on config file value
Here’s an example of conditional logic based on a value in the page’s frontmatter.
Suppose you have the following in your frontmatter:

platform: mac

On a page in my site (it can be HTML or markdown), you can conditionalize
content using the following:

{% ifif page.platform ==== "mac" %}
Here's some info about the Mac.
{% elsifelsif page.platform ==== "windows" %}
Here's some info about Windows ...
{% endifendif %}

This uses simple if-elsif logic to determine what is shown (note the spelling of
elsif ). The else statement handles all other conditions not handled by the if

statements.

Here’s an example of if-else logic inside a list:

Conditional logic PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 30



To bake a casserole:

1. Gather the ingredients.
{% ifif page.audience ==== "writer" %}
2. Add in a pound of meat.
{% elsifelsif page.audience ==== "designer" %}
3. Add in an extra can of beans.
{% endifendif %}
3. Bake in oven for 45 min.

You don’t need the elsif or else . You could just use an if (but be sure to
close it with endif ).

Or operator
You can use more advanced Liquid markup for conditional logic, such as an or
command. See Shopify’s Liquid documentation
(http://docs.shopify.com/themes/liquid-documentation/basics/operators) for more details.

For example, here’s an example using or :

{% ifif page.audience containscontains "vegan" or page.audience ==== "veget
arian" %}

Then run this...
{% endifendif %}

Note that you have to specify the full condition each time. You can’t shorten the
above logic to the following:

{% ifif page.audience containscontains "vegan" or "vegetarian" %}
// run this.

{% endifendif %}

This won’t work.

Unless operator
You can also use unless in your logic, like this:

Conditional logic PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 31

http://docs.shopify.com/themes/liquid-documentation/basics/operators
http://docs.shopify.com/themes/liquid-documentation/basics/operators
http://docs.shopify.com/themes/liquid-documentation/basics/operators


{% unlessunless site.output ==== "pdf" %}
...do this
{% endunlessendunless %}

When figuring out this logic, read it like this: “Run the code here unless this
condition is satisfied.”.”

Don’t read it the other way around or you’ll get confused. (It’s not executing the
code only if the condition is satisfied.)

Storing conditions in the _data folder
Here’s an example of using conditional logic based on a value in a data file:

{% ifif site.data.options.output ==== "alpha" %}
show this content...
{% elsifelsif site.data.options.output ==== "beta" %}
show this content...
{% elseelse %}
this shows if neither of the above two if conditions are met.
{% endifendif %}

To use this, I would need to have a _data folder called options where the output
property is stored.

Specifying the location for _data
You can also specify a data_source for your data location in your configuration
file. Then you aren’t limited to simply using _data to store your data files.

For example, suppose you have 2 projects: alpha and beta. You might store all the
data files for alpha inside data_alpha, and all the data files for beta inside
data_beta.

In your alpha configuration file, specify the data source like this:

data_source: data_amydoc_content_reuselpha

Then create a folder called _data_alpha.

For your beta configuratoin file, specify the data source like this:

Conditional logic PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 32



data_source: data_beta

Then create a folder called _data_beta.

Conditions versus includes
If you have a lot of conditions in your text, it can get confusing. As a best practice,
whenever you insert an if condition, add the endif at the same time. This will
reduce the chances of forgetting to close the if statement. Jekyll won’t build if
there are problems with the liquid logic.

If your text is getting busy with a lot of conditional statements, consider putting a
lot of content into includes so that you can more easily see where the conditions
begin and end.

Conditional logic PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 33



Content reuse
Summary: You can reuse chunks of content by storing these files in
the includes folder. You then choose to include the file where you
need it. This works similar to conref in DITA, except that you can
include the file in any content type.

About content reuse
You can embed content from one file inside another using includes. Put the file
containing content you want to reuse (e.g., mypage.html) inside the _includes/
custom folder and then use a tag like this:

{% include custom/mypage.html %}

With content in your _includes folder, you don’t add any frontmatter to these
pages because they will be included on other pages already containing
frontmatter.

Also, when you include a file, all of the file’s contents get included. You can’t
specify that you only want a specific part of the file included. However, you can
use parameters with includes. See Jekyll’s documentation
(http://stackoverflow.com/questions/21976330/passing-parameters-to-inclusion-in-liquid-

templates)

for more information.

Page-level variables
You can also create custom variables in your frontmatter like this:

---
title: Page-level variables
permalink: /page_level_variables/
thing1: Joe
thing2: Dave
---

Content reuse PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 34

http://stackoverflow.com/questions/21976330/passing-parameters-to-inclusion-in-liquid-templates
http://stackoverflow.com/questions/21976330/passing-parameters-to-inclusion-in-liquid-templates
http://stackoverflow.com/questions/21976330/passing-parameters-to-inclusion-in-liquid-templates


You can then access the values in those custom variables using the page
namespace, like this:

thing1: {{page.thing1}}
thing2: {{page.thing2}}

I use includes all the time. Most of the includes in the _includes directory are
pulled into the theme layouts. For those includes that change, I put them inside
custom and then inside a specific project folder.

Content reuse PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 35



Collections
Summary: Collections are useful if you want to loop through a special
folder of pages that you make available in a content API. You could
also use collections if you have a set of articles that you want to treat
differently from the other content, with a different layout or format.

What are collections
Collections are custom content types different from pages and posts. You might
create a collection if you want to treat a specific set of articles in a unique way,
such as with a custom layout or listing. For more detail on collections, see Ben
Balter’s explanation of collections here
(http://ben.balter.com/2016/02/20/jekyll-collections/).

Create a collection
To create a collection, add the following in your configuration file:

collections:
tooltips:

output: true

In this example, “tooltips”” is the name of the collection.

Interacting with collections
You can interact with collections by using the site.collectionname
namespace, where collectionname is what you’ve configured. In this case, if I
wanted to loop through all tooltips, I would use site.tooltips instead of
site.pages or site.posts .

See Collections in the Jekyll documentation (http://jekyllrb.com/docs/collections/) for
more information.

Collections PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 36

http://ben.balter.com/2016/02/20/jekyll-collections/
http://ben.balter.com/2016/02/20/jekyll-collections/
http://ben.balter.com/2016/02/20/jekyll-collections/
http://ben.balter.com/2016/02/20/jekyll-collections/
http://jekyllrb.com/docs/collections/
http://jekyllrb.com/docs/collections/


How to use collections
I haven’t found a huge use for collections in normal documentation. However, I did
find a use for collections in generating a tooltip file that would be used for
delivering tooltips to a user interface from text files in the documentation. See
Help APIs and UI tooltips (page 0) for details.

Video tutorial on collections
See this video tutorial on Jekyll.tips
(http://jekyll.tips/jekyll-casts/introduction-to-collections/) for more details on
collections.

Collections PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 37

http://127.0.0.1:4010/mydoc-pdf/mydoc_collections/mydoc/mydoc_help_api.html
http://jekyll.tips/jekyll-casts/introduction-to-collections/
http://jekyll.tips/jekyll-casts/introduction-to-collections/
http://jekyll.tips/jekyll-casts/introduction-to-collections/


Sidebar Navigation
Summary: The sidebar navigation uses a jQuery component called
Navgoco. The sidebar is a somewhat complex part of the theme that
remembers your current page, highlights the active item, stays in a
fixed position on the page, and more. This page explains a bit about
how the sidebar was put together.

Navgoco foundation
The sidebar uses the Navgoco jQuery plugin (https://github.com/tefra/navgoco) as its
basis. Why not use Bootstrap? Navgoco provides a few features that I couldn’t
find in Bootstrap:

• Navgoco sets a cookie to remember the user’s position in the sidebar. If
you refresh the page, the cookie allows the plugin to remember the state.

• Navgoco inserts an active class based on the navigation option that’s
open. This is essential for keeping the accordion open.

• Navgoco includes the expand and collapse features of a sidebar.

In short, the sidebar has some complex logic here. I’ve integrated Navgoco’s
features with the sidebar.html and sidebar data files to build the sidebar. It’s
probably the most impressive part of this theme. (Other themes usually aren’t
focused on creating hierarchies of pages, but this kind of hierarchy is important in
a documentation site.)

Accordion sidebar feature
The sidebar.html file (inside the _includes folder) contains the .navgoco method
called on the #mysidebar element.

There are some options to set within the .navgoco method. The only noteworthy
option is accordion . This option makes it so when you expand a section, the
other sections collapse. It’s a way of keeping your navigation controls condensed.

Sidebar Navigation PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 38

https://github.com/tefra/navgoco
https://github.com/tefra/navgoco


The value for accordion is a Boolean ( true or false ). By default, the
accordion option is set as true . If you don’t want the accordion, set it to
false . Note that there’s also a block of code near the bottom of sidebar.html

that is commented out. Uncomment out that section to have the Collapse all and
Expand All buttons appear.

There’s a danger with setting the accordion to false . If you click Expand All and
the sidebar expands beyond the dimensions of the browser, users will be stuck.
When that happens, it’s hard to collapse it. As a best practice, leave the sidebar’s
accordion option set to true .

Fixed position sidebar
The sidebar has one other feature — this one from Bootstrap. If the user’s
viewport is tall enough, the sidebar remains fixed on the page. This allows the user
to scroll down the page and still keep the sidebar in view.

In the customsscripts.js file in the js folder, there’s a function that adds an affix
class if the height of the browser window is greater than 800 pixels. If the
browser’s height is less than 800 pixels, the nav affix class does not get
inserted. As a result, the sidebar can slide up and down as the user scrolls up and
down the page.

Depending on your content, you may need to adjust 800 pixel number. If your
sidebar is so long that having it in a fixed position makes it so the bottom of the
sidebar gets cut off, increase the 800 pixel number here to a higher number.

Opening sidebar links into external pages
In the attributes for each sidebar item, if you use external_url instead of url ,
the theme will insert the link into an a href element that opens in a blank target.

For example, the sidebar.html file contains the following code:

{% ifif item.external_url %}
<li><a href="{{item.external_url}}" target="_blank">{{subca

tegory.title}}</a></li>
{% elsifelsif page.url ==== item.url %}

You can see that the external_url is a condition that applies a different
formatting. Although this feature is available, I recommend putting any external
navigation links in the top navigation bar instead of the side navigation bar.

Sidebar Navigation PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 39



Sidebar item highlighting
The sidebar.html file inserts an active class into the sidebar element when the
url attribute in the sidebar data file matches the page URL.

For example, the sidebar.html file contains the following code:

{% elsifelsif page.url ==== item.url %}
<li class="active"><a href="{{item.url | prependprepend:

".."}}">{{item.title}}</a></li>
{% elseelse %}
<li><a href="{{item.url | prependprepend: ".."}}">{{item.titl

e}}</a></li>
{% endifendif %}

If the page.url matches the item.url , then an active class gets applied. If
not, the active class does not get applied.

The page.url in Jekyll is a site-wide variable. If you insert {{page.url}} on a
page, it will render as follows: /mydoc_sidebar_navigation/. The url attribute in
the sidebar item must match the page URL in order to get the active class
applied.

This is why the url value in the sidebar data file looks something like this:

- title: Understanding how the sidebar works
url: /mydoc_understand_sidebar/
output: web, pdf

Note that the url does not include the project folder where the file is stored. This is
because the site uses permalinks, which pulls the topics out of subfolders and
places them into the root directory when the site builds.

Now the page.url and the item.url can match and the active class can get
applied. With the active class applied, the sidebar section remains open.

Sidebar Navigation PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 40



YAML tutorial in the context of Jekyll
Summary: YAML is a format that relies on white spacing to separate
out the various elements of content. Jekyll lets you use Liquid with
YAML as a way to parse through the data. Storing items for your table
of contents is one of the most common uses of YAML with Jekyll.

Overview
One of the most interesting features of Jekyll is the ability to separate out data
elements from formatting elements using a combination of YAML and Liquid. This
setup is most common when you’re trying to create a table of contents.

Not many Jekyll themes actually have a robust table of contents, which is critical
when you are creating any kind of documentation or reference material that has a
lot of pages.

Here’s the basic approach in creating a table of contents. You store your data
items in a YAML file using YAML syntax. (I’ll go over more about YAML syntax in a
later section.) You then create your HTML structure in another file, such as
sidebar.html. You might leverage one of the many different table of content
frameworks (such as Navgoco (https://github.com/tefra/navgoco)) that have been
created for this HTML structure.

Then, using Liquid syntax for loops and conditions, you access all of those values
from the data file and splice them into HTML formatting. This will become more
clear as we go through some examples.

YAML overview
Rather than just jump into YAML at the most advanced level, I’m going to start
from ground zero with an introduction to YAML and how you access basic values
in your data files using Jekyll.

Note that you don’t actually have to use Jekyll when using YAML. YAML is used in
a lot of other systems and is a format completely independent of Jekyll. However,
because Jekyll uses Liquid, it gives you a lot of power to parse through your
YAML data and make use of it.

YAML itself doesn’t do anything on its own — it’s just a way of storing your data in
a specific structure that other utilities can parse.

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 41

https://github.com/tefra/navgoco
https://github.com/tefra/navgoco


YAML basics
You can read about YAML from a lot of different sources. Here are some basic
characteristics of YAML:

• YAML (“YAML Ain’t Markup Language”) doesn’t use markup tags. This
means you won’t see any kind of angle brackets. It uses white space as a
way to form the structure. This makes YAML much more human readable.

• Because YAML does use white space for the structure, YAML is
extremely picky about the exactness of spaces. If you have just one extra
space somewhere, it can cause the whole file to be invalid.

• For each new level in YAML, you indent two spaces. Each level provides
a different access point for the content. You use dot notation to access
each new level.

• Because tabs are not universally implemented the same way in editors, a
tab might not equate to two spaces. In general, it’s best to manually type
two spaces to create a new level in YAML.

• YAML has several types of elements. The most common are mappings
and lists. A mapping is simply a key-value pair. A list is a sequence of
items. List start with hyphens.

• Items at each level can have various properties. You can create
conditions based on the properties.

• You can use “for” loops to iterate through a list.

I realize a lot of this vague and general; however, it will become a lot more clear as
we go through some concrete examples.

In the _data/mydoc folder, there’s a file called samplelist.yml. All of these
examples come from that file.

Example 1: Simple mapping
YAML:

name:
husband: Tom
wife: Shannon

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 42



Markdown + Liquid:

Husband's name: {{site.data.samplelist.name.husband}}

Wife's name: {{site.data.samplelist.name.wife}}

Notice that in order to access the data file, you use site.data.samplelist .
mydoc is the folder, and samplelist is the name of the YAML file.

Result:

Husband’s name: Tom

Wife’s name: Shannon

Example 2: Line breaks
YAML:

feedback: >
This is my feedback to you.
Even if I include linebreaks here,
all of the linebreaks will be removed when the value is inser

ted.

block: |
This pipe does something a little different.
It preserves the breaks.
This is really helpful for code samples,
since you can format the code samples with

the appropriate

Markdown:

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 43



**Feedback**
This is my feedback to you. Even if I include linebreaks here,
all of the linebreaks will be removed when the value is inserte
d.

**Block**
This pipe does something a little different.
It preserves the breaks.
This is really helpful for code samples,
since you can format the code samples with

the appropriate
white spacing.

Result:

Feedback This is my feedback to you. Even if I include linebreaks here, all of the
linebreaks will be removed when the value is inserted.

Block This pipe does something a little different. It preserves the breaks. This is
really helpful for code samples, since you can format the code samples with the
appropriate white spacing.

The right angle bracket > allows you to put the value on the next lines (which
must be indented). Even if you create a line break, the output will remove all of
those line breaks, creating one paragraph.

The pipe | functions like the angle bracket in that it allows you to put the values
for the mapping on the next lines (which again must be indented). However, the
pipe does preserve all of the line breaks that you use. This makes the pipe method
ideal for storing code samples.

Example 3: Simple list
YAML:

bikes:
- title: mountain bikes
- title: road bikes
- title: hybrid bikes

Markdown + Liquid:

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 44



{% for item in site.data.samplelist.bikes %}
* {{item.title}}
{% endfor %}

Result:

• mountain bikes

• road bikes

• hybrid bikes

Here we use a “for” loop to get each item in the bikes list. By using .title we
only get the title property from each list item.

Example 4: List items
YAML:

salesteams:
- title: Regions
subitems:

- location: US
- location: Spain
- location: France

Markdown + Liquid:

{% for item in site.data.samplelist.salesteams %}
<h3>{{item.title}}</h3>
<ul>
{% for entry in item.subitems %}
<li>{{entry.location}}</li>
{% endfor %}
</ul>
{% endfor %}

Result:

Regions

• US

• Spain

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 45



• France

Hopefully you can start to see how to wrap more complex formatting around the
YAML content. When you use a “for” loop, you choose the variable of what to call
the list items. The variable you choose to use becomes how you access the
properties of each list item. In this case, I decided to use the variable item . In
order to get each property of the list item, I used item.subitems .

Each list item starts with the hyphen – . You cannot directly access the list item
by referring to a mapping. You only loop through the list items. If you wanted to
access the list item, you would have to use something like [1] , which is how you
access the position in an array. You cannot access a list item like you can access
a mapping key.

Example 5: Table of contents
YAML:

toc:
- title: Group 1

subitems:
- page: Thing 1
- page: Thing 2
- page: Thing 3

- title: Group 2
subitems:

- page: Piece 1
- page: Piece 2
- page: Piece 3

- title: Group 3
subitems:

- page: Widget 1
- page: Widget 2 it's
- page: Widget 3

Markdown + Liquid:

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 46



{% for item in site.data.samplelist.toc %}
<h3>{{item.title}}</h3>
<ul>
{% for entry in item.subitems %}
<li>{{entry.page}}</li>
{% endfor %}
</ul>
{% endfor %}

Result:

Group 1

• Thing 1

• Thing 2

• Thing 3

Group 2

• Piece 1

• Piece 2

• Piece 3

Group 3

• Widget 1

• Widget 2

• Widget 3

This example is similar to the previous one, but it’s more developed as a real table
of contents.

Example 6: Variables
YAML:

something: &hello Greetings earthling!
myref: *hello

Markdown:

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 47



{{ site.data.samplelist.myref }}

Result:

Greetings earthling!

This example is notably different. Here I’m showing how to reuse content in YAML
file. If you have the same value that you want to repeat in other mappings, you can
create a variable using the & symbol. Then when you want to refer to that
variable’s value, you use an asterisk * followed by the name of the variable.

In this case the variable is &hello and its value is Greetings earthling! In
order to reuse that same value, you just type *hello .

I don’t use variables much, but that’s not to say they couldn’t be highly useful. For
example, let’s say you put name of the product in parentheses after each title
(because you have various products that you’re providing documentation for in
the same site). You could create a variable for that product name so that if you
change how you’re referring to it, you wouldn’t have to change all instances of it in
your YAML file.

Example 7: Positions in lists
YAML:

about:
- zero
- one
- two
- three

Markdown:

{{ site.data.samplelist.about[0] }}

Result:

zero

You can see that I’m accessing one of the items in the list using [0] . This refers
to the position in the array where a list item is. Like most programming languages,
you start counting at zero, not one.

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 48



I wanted to include this example because it points to the challenge in getting a
value from a specific list item. You can’t just call out a specific item in a list like
you can with a mapping. This is why you usually iterate through the list items
using a “for” loop.

Example 8: Properties from list items at
specific positions
YAML:

numbercolors:
- zero:

properties: red
- one:

properties: yellow
- two:

properties: green
- three:

properties: blue

Markdown + Liquid:

{{ site.data.samplelist.numbercolors[0].properties }}

Result:

red

This example is similar as before; however, in this case were getting a specific
property from the list item in the zero position.

Example 9: Conditions
YAML:

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 49



mypages:
- section1: Section 1

audience: developers
product: acme
url: facebook.com

- section2: Section 2
audience: writers
product: acme
url: google.com

- section3: Section 3
audience: developers
product: acme
url: amazon.com

- section4: Section 4
audience: writers
product: gizmo
url: apple.com

- section5: Section 5
audience: writers
product: acme
url: microsoft.com

Markdown + Liquid:

{% for sec in site.data.samplelist.mypages %}
{% ifif sec.audience ==== "writers" %}
* {{sec.url}}
{% endifendif %}
{% endfor %}

Result:

• google.com

• apple.com

• microsoft.com

This example shows how you can use conditions in order to selectively get the
YAML content. In your table of contents, you might have a lot of different pages.
However, you might only want to get the pages for a particular audience.
Conditions lets you get only the items that meet those audience attributes.

Now let’s adjust the condition just a little. Let’s add a second condition so that the
audience property has to be writers and the product property has to be

gizmo. This is how you would write it:

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 50



{% for sec in site.data.samplelist.mypages %}
{% ifif sec.audience ==== "writers" and sec.product ==== "gizmo" %}
* {{sec.url}}
{% endifendif %}
{% endfor %}

And here is the result:

• apple.com

More resources
For more examples and explanations, see this helpful post on tournemille.com:
How to create data-driven navigation in Jekyll
(http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll/).

YAML tutorial in the context of Jekyll PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 51

http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll/
http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll/
http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll/


Tags
Summary: Tags provide another means of navigation for your
content. Unlike the table of contents, tags can show the content in a
variety of arrangements and groupings. Implementing tags in this
Jekyll theme is somewhat of a manual process.

Add a tag to a page
You can add tags to pages by adding tags in the frontmatter with values inside
brackets, like this:

---
title: 2.0 Release Notes
permalink: /release_notes_2_0/
tags: [formatting, single_sourcing]
---

Tags overview

 Note: With posts, tags have a namespace that you can access with
posts.tags.tagname, where tagname is the name of the tag. You can then
list all posts in that tag namespace. But pages don't off this same tag
namespace, so you could actually use another key instead of tags.
Nevertheless, I'm using the same tags approach for posts as with pages.

To prevent tags from getting out of control and inconsistent, first make sure the
tag appears in the _data/tags.yml file. If it’s not there, the tag you add to a page
won’t be read. I added this check just to make sure I’m using the same tags
consistently and not adding new tags that don’t have tag archive pages.

 Note: In contrast to WordPress, with Jekyll to get tags on pages you have
to build out the functionality for tags so that clicking a tag name shows you
all pages with that tag. Tags in Jekyll are much more manual.

Tags PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 52



Additionally, you must create a tag archive page similar to the other pages named
tag_{tagname}.html folder. This theme doesn’t auto-create tag archive pages.

For simplicity, make all your tags single words (connect them with hyphens if
necessary).

Setting up tags
Tags have a few components.

1. In the _data/tags.yml file, add the tag names you want to allow. For
example:

allowed-tags:
- getting_started
- overview
- formatting
- publishing
- single_sourcing
- special_layouts
- content types

2. Create a tag archive file for each tag in your tags_doc.yml list. Name the
file following the same pattern in the tags folder, like this:
tag_collaboration.html.

Each tag archive file needs only this:

---
title: "Collaboration pages"
tagName: collaboration
search: exclude
permalink: /tag_collaboration/
sidebar: tags_sidebar
---
{% include taglogic.html %}

 Note: In the \_includes/mydoc folder, there's a taglogic.html file.
This file (included in each tag archive file) has common logic for
getting the tags and listing out the pages containing the tag in a
table with summaries or truncated excerpts. You don't have to do

Tags PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 53



anything with the file — just leave it there because the tag archive
pages reference it.

3. Change the title, tagName, and permalink values to be specific to the tag
name you just created.

By default, the _layouts/page.html file will look for any tags on a page and
insert them at the bottom of the page using this code:

<div class="tags">
{% if page.tags != null %}
<b>Tags: </b>
{% assign projectTags = site.data.tags.allowed-tags %}
{% for tag in page.tags %}
{% if projectTags contains tag %}
<a href="{{ "/tag_" | prepend: site.baseurl | append: t

ag }}" class="btn btn-default navbar-btn cursorNorm" rol
e="button">{{page.tagName}}{{tag}}</a>
{% endif %}
{% endfor %}
{% endif %}

</div>

Because this code appears on the _layouts/page.html file by default, you don’t
need to do anything in your page to get the tags to appear. However, if you want
to alter the placement or change the button color, you can do so within the
_includes/taglogic.html file.

You can change the button color by changing the class on the button from
btn-info to one of the other button classes bootstrap provides. See page (page

0) for more options on button class names.

Retrieving pages for a specific tag
If you want to retrieve pages outside of a particular tag_archive page, you could
use this code:

Tags PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 54

http://127.0.0.1:4010/mydoc-pdf/mydoc_labels
http://127.0.0.1:4010/mydoc-pdf/mydoc_labels


Getting started pages:
<ul>
{% for page in site.pages %}
{% for tag in page.tags %}
{% ifif tag ==== "getting_started" %}
<li><a href="{{page.url | prependprepend: '..'}}">{{page.titl
e}}</a></li>
{% endifendif %}
{% endfor %}
{% endfor %}
</ul>

Here’s how that code renders:

Getting started pages:

• Introduction (page 0)

• About the theme author (page 16)

• Getting started (page 10)

• Pages (page 18)

• Posts (page 24)

• Sidebar Navigation (page 38)

• Support (page 17)

• Supported features (page 4)

• Troubleshooting (page 136)

If you want to sort the pages alphabetically, you have to apply a sort filter:

Getting started pages:
<ul>
{% assign sorted_pages == (site.pages | sortsort: 'title') %}
{% for page in sorted_pages %}
{% for tag in page.tags %}
{% ifif tag ==== "getting_started" %}
<li><a href="{{page.url | prependprepend: '..'}}">{{page.titl
e}}</a></li>
{% endifendif %}
{% endfor %}
{% endfor %}
</ul>

Tags PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 55

http://127.0.0.1:4010/mydoc-pdf/


Here’s how that code renders:

Getting started pages:

• About the theme author (page 16)

• Getting started (page 10)

• Introduction (page 0)

• Pages (page 18)

• Posts (page 24)

• Sidebar Navigation (page 38)

• Support (page 17)

• Supported features (page 4)

• Troubleshooting (page 136)

Efficiency
Although the tag approach here uses for loops, these are somewhat inefficient
on a large site. Most of my tech doc projects don’t have hundreds of pages (like
my blog does). If your project does have hundreds of pages, this for loop
approach with tags is going to slow down your build times.

Without the ability to access pages inside a universal namespace with the page
type, there aren’t many workarounds here for faster looping.

With posts (instead of pages), since you can access just the posts inside
posts.tag.tagname , you can be a lot more efficient with the looping.

Still, if the build times are getting long (e.g., 1 or 2 minutes per build), look into
reducing the number of for loops on your site.

Empty tags?
If your page shows “tags:” at the bottom without any value, it could mean a
couple of things:

• You’re using a tag that isn’t specified in your allowed tags list in your
tags.yml file.

• You have an empty tags: [] property in your frontmatter.

If you don’t want tags to appear at all on your page, remove the tags property
from your frontmatter.

Tags PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 56

http://127.0.0.1:4010/mydoc-pdf/


Remembering the right tags
Since you may have many tags and find it difficult to remember what tags are
allowed, I recommend creating a template that prepopulates all your frontmatter
with all possible tags. Then just remove the tags that don’t apply.

See WebStorm Text Editor (page 0) for tips on creating file templates in
WebStorm.

Tags PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 57

http://127.0.0.1:4010/mydoc-pdf/mydoc_webstorm_text_editor


Series
Summary: You can automatically link together topics belonging to
the same series. This helps users know the context within a particular
process.

Using series for pages
You create a series by looking for all pages within a tag namespace that contain
certain frontmatter. Here’s a demo.

1. Create the series button
First create an include that contains your series button:

<div class="seriesContext">
<div class="btn-group">

<button type="button" data-toggle="dropdown" class="bt
n btn-primary dropdown-toggle">Series Demo <span class="care
t"></span></button>

<ol class="dropdown-menu">
{% assign pages = site.pages | sort:"weight"  %}
{% for p in pages %}
{% if p.series == "ACME series" %}
{% if p.url == page.url %}
<li class="active"> → {{p.weight}}. {{p.title}}</l

i>
{% else %}
<li>

<a href="{{p.url | prepend: '..'}}">{{p.weigh
t}}. {{p.title}}</a>

</li>
{% endif %}
{% endif %}
{% endfor %}

</ol>
</div>

</div>

Series PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 58

http://127.0.0.1:4010/mydoc-pdf/mydoc_seriesdemo1


Change “ACME series” to the name of your series.

Save this in your _includes/custom folder as something like series_acme.html.

 Warning: With pages, there isn't a universal namespace created from tags
or categories like there is with Jekyll posts. As a result, you have to loop
through all pages. If you have a lot of pages in your site (e.g., 1,000+), then
this looping will create a slow build time. If this is the case, you will need to
rethink the approach to looping here.

2. Create the “next” include
Now create another include for the Next button at the bottom of the page. Copy
the following code, changing the series name to your series’name:

<p>{% assign series_pages = site.tags.series_acme %}
{% for p in pages %}
{% if p.series == "ACME series" %}
{% assign nextTopic = page.weight | plus: "1"  %}
{% if p.weight == nextTopic  %}
<a href="{{p.url | prepend: '..'}}"><button type="button" c

lass="btn btn-primary">Next: {{p.weight}}  {{p.title}}</butto
n></a>

{% endif %}
{% endif %}
{% endfor %}

</p>

Change “acme” to the name of your series.

Save this in your _includes/custom/mydoc folder as series_acme_next.html.

3. Add the correct frontmatter to each of your
series pages
Now add the following frontmatter to each page in the series:

series: "ACME series"
weight: 1.0

Series PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 59



With weights, Jekyll will treat 10 as coming after 1. If you have more than 10
items, consider changing plus: "1.0" to plus: "0.1" .

Additionally, if your page names are prefaced with numbers, such as “1.
Download the code,” then the {{p.weight}} will create a duplicate number. In
that case, just remove the {{p.weight}} from both code samples here.

4. Add links to the series button and next
button on each page.
On each series page, add a link to the series button at the top and a link to the
next button at the bottom.

<!-- your frontmatter goes here -->

{% include custom/series_acme.html %}

<!-- your page content goes here ... -->

{% include custom/series_acme_next.html %}

Changing the series drop-down color
The Bootstrap menu uses the primary class for styling. If you change this class
in your theme, the Bootstrap menu should automatically change color as well. You
can also just use another Bootstrap class in your button code. Instead of
btn-primary , use btn-info or btn-warning . See Labels (page 0)for more

Bootstrap button classes.

Using a collection with your series
Instead of copying and pasting the button includes on each of your series, you
could also create a collection and define a layout for the collection that has the
include code. For more information on creating collections, see Collections (page
0).

Series PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 60

http://127.0.0.1:4010/mydoc-pdf/mydoc_labels
http://127.0.0.1:4010/mydoc-pdf/mydoc_collections
http://127.0.0.1:4010/mydoc-pdf/mydoc_collections


Tooltips
Summary: You can add tooltips to any word, such as an acronym or
specialized term. Tooltips work well for glossary definitions, because
you don't have to keep repeating the definition, nor do you assume
the reader already knows the word's meaning.

Creating tooltips
Because this theme is built on Bootstrap, you can simply use a specific attribute
on an element to insert a tooltip.

Suppose you have a glossary.yml file inside your _data folder. You could pull in
that glossary definition like this:

<a href="#" data-toggle="tooltip" data-original-title="{{site.d
ata.glossary.jekyll_platform}}">Jekyll</a> is my favorite tool
for building websites.</a>

This renders to the following:

Jekyll is my favorite tool for building websites.

Tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 61



Alerts
Summary: You can insert notes, tips, warnings, and important alerts
in your content. These notes make use of Bootstrap styling and are
available through data references such as site.data.alerts.note.

About alerts
Alerts are little warnings, info, or other messages that you have called out in
special formatting. In order to use these alerts or callouts, just reference the
appropriate value stored in the alerts.yml file as described in the following
sections.

Alerts
You can insert an alert by using any of the following code.

ALERT CODE

note {{site.data.alerts.note}} your note {{site.data.alerts.end}}

tip {{site.data.alerts.tip}} your tip {{site.data.alerts.end}}

warning {{site.data.alerts.warning}} your warning
{{site.data.alerts.end}}

important {{site.data.alerts.important}} your important info
{{site.data.alerts.end}}

The following demonstrate the formatting associated with each alert.

 Tip: Lorem Ipsum has been the industry's standard dummy text ever since
the 1500s, when an unknown printer took a galley of type and scrambled it to
make a type specimen book.

Alerts PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 62



 Note: Lorem Ipsum has been the industry's standard dummy text ever
since the 1500s, when an unknown printer took a galley of type and
scrambled it to make a type specimen book.

 Important: Lorem Ipsum has been the industry's standard dummy text
ever since the 1500s, when an unknown printer took a galley of type and
scrambled it to make a type specimen book.

 Warning: Lorem Ipsum has been the industry's standard dummy text ever
since the 1500s, when an unknown printer took a galley of type and
scrambled it to make a type specimen book.

Callouts
In contrast to the alerts, the callouts don’t have a pre-coded bold-formatted
preface such as note or tip. You just add one (if desired) in the callout text itself.

CALLOUT CODE

callout_default {{site.data.alerts.callout_default}} your callout_default
content {{site.data.alerts.end}}

callout_primary {{site.data.alerts.callout_primary}} your callout_primary
content {{site.data.alerts.end}}

callout_success {{site.data.alerts.callout_success}} your call-
out_success content {{site.data.alerts.end}}

callout_warning {{site.data.alerts.callout_warning}} your callout_warning
content {{site.data.alerts.end}}

callout_info {{site.data.alerts.callout_info}} your callout_info content
{{site.data.alerts.end}}

The following demonstrate the formatting for each callout.

callout_danger: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard

Alerts PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 63



dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

callout_default: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

calloutprimary: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

calloutsuccess: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

calloutinfo: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

calloutwarning: Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard
dummy text ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

Alerts PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 64



Blast a warning to users
If you want to blast a warning to users on every page, add the alert or callout to
the layouts/page.html page right below the frontmatter. Every page using the page
layout (all, by defaut) will show this message.

Using Markdown inside of notes
You can’t use Markdown formatting inside alerts. This is because the alerts
leverage HTML, and you can’t use Markdown inside of HTML tags. It’s very easy
to forget this, which is why I recommend using HTML formatting for links in every
case. This way you’re less likely to forget to switch into HTML mode when you’re
writing content in a tip. You must remember, however, to avoid Markdown with
code and bold formatting inside of notes.

Alerts PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 65



Icons
Summary: You can integrate font icons through the Font Awesome
and Glyphical Halflings libraries. These libraries allow you to embed
icons through their libraries delivered as a link reference. You don't
need any image libraries downloaded in your project.

Font icon options
The theme has two font icon sets integrated: Font Awesome and Glyphicons
Halflings. The latter is part of Bootstrap, while the former is independent. Font
icons allow you to insert icons drawn as vectors from a CDN (so you don’t have
any local images on your own site).

See Font Awesome icons available
Go to the Font Awesome library (http://fortawesome.github.io/Font-Awesome/icons/) to
see the available icons.

The Font Awesome icons allow you to adjust their size by simply adding fa-2x ,
fa-3x and so forth as a class to the icon to adjust their size to two times or three

times the original size. As vector icons, they scale crisply at any size.

Here’s an example of how to scale up a camera icon:

<i class="fa fa-camera-retro"></i> normal size (1x)
<i class="fa fa-camera-retro fa-lg"></i> fa-lg
<i class="fa fa-camera-retro fa-2x"></i> fa-2x
<i class="fa fa-camera-retro fa-3x"></i> fa-3x
<i class="fa fa-camera-retro fa-4x"></i> fa-4x
<i class="fa fa-camera-retro fa-5x"></i> fa-5x

Here’s what they render to:

 1x  fa-lg fa-2x fa-3x fa-4x fa-5x

Icons PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 66

http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/


With Font Awesome, you always use the i tag with the appropriate class. You
also implement fa as a base class first. You can use font awesome icons inside
other elements. Here I’m using a Font Awesome class inside a Bootstrap alert:

<div class="alert alert-danger" role="alert"><i class="fa fa-ex
clamation-circle"></i> <b>Warning: </b>This is a special warnin
g message.

Here’s the result:

 This is a special warning message.

The notes, tips, warnings, etc., are pre-coded with Font Awesome and stored in
the alerts.yml file. That file includes the following:

tip: '<div class="alert alert-success" role="alert"><i class="f
a fa-check-square-o"></i> <b>Tip: </b>'
note: '<div class="alert alert-info" role="alert"><i class="fa
fa-info-circle"></i> <b>Note: </b>'
important: '<div class="alert alert-warning" role="alert"><i cl
ass="fa fa-warning"></i> <b>Important: </b>'
warning: '<div class="alert alert-danger" role="alert"><i clas
s="fa fa-exclamation-circle"></i> <b>Warning: </b>'
end: '</div>'

callout_danger: '<div class="bs-callout bs-callout-danger">'
callout_default: '<div class="bs-callout bs-callout-default">'
callout_primary: '<div class="bs-callout bs-callout-primary">'
callout_success: '<div class="bs-callout bs-callout-success">'
callout_info: '<div class="bs-callout bs-callout-info">'
callout_warning: '<div class="bs-callout bs-callout-warning">'

hr_faded: '<hr class="faded"/>'
hr_shaded: '<hr class="shaded"/>'

This means you can insert a tip, note, warning, or important alert simply by using
these tags.

{{site.data.alerts.note}} Add your note here. {{site.data.alert
s.end}}

Icons PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 67



{{site.data.alerts.tip}} Add your tip here. {{site.data.alert
s.end}}

{{site.data.alerts.important}} Add your important info here.
{{site.data.alerts.end}}

{{site.data.alerts.warning}} Add your warning here. {{site.dat
a.alerts.end}}

Here’s the result:

 Note: Add your note here.

 Tip: Here's my tip.

 Important: This information is very important.

 Warning: If you overlook this, you may die.

The color scheme is the default colors from Bootstrap. You can modify the icons
or colors as needed.

Creating your own combinations
You can innovate with your own combinations. Here’s a similar approach with a
file download icon:

<div class="alert alert-success" role="alert"><i class="fa fa-d
ownload fa-lg"></i> This is a special tip about some file to do
wnload....</div>

And the result:

 This is a special tip about some file to download....

Icons PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 68



Grab the right class name from the Font Awesome library
(http://fortawesome.github.io/Font-Awesome/icons/) and then implement it by
following the pattern shown previously.

If you want to make your fonts even larger than the 5x style, add a custom style to
your stylesheet like this:

.fa-10x.fa-10x{font-size:1700%;}

Then any element with the attribute fa-10x will be enlarged 1700%.

Glyphicon icons available
Glyphicons work similarly to Font Awesome. Go to the Glyphicons library
(http://getbootstrap.com/components/#glyphicons) to see the icons available.

Although the Glyphicon Halflings library doesn’t provide the scalable classes like
Font Awesome, there’s a StackOverflow trick
(http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-

size)

to make the icons behave in a similar way. This theme’s stylesheet
(customstyles.css) includes the following to the stylesheet:

.gi-2x.gi-2x{font-size: 2em;}

.gi-3x.gi-3x{font-size: 3em;}

.gi-4x.gi-4x{font-size: 4em;}

.gi-5x.gi-5x{font-size: 5em;}

Now you just add gi-5x or whatever to change the size of the font icon:

<span class="glyphicon glyphicon-globe gi-5x"></span>

And here’s the result:


Glypicons use the span element instead of i to attach their classes.

Here’s another example:

Icons PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 69

http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
http://getbootstrap.com/components/#glyphicons
http://getbootstrap.com/components/#glyphicons
http://getbootstrap.com/components/#glyphicons
http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size
http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size
http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size


<span class="glyphicon glyphicon-download"></span>



And magnified:

<span class="glyphicon glyphicon-download gi-3x"></span>


You can also put glyphicons inside other elements:

<div class="alert alert-danger" role="alert">
<span class="glyphicon glyphicon-exclamation-sign" aria-hidde

n="true"></span>
<b>Error:</b> Enter a valid email address

</div>

 Error: Enter a valid email address

Callouts
The previously shown alerts might be fine for short messages, but with longer
notes, the solid color takes up a bit of space. In this theme, you also have the
option of using callouts, which are pretty common in Bootstrap’s documentation
but surprisingly not offered as an explicit element. Their styles have been copied
into this theme, in a way similar to the alerts:

<div class="bs-callout bs-callout-info">
This is a special info message. This is a special info messag

e. This is a special info message. This is a special info messa
ge. This is a special info message. This is a special info mess
age. This is a special info message. This is a special info mes
sage. This is a special info message. </div>

Icons PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 70



 This is a special info message. This is a special info message. This is a
special info message. This is a special info message. This is a special info
message. This is a special info message. This is a special info message. This
is a special info message. This is a special info message.

And here’s the shortcode:

{{site.data.alerts.callout_info}This is a special callout infor
mation message. {{site.data.alerts.end}}

Here’s the result:

This is a special callout information message.

You can use any of the following:

{{site.data.alerts.callout_default}}
{{site.data.alerts.callout_primary}}
{{site.data.alerts.callout_success}}
{{site.data.alerts.callout_info}}
{{site.data.alerts.callout_warning}}

The only difference is the color of the left bar.

Callouts are explained in a bit more detail in Alerts (page 0).

Icons PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 71

http://127.0.0.1:4010/mydoc-pdf/mydoc_alerts


Images
Summary: You embed images using traditional HTML or Markdown
syntax for images. Unlike pages, you can store images in subfolders
(in this theme). This is because when pages reference the images, the
references are always as subpaths, never requiring the reference to
move up directories.

You embed an image the same way you embed other files or assets: you put the
file into a folder, and then link to that file.

Put images inside the images folder in your root directory. You can create
subdirectories inside this directory. Although you could use Markdown syntax for
images, the HTML syntax is probably easier:

<img title="my sample page" src="{{ "/images/jekyll.png" | prep
end: site.baseurl }}" />

And the result:

Here’s the same Markdown syntax:

![My sample page]({{ "/images/jekyll.png" | prepend: site.baseu
rl }})

And the result:

 Tip: I recommend storing this format into a shortcut editor such as aText.
This way when you want to insert an image, just type something like jimg and
the shortcut editor will automatically type the code.

Images PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 72



Figure captions
If you want to add a figure caption, you can do so using standard figure HTML
tags:

<figure><img title="my sample page" src="{{ "/images/jekyll.pn
g" | prepend: site.baseurl }}" /><figcaption>Your caption</figc
aption></figure>

Here’s the result:

Your caption

</figure>

SVG Images
You can also embed SVG graphics. If you use SVG, you need to use the HTML
syntax so that you can define a width/container for the graphic. Here’s a sample
embed:

<img src="/mydoc-pdf/images/helpapi.svg" style="max-width: 600p
x;" />

Here’s the result:

Images PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 73



sample help text sample help 
text sample help text sample 
help text sample help text 
sample help text sample help 

Getting Started 
text sample help text 
sample help text sample 
help text sample help 
text sample help text 
sample help text sample 

Learning Course
sample help text sample help 
text sample help text sample 
help text sample help text 
sample help text sample help 

sample help 
text sample 
help text 
sample help 
text sample 
help text 
sample help 
text sample 

Help API

   

 pullin
g fr

om A
PI   

 

   

 p
ul

lin
g 

fr
om

 A
PI

   
 

   

 pulling from API    

   

 pulling from
 A

PI    

website #1

website #2

website #4

website #3

SVG images will expand to the size of their container, so you have to specify it
here. The previous syntax isn’t well supported in IE, so you would be better off
using the object element like this:

<div style="max-width:600px;"><object type="image/svg+xml" dat
a="{{ "/images/helpapi.svg" | prepend: site.baseurl }}">Your br
owser does not support SVG</object>
</div>

Here’s the same code with figure elements:

<div style="max-width:600px;"><figure><object type="image/svg+x
ml" data="{{ "/images/helpapi.svg" | prepend: site.baseurl
}}">Your browser does not support SVG</object><figcaption>This
is your caption</figcaption></figure>
</div>

And the result:

Images PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 74



sample help text sample help 
text sample help text sample 
help text sample help text 
sample help text sample help 

Getting Started 
text sample help text 
sample help text sample 
help text sample help 
text sample help text 
sample help text sample 

Learning Course
sample help text sample help 
text sample help text sample 
help text sample help text 
sample help text sample help 

sample help 
text sample 
help text 
sample help 
text sample 
help text 
sample help 
text sample 

Help API

   

 pullin
g fr

om A
PI   

 

   

 p
ul

lin
g 

fr
om

 A
PI

   
 

   

 pulling from API    

   

 pulling from
 A

PI    

website #1

website #2

website #4

website #3

This is your caption

Also, if you’re working with SVG graphics, note that Firefox does not support SVG
fonts. In Illustrator, when you do a Save As with your AI file and choose SVG, to
preserve your fonts, in the Font section, select “Convert to outline” as the Type
(don’t choose SVG in the Font section).

Also, remove the check box for “Use textpath element for text on a path”. And
select “Embed” rather than “Link.” The following screenshot shows the settings I
use. Your graphics will look great in Firefox.

Images PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 75



Images PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 76



Labels
Summary: Labels are just a simple Bootstrap component that you
can include in your pages as needed. They represent one of many
Bootstrap options you can include in your theme.

About labels
Labels might come in handy for adding button-like tags next to elements, such as
POST, DELETE, UPDATE methods for endpoints. You can use any classes from
Bootstrap in your content.

<span class="label label-default">Default</span>
<span class="label label-primary">Primary</span>
<span class="label label-success">Success</span>
<span class="label label-info">Info</span>
<span class="label label-warning">Warning</span>
<span class="label label-danger">Danger</span>

Default Primary Success Info Warning Danger

You can have a label appear within a heading simply by including the span tag in
the heading. However, you can’t mix Markdown syntax with HTML, so you’d have
to hard-code the heading ID for the auto-TOC to work.

Labels PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 77



Links
Summary: When creating links, you can use standard HTML or
Markdown formatting. Note that this approach is susceptible to errors
and broken links, so check your outputs for broken links.

Create an external link
When linking to an external site, use Markdown formatting because it’s simplest:

[Google](http://google.com)

If you need to use HTML, use the normal syntax:

<a href="http://google.com">Google</a>

Linking to internal pages
When linking to internal pages, you can use this same syntax:

[Sample](/mydoc-pdf/page)

OR

<a href="/mydoc-pdf/page">page</a>

I find that using the HTML formatting is easiest. Store the code in a shortcut in
aText to populate it easily.

Avoiding broken links
In general, avoid broken links and outdated titles in links by doing the following:

Links PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 78



• Where possible, avoid using the exact titles in link names. For example, if
you write, see the Links (page 78) page, this title is likely to become more
outdated than if you were to write, learn how to manage links (page 78).

• Use a broken link checker on your site output to see if links are broken.

• Generate a PDF, since the PDF tends to highlight broken links more
forcefully.

Other methods for managing links
You can also adopt an indirect-reference systems for managing links. This
involves storing the link text in YAML syntax.

If you want to try this method, look in the root directory. The urls.txt file contains
the same code as the table of contents (but without the conditional qualifiers),
duplicated for each of the sidebars. The code iterates through every page listed in
the table of contents sidebars (as well as the top navigation menus) and creates
an output that looks like this for each link:

mydoc_introduction:
title: "Introduction"
url: "mydoc_introduction"
link: "<a href='/mydoc_introduction/'>Introduction</a>"

From the site output folder (in _site), open urls.txt and observe that it is properly
populated (blank spaces between entries doesn’t matter). Then manually copy the
contents from the urls.txt and insert it into the _data/urls.yml file in your project
folder.

Because the urls.txt is produced from the table of contents, you ensure that the
same titles and URLs used in your table of contents and top navigation will also
be used in your inline links.

To create a link in a topic, just reference the appropriate value in the urls.yml file,
like this:

{{site.data.urls.mydoc_introduction.link}}

This will insert the following into your topic:

<a href='/mydoc_getting_started/'>Getting started</a>

Links PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 79



You don’t need to worry whether you can use Markdown syntax when inserting a
link this way, because the insertion is HTML.

To insert a link in the context of a phrase, you can use this syntax:

After downloading the theme, you can [get started in building t
he theme]({{site.data.urls.mydoc_getting_started.url}}).

This leverages Markdown syntax. If you’re in an HTML file or section, use this:

<p>After downloading the theme, you can <a href="{{site.data.ur
ls.mydoc_getting_started.url}}">get started in building the the
me</a>.</p>

Note that the url value accesses the URL for the page only, whereas link gets
the title and url in a link format.

You shouldn’t have to copy the contents from the urls.txt file into your YAML data
source too often — only when you’re creating new pages.

By using this approach, you’re less likely to end up with broken links.

 Tip: To avoid having to remember this long syntax, use a text macro
program like aText (https://itunes.apple.com/us/app/atext/id488566438?mt=12).

Always make sure your TOC page is accurate
You should treat your sidebar data files (in /_data/sidebars) with a lot of care.
Every time you add a page to your site, make sure it’s listed in your sidebar file (or
in your top navigation). If you don’t have pages listed in your sidebar file, they
won’t be included in the urls.txt file, and as your site grows, it will be harder to
recognize pages that are absent from the TOC.

Because all the pages are stored in the root directory, the list of files can grow
really long. I typically find pages by navigating to the page in the preview server,
copying the page name (e.g., mydoc_hyperlinks), and then pressing Shift + Shift
in WebStorm to locate the page.

This is the only sane way to locate your pages when you have hundreds of pages
in your root directory. If the page isn’t listed in your TOC, it will be difficult to
navigate to it and find it.

Links PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 80

https://itunes.apple.com/us/app/atext/id488566438?mt=12
https://itunes.apple.com/us/app/atext/id488566438?mt=12


Checking for broken links
Another way to ensure you don’t have any broken links in your output is to
generate a PDF (page 0). When you generate a PDF, look for the following two
problems in the output:

• page 0

• see .

Both instances indicate a broken link. The “page 0” indicates that Prince XML
couldn’t find the page that the link points to, and so it can’t create a cross
reference. This may be because the page doesn’t exist, or because the anchor is
pointing to a missing location.

If you see “see .” it means that the reference (for example, {{mylink...}}
doesn’t actually refer to anything. As a result, it’s simply blank in the output.

 Note: To keep Prince XML from trying to insert a cross reference into a
link, add class="noCrossRef" to the link.

Links PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 81

http://127.0.0.1:4010/mydoc-pdf/mydoc_hyperlinks/mydoc_generating_pdfs


Navtabs
Summary: Navtabs provide a tab-based navagation directly in your
content, allowing users to click from tab to tab to see different panels
of content. Navtabs are especially helpful for showing code samples
for different programming languages. The only downside to using
navtabs is that you must use HTML instead of Markdown.

Common uses
Navtabs are particularly useful for scenarios where you want to show a variety of
options, such as code samples for Java, .NET, or PHP, on the same page.

While you could resort to single-source publishing to provide different outputs for
each unique programming language or role, you could also use navtabs to allow
users to select the content you want.

Navtabs are better for SEO since you avoid duplicate content and drive users to
the same page.

Navtabs demo
The following is a demo of a navtab. Refresh your page to see the tab you
selected remain active.

Profile
Praesent sit amet fermentum leo. Aliquam feugiat, nibh in u ltrices mattis, felis
ipsum venenatis metus, vel vehicula libero mauris a enim. Sed placerat est ac
lectus vestibulum tempor. Quisque ut condimentum massa. Proin venenatis
leo id urna cursus blandit. Vivamus sit amet hendrerit metus.

Profile About Match

Navtabs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 82



Code
Here’s the code for the above (with the filler text abbreviated):

<ul id="profileTabs" class="nav nav-tabs">
<li class="active"><a href="#profile" data-toggle="tab">Pro

file</a></li>
<li><a href="#about" data-toggle="tab">About</a></li>
<li><a href="#match" data-toggle="tab">Match</a></li>

</ul>
<div class="tab-content">

<div role="tabpanel" class="tab-pane active" id="profile">
<h2>Profile</h2>

<p>Praesent sit amet fermentum leo....</p>
</div>

<div role="tabpanel" class="tab-pane" id="about">
<h2>About</h2>
<p>Lorem ipsum ...</p></div>

<div role="tabpanel" class="tab-pane" id="match">
<h2>Match</h2>
<p>Vel vehicula ....</p>

</div>
</div>

Design constraints
Bootstrap automatically clears any floats after the navtab. Make sure you aren’t
trying to float any element to the right of your navtabs, or there will be some
awkward space in your layout.

Appearance in the mini-TOC
If you put a heading in the navtab content, that heading will appear in the mini-
TOC as long as the heading tag has an ID. If you don’t want the headings for each
navtab section to appear in the mini-TOC, omit the ID attribute from the heading
tag. Without this ID attribute in the heading, the mini-TOC won’t insert the heading
title into the mini-TOC.

Navtabs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 83



Must use HTML
You must use HTML within the navtab content because each navtab section is
surrounded with HTML, and you can’t use Markdown inside of HTML.

Match up ID tags
Each tab’s href attribute must match the id attribute of the tab content’s div
section. So if your tab has href="#acme" , then you add acme as the ID attribute
in <div role="tabpanel" class="tab-pane" id="acme"> .

Set an active tab
One of the tabs needs to be set as active, depending on what tab you want to be
open by default (usually the first one).

<div role="tabpanel" class="tab-pane active" id="acme">

Sets a cookie
The navtabs are part of Bootstrap, but this theme sets a cookie to remember the
last tab’s state. The js/customscripts.js file has a long chunk of JavaScript that
sets the cookie. The JavaScript comes from this StackOverflow thread
(http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-

twitter-bootstrap-after-a-page-reload)

.

By setting a cookie, if the user refreshes the page, the active tab is the tab the
user last selected (rather than defaulting to the default active tab).

Functionality to implement
One piece of functionality I’d like to implement is the ability to set site-wide nav
tab options. For example, if the user always chooses PHP instead of Java in the
code samples, it would be great to set this option site-wide by default. However,
this functionality isn’t yet coded.

Navtabs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 84

http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload
http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload
http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload


Tables
Summary: You can format tables using either multimarkdown syntax
or HTML. You can also use jQuery datatables (a plugin) if you need
more robust tables.

Multimarkdown Tables
You can use Multimarkdown syntax for tables. The following shows a sample:

Column 1 | Column 2
--------|----------
cell 1a | cell 1b
cell 2a | cell 2b

This renders to the following:

COLUMN 1 COLUMN 2

cell 1a cell 1b

cell 2a cell 2b

jQuery datables
You also have the option of using a jQuery datatable (https://www.datatables.net/),
which gives you some more options. If you want to use a jQuery datatable, then
add datatable: active in a page’s frontmatter. This will load the right jQuery
datatable scripts for the table on that page only (rather than loading the scripts on
every page of the site.)

Also, you need to add this script to trigger the jQuery table on your page:

Tables PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 85

https://www.datatables.net/
https://www.datatables.net/


<<script>>
$(document).ready(functionfunction(){

$('table.display').DataTable( {
paging: truetrue,
stateSave: truetrue,
searching: truetrue

}
);

});
<</script>

The available options for the datable are described in the datatable
documentation (https://www.datatables.net/manual/options), which is excellent.

Additionally, you must add a class of display to your tables. (You can change
the class, but then you’ll need to change the trigger above from table.display
to whatever class you want to you. You might have different triggers with different
options for different tables.)

Since Markdown doesn’t allow you to add classes to tables, you’ll need to use
HTML for any datatables. Here’s an example:

Tables PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 86

https://www.datatables.net/manual/options
https://www.datatables.net/manual/options
https://www.datatables.net/manual/options


<table id="sampleTable" class="display">
<thead>

<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default Value</th>

</tr>
</thead>
<tbody>

<tr>
<td>Parameter 1</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 2</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 3</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
<tr>

<td>Parameter 4</td>
<td>Sample description
</td>
<td>Sample type</td>
<td>Sample default value</td>

</tr>
</tbody>

</table>

This renders to the following:

Tables PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 87



FOOD DESCRIPTION CATEGORY
SAMPLE

TYPE

Apples A small, somewhat round
and often red-colored,
crispy fruit grown on trees.

Fruit Fuji

Bananas A long and curved, often-
yellow, sweet and soft fruit
that grows in bunches in
tropical climates.

Fruit Snow

Kiwis A small, hairy-skinned sweet
fruit with green-colored in-
sides and seeds.

Fruit Golden

Oranges A spherical, orange-colored
sweet fruit commonly grown
in Florida and California.

Fruit Navel

Notice a few features:

• You can keyword search the table. When you type a word, the table filters
to match your word.

• You can sort the column order.

• You can page the results so that you show only a certain number of
values on the first page and then require users to click next to see more
entries.

Read more of the datatable documentation
(https://www.datatables.net/manual/options) to get a sense of the options you can
configure. You should probably only use datatables when you have long, massive
tables full of information.

 Note: Try to keep the columns to 3 or 4 columns only. If you add 5+
columns, your table may create horizontal scrolling with the theme.

Tables PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 88

https://www.datatables.net/manual/options
https://www.datatables.net/manual/options
https://www.datatables.net/manual/options


Syntax highlighting
Summary: You can apply syntax highlighting to your code. This
theme uses pygments and applies color coding based on the lexer
you specify.

About syntax highlighting
For syntax highlighting, use fenced code blocks optionally followed by the
language syntax you want:

```ruby
def foo

puts 'foo'
end

```

This looks as follows:

defdef foofoo
puts 'foo'

endend

Fenced code blocks require a blank line before and after.

If you’re using an HTML file, you can also use the highlight command with
Liquid markup:

{% highlight ruby %}
def foo

puts 'foo'
end

{% endhighlight %}

It renders the same:

Syntax highlighting PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 89



defdef foofoo
puts 'foo'

endend

The theme has syntax highlighting specified in the configuration file as follows:

highlighter: rouge

The syntax highlighting is done via the css/syntax.css file.

Available lexers
The keywords you must add to specify the highlighting (in the previous example,
ruby ) are called “lexers.” You can search for “lexers.” Here are some common

ones I use:

• js

• html

• yaml

• css

• json

• php

• java

• cpp

• dotnet

• xml

• http

Syntax highlighting PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 90



Commenting on files
Summary: You can add a button to your pages that allows people to
add comments.

About the review process
If you’re using the doc as code approach, you might also consider using the same
techniques for reviewing the doc as people use in reviewing code. This approach
will involve using Github to edit the files.

There’s an Edit me button on each page on this theme. This button allows
collaborators to edit the content on Github.

Here’s the code for that button on the page.html layout:

{% unless jekyll.environment == "production" %}

{% if site.github_editme_path %}

<a target="_blank" href="https://github.com/{{site.github_e
ditme_path}}{% unless page.url contains "html" %}{{page.url | r
eplace: '.html', '.md'}}{% endunless %}{% if page.url contains
"html" %}{{page.url }}{% endif %}" class="btn btn-default githu
bEditButton" role="button"><i class="fa fa-github fa-lg"></i> E
dit me</a>

{% endif %}

{% endunless %}

This code is only active if you’re publishing in a development environment, which
is the default.

To activate the production environment, add the production environment flag
(http://jekyllrb.com/docs/configuration/) in your build command:

JEKYLL_ENV=production jekyll serve

Commenting on files PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 91

http://jekyllrb.com/docs/configuration/
http://jekyllrb.com/docs/configuration/
http://jekyllrb.com/docs/configuration/


In your configuration file, edit the value for github_editme_path . For example,
you might create a branch called “reviews” on your Github repo. Then you would
add something like this in your configuration file for the ‘github_editme_path’:
tomjohnson1492/documentation-theme-jekyll/edit/reviews. Here
“tomjohnson1492” is my github account name. The repo name is “documentation-
theme-jekyll”. The “reviews” name is the branch.

Add reviewers as collaborators
If you want people to collaborate on your project so that their edits get committed
to a branch on your project, you need to add them as collaborators. For your
Github repo, click Settings and add the collaborators on the Collaborators tab
using their Github usernames.

If you don’t want to allow anyone to commit to your Github branch, don’t add the
reviewers as collaborators. When someone makes an edit, Github will fork the
theme. The person’s edit then will appear as a pull request to your repo. You can
then choose to merge the change indicated in the pull or not.

 Note: When you process pull requests, you have to accept everything or
nothing. You can't pick and choose which changes you'll merge. Therefore
you'll probably want to edit the branch you're planning to merge or ask the
contributor to make some changes to the fork before processing the pull
request.

Workflow
Users will make edits in your “reviews” branch (or whatever you want to call it).
You can then commit those edits as you make updates.

When you’re finished making all updates in the branch, you can merge the branch
into the master.

Note that if you’re making updates online, those updates will be out of sync with
any local edits.

 Warning: Don't make edits both online using Github's browser-based
interface AND offline on your local machine using your local tools. When you
try to push from your local, you'll likely get a merge conflict error. Instead,
make sure you do a pull and update on your local after making any edits
online.

Commenting on files PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 92



Prose.io
Prose.io is an overlay on Github that would allow people to make comments in an
easier interface. If you simply go to prose.io (http://prose.io), it asks to authorize
your Github account, and so it will read files directly from Github but in the
Prose.io interface.

Commenting on files PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 93

http://prose.io
http://prose.io


Build arguments
Summary: You use various build arguments with your Jekyll project.
You can also create shell scripts to act as shortcuts for long build
commands. You can store the commands in iTerm as profiles as well.

How to build Jekyll sites
The normal way to build the Jekyll site is through the build command:

jekyll build

To build the site and view it in a live server so that Jekyll rebuilds that site each
time you make a change, use the serve command:

jekyll serve

By default, the _config.yml in the root directory will be used, Jekyll will scan the
current directory for files, and the folder _site will be used as the output. You
can customize these build commands like this:

jekyll serve --config configs/myspecialconfig.yml --destinatio
n ../doc_outputs

Here the configs/myspecialconfig.yml file is used instead of _config.yml .
The destination directory is ../doc_outputs , which would be one level up from
your current directory.

Shortcuts for the build arguments
If you have a long build argument and don’t want to enter it every time in Jekyll,
noting all your configuration details, you can create a shell script and then just run
the script. Simply put the build argument into a text file and save it with the .sh
extension (for Mac) or .bat extension (for Windows). Then run it like this:

Build arguments PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 94



. myscript.sh

My preference is to add the scripts to profiles in iTerm. See iTerm profiles (page 0)
for more details.

Stop a server
When you’re done with the preview server, press Ctrl+C to exit out of it. If you exit
iTerm or Terminal without shutting down the server, the next time you build your
site, or if you build multiple sites with the same port, you may get a server-
already-in-use message.

You can kill the server process using these commands:

ps aux | grep jekyll

Find the PID (for example, it looks like “22298”).

Then type kill -9 22298 where “22298” is the PID.

To kill all Jekyll instances, use this:

kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')

I recommend creating a profile in iTerm that stores this command. Here’s what the
iTerm settings look like:

Build arguments PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 95

http://127.0.0.1:4010/mydoc_iterm_profiles/


Build arguments PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 96



Themes
Summary: You can choose between two different themes (one green,
the other blue) for your projects. The theme CSS is stored in the CSS
folder and configured in the configuration file for each project.

Theme options
You can choose a green or blue theme, or you can create your own. In the css
folder, there are two theme files: theme-blue.css and theme-green.css. These files
have the most common CSS elements extracted in their own CSS file. Just
change the hex colors to the ones you want.

In the _includes/head.html file, specify the theme file you want the output to use
— for example, theme_file: theme-green.css . See this line:

<link rel="stylesheet" href="/mydoc-pdf/css/theme-green.css">

Theme differences
The differences between the themes is fairly minimal. The main navigation bar,
sidebar, buttons, and heading colors change color. That’s about it.

In a more sophisticated theming approach, you could use Sass files to generate
rules based on options set in a data file, but I kept things simple here.

Themes PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 97



Check page title consistency
Summary: The title checker page helps ensure that the titles in your
pages match the titles in your TOC.

The theme has a file called title-checker.html. This file will iterate through all the
pages listed in the sidebar navigation and top navigation, and compare the
navigation titles against the page titles based on matching URLs. If there are
inconsistencies in the titles, they get noted on the title-checker.html page.

To run the link checker, just build or serve your project, and go to /title-checker in
your browser (such as Chrome). If there are inconsistencies, they will be noted on
the page.

Note that in order for the title-checker file to run correctly, it has to detect a match
between the URL listed in the sidebar or top navigation with the URL for the page
(based on the file name). If you have the wrong URL, it won’t tell you if the page
titles match. Therefore you should always click through all the topics in your
navigation to make sure the URLs are accurate.

 Note: If your page titles have your product name in parentheses, but your
sidebar doesn't have the product name in parentheses, this title-checker tool
is going to return a lot of mismatches. This is one limitation of the code right
now.

Note also that you must manually configure your sidebar file in the first line of the
code, and then repeat the same chunk of code for each sidebar. Right now the
code doesn’t automatically iterate over every sidebar file. It’s somewhat of a
manual configuration process there.

Check page title consistency PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 98



Generating PDFs
Summary: You can generate a PDF from your Jekyll project. You do
this by creating a web version of your project that is printer friendly.
You then use utility called Prince to iterate through the pages and
create a PDF from them. It works quite well and gives you complete
control to customize the PDF output through CSS, including page
directives and dynamic tags from Prince.

PDF overview
This process for creating a PDF relies on Prince XML to transform the HTML
content into PDF. Prince costs about $500 per license. That might seem like a lot,
but if you’re creating a PDF, you’re probably working for a company that sells a
product, so you likely have access to some resources.

The basic approach is to generate a list of all pages that need to be added to the
PDF, and then add leverage Prince to package them up into a PDF.

It may seem like the setup is somewhat cumbersome, but it doesn’t take long.
Once you set it up, building a pdf is just a matter of running a couple of
commands.

Also, creating a PDF this way gives you a lot more control and customization
capabilities than with other methods for creating PDFs. If you know CSS, you can
entirely customize the output.

Demo
You can see an example of the finished product here:

 PDF Download

1. Set up Prince
Download and install Prince (http://www.princexml.com/doc/installing/).

You can install a fully functional trial version. The only difference is that the title
page will have a small Prince PDF watermark.

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 99

http://127.0.0.1:4010/mydoc-pdf/pdf/mydoc.pdf
http://127.0.0.1:4010/mydoc-pdf/pdf/mydoc.pdf
http://www.princexml.com/doc/installing/
http://www.princexml.com/doc/installing/


2. Create a new configuration file for each of
your PDF targets
The PDF configuration file will build on the settings in the regular configuration file
but will some additional fields. Here’s the configuration file for the mydoc product
within this theme. This configuration file is located in the pdfconfigs folder.

destination: _site/
url: "http://127.0.0.1:4010"
baseurl: "/mydoc-pdf"
port: 4010
output: pdf
product: mydoc
print_title: Jekyll theme for documentation — mydoc product
print_subtitle: version 5.0
output: pdf
defaults:

-
scope:

path: ""
type: "pages"

values:
layout: "page_print"
comments: true
search: true

 Note: Although you're creating a PDF, you must still build an HTML web
target before running Prince. Prince will pull from the HTML files and from the
file-list for the TOC.

Note that the default page layout specified by this configuration file is
page_print . This layout strips out all the sections that shouldn’t appear in the

print PDF, such as the sidebar and top navigation bar.

Also note that there’s a output: pdf toggle in case you want to make some of
your content unique to PDF output. For example, you could add conditional logic
that checks whether site.output is pdf or web . If it’s pdf , then include
information only for the PDF, and so on. If you’re using nav tabs, you’ll definitely
want to create an alternative experience in the PDF.

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 100



In the configuration file, customize the values for the print_title and
print_subtitle that you want. These will appear on the title page of the PDF.

3. Make sure your sidebar_doc.yml file has a
titlepage.html and tocpage.html
There are two template pages in the root directory that are critical to the PDF:

• titlepage.html

• tocpage.html

These pages should appear in your sidebar YML file (in this product,
mydoc_sidebar.yml):

- title:
output: pdf
type: frontmatter
items:
- title:

url: /titlepage/
output: pdf
type: frontmatter

- title:
url: /tocpage/
output: pdf
type: frontmatter

Leave these pages here in your sidebar. (The output: pdf property means they
won’t appear in your online TOC because the conditional logic of the sidebar.html
checks whether web is equal to pdf or not before including the item in the web
version of the content.)

The code in the tocpage.html is mostly identical to that of the sidebar.html page.
This is essential for Prince to create the page numbers correctly with cross
references.

There’s another file (in the root directory of the theme) that is critical to the PDF
generation process: prince-list.txt. This file simply iterates through the items in
your sidebar and creates a list of links. Prince will consume the list of links from
prince-list.txt and create a running PDF that contains all of the pages listed, with
appropriate cross references and styling for them all.

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 101



 Note: If you have any files that you do not want to appear in the PDF, add
output: web (rather than output: pdf) in the list of attributes in your
sidebar. The prince-list.txt file that loops through the mydoc_sidebar.yml file
to grab the URLs of each page that should appear in the PDF will skip over
any items that do not list output: pdf in the item attributes. For example,
you might not want your tag archives to appear in the PDF, but you probably
will want to list them in the online help navigation.

4. Customize your headers and footers
Open up the css/printstyles.css file and customize what you want for the headers
and footers. At the very least, customize the email address
( youremail@domain.com ) that appears in the bottom left.

Exactly how the print styling works here is pretty nifty. You don’t need to
understand the rest of the content in this section unless you want to customize
your PDFs to look different from what I’ve configured. But I’m adding this
information here in case you want to understand how to customize the look and
feel of the PDF output.

This style creates a page reference for a link:

a[[href]]::after {
content: " (page " target-counter(attr(href), page) ")"

}

You don’t want cross references for any link that doesn’t reference another page,
so this style specifies that the content after should be blank:

a[[href*=*="mailto"]]::after,, a[[data-toggle=="tooltip"]]::after,, a[[hr
ef]].noCrossRef.noCrossRef::after {

content: "";
}

 Tip: If you have a link to a file download, or some other link that shouldn't
have a cross reference (such as link used in JavaScript for navtabs or
collapsible sections, for example, add `noCrossRef` as a class to the link to
avoid having it say "page 0" in the cross reference.

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 102



This style specifies that after links to web resources, the URL should be inserted
instead of the page number:

a[[href^=^="http::"]]::after,, a[[href^=^="https::"]]::after {
content: " (" attr(href) ")";

}

This style sets the page margins:

@page@page {
margin: 60pt 90pt 60pt 90pt;
font-family: sans-serif;
font-style:none;
color: gray;

}

To set a specific style property for a particular page, you have to name the page.
This allows Prince to identify the page.

First you add frontmatter to the page that specifies the type. For the
titlepage.html, here’s the frontmatter:

---
type: title
---

For the tocpage, here’s the frontmatter:

---
type: frontmatter
---

For the index.html page, we have this type tag (among others):

---
type: first_page
---

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 103



The default_print.html layout will change the class of the body element based on
the type value in the page’s frontmatter:

<body class="{% ifif page.type ==== "title"%}title{% elsifelsif page.typ
e ==== "frontmatter" %}frontmatter{% elsifelsif page.type ==== "first_pa
ge" %}first_page{% endifendif %} print">

Now in the css/printstyles.css file, you can assign a page name based on a
specific class:

body.title.title { page: title }

This means that for content inside of body class="title" , we can style this
page in our stylesheet using @page title .

Here’s how that title page is styled:

@page@page title {
@top-left@top-left {

content: " ";
}
@top-right@top-right {

content: " "
}
@bottom-right@bottom-right {

content: " ";
}
@bottom-left@bottom-left {

content: " ";
}

}

As you can see, we don’t have any header or footer content, because it’s the title
page.

For the tocpage.html, which has the type: frontmatter , this is specified in the
stylesheet:

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 104



body.frontmatter.frontmatter { page: frontmatter }
body.frontmatter.frontmatter {counter-reset: page 1}

@page@page frontmatter {
@top-left@top-left {

content: prince-script(guideName);
}
@top-right@top-right {

content: prince-script(datestamp);
}
@bottom-right@bottom-right {

content: counter(page, lower-roman);
}
@bottom-left@bottom-left {

content: "youremail@domain.com"; }
}

With counter(page, lower-roman) , we reset the page count to 1 so that the
title page doesn’t start the count. Then we also add some header and footer info.
The page numbers start counting in lower-roman numerals.

Finally, for the first page (which doesn’t have a specific name), we restart the
counting to 1 again and this time use regular numbers.

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 105



body.first_page.first_page {counter-reset: page 1}

h1 { string-set: doctitle content() }

@page@page {
@top-left@top-left {

content: string(doctitle);
font-size: 11px;
font-style: italic;

}
@top-right@top-right {

content: prince-script(datestamp);
font-size: 11px;

}

@bottom-right@bottom-right {
content: "Page " counter(page);
font-size: 11px;

}
@bottom-left@bottom-left {

content: prince-script(guideName);
font-size: 11px;

}
}

You’ll see some other items in there such as prince-script . This means we’re
using JavaScript to run some functions to dynamically generate that content.
These JavaScript functions are located in the _includes/head_print.html:

<<script>>
Prince.addScriptFunc("datestamp", functionfunction() {

returnreturn "PDF last generated: March 18, 2016";
});

<</script>

<<script>>
Prince.addScriptFunc("guideName", functionfunction() {

returnreturn "Jekyll theme for documentation — mydoc product
User Guide";

});
<</script>

There are a couple of Prince functions that are default functions from Prince. This
gets the heading title of the page:

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 106



content: string(doctitle);

This gets the current page:

content: "Page " counter(page);

Because the theme uses JavaScript in the CSS, you have to add the
--javascript tag in the Prince command (detailed later on this page).

5. Customize the PDF script
Open the pdf-mydocf.sh file in the root directory and customize it for your specific
configuration files.

echo 'Killing all Jekyll instances'
kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')
clear

echo "Building PDF-friendly HTML site for Mydoc ...";
jekyll serve --detach --config _config.yml,pdfconfigs/config_my
doc_pdf.yml;
echo "done";

echo "Building the PDF ...";
prince --javascript --input-list=_site/pdfconfigs/prince-list.t
xt -o _pdf/mydoc.pdf;
echo "done";

Note that the first part kills all Jekyll instances. This way you won’t try to serve
Jekyll at a port that is already occupied.

The jekyll serve command serves up the HTML-friendly PDF configurations
for our two projects. This web version is where Prince will go to get its content.

The prince script issues a command to the Prince utility. JavaScript is enabled
( --javascript ), and we tell it exactly where to find the list of files
( --input-list ) — just point to the prince-list.txt file. Then we tell it where and
what to output ( -o ).

Make sure that the path to the prince-list.txt is correct. For the output directory, I
like to output the PDF file into my project’s source (into the files folder). Then
when I build the web output, the PDF is included and something I can refer to.

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 107



 Note: You might not want to include the PDF in your project files, since
you're likely committing the PDF to Github and as a result saving the
changes from one PDF version to another with each save.

6. Add a download button for the PDF
You can add a download button for your PDF using some Bootstrap button code:

<a target="_blank" class="noCrossRef" href="/pdf/mydoc.pdf"><bu
tton type="button" class="btn btn-default" aria-label="Left Ali
gn"><span class="glyphicon glyphicon-download-alt" aria-hidde
n="true"></span> PDF Download</button></a>

Here’s what that looks like:

<a target=”_blank” class=”noCrossRef” href=/mydoc-pdf/pdf/mydoc.pdf”>

 PDF Download </a>

JavaScript conflicts
If you have JavaScript on any of your pages, Prince will note errors in Terminal like
this:

error: TypeError: value is not an object

However, the PDF will still build.

You need to conditionalize out any JavaScript from your PDF web output before
building your PDFs. Make sure that the PDF configuration files have the
output: pdf property.

Then surround the JavaScript with conditional tags like this:

{% unless site.output == "pdf" %}
javascript content here ...
{% endunless %}

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 108



For more detail about using unless in conditional logic, see . What this code
means is “run this code unless this value is the case.”

Overriding Bootstrap Print Styles
The theme relies on Bootstrap’s CSS for styling. However, for print media,
Bootstrap applies the following style:

@media print{*,:after,:before{color:#000!important;text-shado
w:none!important;background:0 0!important;-webkit-box-shadow:no
ne!important;box-shadow:none!important}

This is minified, but basically the * (asterisk) means select all, and applied the
color #000 (black). As a result, the Bootstrap style strips out all color from the PDF
(for Bootstrap elements).

This is problematic for code snippets that have syntax highlighting. I decided to
remove this de-coloring from the print output. I commented out the Bootstrap
style:

@media print{*,:after,:before{/*color:#000!important;*/text-sha
dow:none!important;/*background:0 0!important*/;-webkit-box-sha
dow:none!important;box-shadow:none!important}

If you update Bootrap, make sure you make this edit. (Sorry, admittedly I couldn’t
figure out how to simply overwrite the * selector with a later style.)

I did, however, remove the color from the alerts and lighten the background
shading for pre elements. The printstyles.css has this setting.

Generating PDFs PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 109



Help APIs and UI tooltips
Summary: You can loop through files and generate a JSON file that
developers can consume like a help API. Developers can pull in
values from the JSON into interface elements, styling them as
popovers for user interface text, for example. The beauty of this
method is that the UI text remains in the help system (or at least in a
single JSON file delivered to the dev team) and isn't hard-coded into
the UI.

Full code demo of content API
You can create a help API that developers can use to pull in content.

For the full code demo, see the notes in the tooltip demo.

In this demo, the popovers pull in and display content from the information in a
mydoc_tooltips_source.json (page 0) file located in the same directory.

Instead of placing the JSON source in the same directory, you could also host the
JSON file on another site.

Additionally, instead of tooltip popovers, you could also print content directly to
the page. Basically, whatever you can stuff into a JSON file, developers can
integrate it onto a page.

Diagram overview
Here’s a diagram showing the basic idea of the help API:

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 110

http://127.0.0.1:4010/mydoc-pdf/mydoc_help_api/mydoc_tooltips_fields.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_help_api/mydoc_tooltips_source.json


sample help text sample help 
text sample help text sample 
help text sample help text 
sample help text sample help 

Getting Started 
text sample help text 
sample help text sample 
help text sample help 
text sample help text 
sample help text sample 

Learning Course
sample help text sample help 
text sample help text sample 
help text sample help text 
sample help text sample help 

sample help 
text sample 
help text 
sample help 
text sample 
help text 
sample help 
text sample 

Help API

   

 pullin
g fr

om A
PI   

 

   

 p
ul

lin
g 

fr
om

 A
PI

   
 

   

 pulling from API    

   

 pulling from
 A

PI    

website #1

website #2

website #4

website #3

Is this really an API? Well, sort of. The help content is pushed out into a JSON file
that other websites and applications can easily consume. The endpoints don’t
deliver different data based on parameters added to a URL. But the overall
concept is similar to an API: you have a client requesting resources from a server.

Note that in this scenario, the help is openly accessible on the web. If you have a
private system, it’s more complicated.

To deliver help this way using Jekyll, follow the steps in each of the sections
below.

1. Create a “collection” for the help content
A collection is another content type that extends Jekyll beyond the use of pages
and posts. Call the collection “tooltips.”

Add the following information to your configuration file to declare your collection:

collections:
tooltips:

output: false

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 111



In your Jekyll project’s root directory, create a new folder called “_tooltips” and
put every page that you want to be part of that tooltips collection inside that
folder.

In Jekyll, folders that begin with an underscore (“_”) aren’t included in the output.
However, in the collection information that you add to your configuration file, if you
change output to true , the tooltips folder will appear in the output, and each
page inside tooltips will be generated. You most likely don’t want this for tooltips
(you just want the JSON file), so make the output setting false .

2. Create tooltip definitions in a YAML file
Inside _data > mydoc create a YAML file called something like definitions.yml.
Add the definitions for each of your tooltips here like this:

basketball: "Basketball is a sport involving two teams of five
players each competing to put a ball through a small circular r
im 10 feet above the ground. Basketball requires players to be
in top physical condition, since they spend most of the game ru
nning back and forth along a 94-foot-long floor."

The definition of basketball is stored this data file so that you can re-use it in other
parts of the help as well. You’ll likely want the definition to appear not only in the
tooltip in the UI, but also in the regular documentation as well.

3. Create pages in your collection
Create pages inside your new tooltips collection (that is, inside the _tooltips
folder). Each page needs to have a unique id in the frontmatter as well as a
product . Then reference the definition you created in the definitions.yml file.

Here’s an example:

---
id: basketball
product: mydoc
---

{{site.data.definitions.basketball}}

You need to create a separate page for each tooltip you want to deliver.

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 112



The product attribute is required in the frontmatter to distinguish the tooltips
produced here from the tooltips for other products in the same _tooltips folder.
When creating the JSON file, Jekyll will iterate through all the pages inside
_tooltips, regardless of any subfolders included here.

4. Create a JSON file that loops through your
collection pages
Now it’s time to create a JSON file with Liquid code that iterates through our
tooltip collection and grabs the information from each tooltip file.

Inside your project’s pages directory (e.g., mydoc), add a file called
“mydoc_tooltips_source.json.” (You can use whatever name you want.) Add the
following to your JSON file:

---
layout: none
search: exclude
---
{
"entries":
[
{% for page in site.tooltips %}
{% if page.product == "mydoc" %}
{
"id"    : "{{ page.id }}",
"body": "{{ page.content | strip_newlines | replace: '\',
'\\\\' | replace: '"', '\\"' }}"
} {% unless forloop.last %},{% endunless %}
{% endif %}
{% endfor %}
]
}

Change “mydoc” to the product name you used in each of the tooltip files. The
template here will only include content in the JSON file if it meets the product
attribute requirements. We need this if statement to prevent tooltips from other
products from being included in the JSON file.

This code will loop through all pages in the tooltips collection and insert the id
and body into key-value pairs for the JSON code. Here’s an example of what that
looks like after it’s processed by Jekyll in the site build:

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 113



{
"entries": [

{
"id": "baseball",
"body": "Baseball is considered America's pasttime spor

t, though that may be more of a historical term than a current
one. There's a lot more excitement about football than basebal
l. A baseball game is somewhat of a snooze to watch, for the mo
st part."

},
{

"id": "basketball",
"body": "Basketball is a sport involving two teams of fiv

e players each competing to put a ball through a small circula
r rim 10 feet above the ground. Basketball requires players to
be in top physical condition, since they spend most of the gam
e running back and forth along a 94-foot-long floor."

},
{

"id": "football",
"body": "No doubt the most fun sport to watch, football a

lso manages to accrue the most injuries with the players. From
concussions to blown knees, football players have short sport l
ives."

},
{

"id": "soccer",
"body": "If there's one sport that dominates the world la

ndscape, it's soccer. However, US soccer fans are few and far b
etween. Apart from the popularity of soccer during the World Cu
p, most people don't even know the name of the professional soc
cer organization in their area."

}
]

}

You can also view the same JSON file here: mydoc_tooltips_source.json.

You can add different fields depending on how you want the JSON to be
structured. Here we just have to fields: id and body . And the JSON is looking
just in the tooltips collection that we created.

 Tip: Check out Google's style guide for JSON
(https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml). These
best practices can help you keep your JSON file valid.

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 114

http://127.0.0.1:4010/mydoc-pdf/mydoc_help_api/mydoc_tooltips_source.json
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml


You can store your mydoc_tooltips_source.json file anywhere you want, but to me
it make sense to store it inside a tooltips folder for your specific project. This way
it will automatically be excluded from other projects that are already excluding that
project directory.

Note that you can create different JSON files that specialize in different content.
For example, suppose you have some getting started information. You could put
that into a different JSON file. Using the same structure, you might add an if tag
that checks whether the page has frontmatter that says
type: getting_started or something. Or you could put the content into

separate collection entirely (different from tooltips).

By chunking up your JSON files, you can provide a quicker lookup, though I’m not
sure how big the JSON file can be before you experience any latency with the
jQuery lookup.

5. Build your site and look for the JSON file
When you build your site, Jekyll will iterate through every page in your _tooltips
folder and put the page id and body into this format. In the output, look for the
JSON file in the mydoc/tooltips/mydoc_tooltips_source.json file. You’ll see that
Jekyll has populated it with content. This is because of the triple hyphen lines in
the JSON file — this instructs Jekyll to process the file.

6. Allow CORS access to your help if stored
on a remote server
You can simply deliver the JSON file to devs to add to the project. But if you have
the option, it’s best to keep the JSON file stored in your own help system.
Assuming you have the ability to update your content on the fly, this will give you
completely control over the tooltips without being tied to a specific release
window.

When people make calls to your site from other domains, you must allow them
access to get the content. To do this, you have to enable something called CORS
(cross origin resource sharing) within the server where your help resides.

In other words, people are going to be executing calls to reach into your site and
grab your content. Just like the door on your house, you have to unlock it so
people can get in. Enabling CORS is unlocking it.

How you enable CORS depends on the type of server.

If your server setup allows htaccess files to override general server permissions,
create an .htaccess file and add the following:

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 115



Header set Access-Control-Allow-Origin "*"

Store this in the same directory as your project. This is what I’ve done in a
directory on my web host (bluehost.com). Inside
http://idratherbetellingstories.com/wp-content/apidemos/, I uploaded a file called
“.htaccess” with the preceding code. You can view it here
(http://idratherbetellingstories.com/wp-content/apidemos/mydoc_tooltips_source.json).

After I uploaded it, I renamed it to .htaccess, right-clicked the file and set the
permissions to 774.

To test whether your server permissions are set correctly, open a terminal and run
the following curl command pointing to your tooltips.json file:

curl -I http://idratherbetellingstories.com/wp-content/apidemo
s/mydoc_tooltips_source.json

The -I command tells cURL to return the request header only.

If the server permissions are set correctly, you should see the following line
somewhere in the response:

Access-Control-Allow-Origin: *

If you don’t see this response, CORS isn’t allowed for the file.

If you have an AWS S3 bucket, you can supposedly add a CORS configuration to
the bucket permissions. Log into AWS S3 and click your bucket. On the right, in
the Permissions section, click Add CORS Configuration. In that space, add the
following policy:

<CORSConfiguration>
<CORSRule>

<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>

</CORSRule>
</CORSConfiguration>

Although this should work, in my experiment it doesn’t. And I’m not sure why…

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 116

http://idratherbetellingstories.com/wp-content/apidemos/mydoc_tooltips_source.json
http://idratherbetellingstories.com/wp-content/apidemos/mydoc_tooltips_source.json
http://idratherbetellingstories.com/wp-content/apidemos/mydoc_tooltips_source.json


In other server setups, you may need to edit one of your Apache configuration
files. See Enable CORS (http://enable-cors.org/server.html) or search online for ways
to allow CORS for your server.

If you don’t have CORS enabled, users will see a CORS error/warning message in
the console of the page making the request.

 Tip: If enabling CORS is problematic, you could always just send
developers the tooltips.json file and ask them to place it on their own server.

7. Explain how developers can access the
help
Developers can access the help using the .get method from jQuery, among
other methods. Here’s an example of how to get a page with the ID of
basketball :

<<script type=="text/javascript">>
$(document).ready(functionfunction(){

varvar url == "mydoc_tooltips_source.json";

$.get( url, functionfunction( data ) {

$.each(data.entries, functionfunction(i, page) {
ifif (page.id ==== "basketball") {
$( "#basketball" ).attr( "data-content", page.body

);
}

});
});

});
<</script>

View the Tooltip Demo for a demo.

The url here is relative, but you could equally point it to an absolute path on a
remote host assuming CORS is enabled on the host.

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 117

http://enable-cors.org/server.html
http://enable-cors.org/server.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_help_api/tooltips/mydoc_tooltips_fields.html


The each method looks through all the JSON content to find the item whose
page.id is equal to basketball . It then looks for an element on the page

named #basketball and adds a data-content attribute to that element.

 Warning: Note: Make sure your JSON file is valid. Otherwise, this method
won't work. I use the JSON Formatter extension for Chrome
(https://chrome.google.com/webstore/detail/json-formatter/

bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en)

. When I go to the tooltips.json page in my browser, the JSON content — if
valid — is nicely formatted (and includes some color coding). If the file isn't
valid, it's not formatted and there isn't any color. You can also check the
JSON formatting using JSON Formatter and Validator
(http://jsonformatter.curiousconcept.com/). If your JSON file isn't valid, identify
the problem area using the validator and troubleshoot the file causing issues.
It's usually due to some code that isn't escaping correctly.

Why data-content ? Well, in this case, I’m using Bootstrap popovers
(http://getbootstrap.com/javascript/#popovers) to display the tooltip content. The
data-content attribute is how Bootstrap injects popovers.

Here’s the section on the page where the popover is inserted:

<p>Basketball <span class="glyphicon glyphicon-info-sign" id="b
asketball" data-toggle="popover"></span></p>

Notice that I just have id="basketball" added to this popover element.
Developers merely need to add a unique ID to each tooltip they want to pull in the
help content. Either you tell developers the unique ID they should add, or ask
them what IDs they added (or just tell them to use an ID that matches the field’s
name).

In order to use jQuery and Bootstrap, you’ll need to add the appropriate
references in the head tags of your page:

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 118

https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
http://jsonformatter.curiousconcept.com/
http://jsonformatter.curiousconcept.com/
http://jsonformatter.curiousconcept.com/
http://getbootstrap.com/javascript/#popovers
http://getbootstrap.com/javascript/#popovers
http://getbootstrap.com/javascript/#popovers


<<link rel=="stylesheet" href=="https://maxcdn.bootstrapcdn.com/bo
otstrap/3.3.2/css/bootstrap.min.css">>
<<script src=="https://ajax.googleapis.com/ajax/libs/jquery/1.1
1.2/jquery.min.js"><></script>
<<script src=="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/j
s/bootstrap.min.js"><></script>

<<script type=="text/javascript">>
$(document).ready(functionfunction(){

$('[data-toggle="popover"]').popover({
placement : 'right',
trigger: 'hover',
html: truetrue

});

Again, see the Tooltip Demo for a demo of the full code.

Note that even though you reference a Bootstrap JS script, Bootstrap’s popovers
require you to initialize them using the above code as well — they aren’t turned on
by default.

View the source code of the Tooltip Demo for the full comments.

8. Create easy links to embed the help in your
help site
You might also want to insert the same content into different parts of your help
site. For example, if you have tooltips providing definitions for fields, you’ll
probably want to create a page in your help that lists those same definitions.

You could use the same method developers use to pull help content into their
applications. But it will probably be easier to simply use Jekyll’s tags for doing it.

Here’s how you would reuse the content:

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 119

http://127.0.0.1:4010/mydoc-pdf/mydoc_help_api/tooltips/mydoc_tooltips_fields.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_help_api/mydoc_tooltips_fields.html


<h2>Reuse Demo</h2>

<table>
<thead>
<tr>
<th>Sport</th>
<th>Comments</th>
</tr>
</thead>
<tbody>

<tr>
<td>Basketball</td>
<td>{{site.data.definitions.basketball}}</td>
</tr>

<tr>
<td>Baseball</td>
<td>{{site.data.definitions.baseball}}</td>
</tr>

<tr>
<td>Football</td>
<td>{{site.data.definitions.football}}</td>
</tr>

<tr>
<td>Soccer</td>
<td>{{site.data.definitions.soccer}}</td>
</tr>
</tbody>
</table>

And here’s the code:

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 120



Reuse Demo
SPORT COMMENTS

Basketball Basketball is a sport involving two teams of five players
each competing to put a ball through a small circular
rim 10 feet above the ground. Basketball requires play-
ers to be in top physical condition, since they spend
most of the game running back and forth along a
94-foot-long floor.

Baseball Baseball is considered America's pasttime sport,
though that may be more of a historical term than a
current one. There's a lot more excitement about foot-
ball than baseball. A baseball game is somewhat of a
snooze to watch, for the most part.

Football No doubt the most fun sport to watch, football also
manages to accrue the most injuries with the players.
From concussions to blown knees, football players
have short sport lives.

Soccer If there's one sport that dominates the world land-
scape, it's soccer. However, US soccer fans are few
and far between. Apart from the popularity of soccer
during the World Cup, most people don't even know
the name of the professional soccer organization in
their area.

Now you have both documentation and UI tooltips generated from the same
definitions file.

Help APIs and UI tooltips PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 121



Search configuration
Summary: The search feature uses JavaScript to look for keyword
matches in a JSON file. The results show instant matches, but it
doesn't provide a search results page like Google. Also, sometimes
invalid formatting can break the JSON file.

About search
The search is configured through the search.json file in the root directory. Take a
look at that code if you want to change what fields are included.

The search is a simple search that looks at content in pages. It looks at titles,
summaries, keywords, tags, and bodies.

However, the search doesn’t work like google — you can’t hit return and see a list
of results on the search results page, with the keywords in bold. Instead, this
search shows a list of page titles that contain keyword matches. It’s fast, but
simple.

Excluding pages from search
By default, every page is included in the search. Depending on the type of content
you’re including, you may find that some pages will break the JSON formatting. If
that happens, then the search will no longer work.

If you want to exclude a page from search add search: exclude in the
frontmatter.

Troubleshooting search
You should exclude any files from search that you don’t want appearing in the
search results. For example, if you have a tooltips.json file or prince-file-list.txt,
don’t include it, as the formatting will break the JSON format.

If any formatting in the search.json file is invalid (in the build), search won’t work.
You’ll know that search isn’t working if no results appear when you start typing in
the search box.

Search configuration PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 122



If this happens, go directly to the search.json file in your browser, and then copy
the content. Go to a JSON validator (http://jsonlint.com/) and paste in the content.
Look for the line causing trouble. Edit the file to either exclude it from search or fix
the syntax so that it doesn’t invalidate the JSON.

The search.json file already tries to strip out content that would otherwise make
the JSON invalid:

"body": "{{ page.content | strip_html | strip_newlines |
replace: '\', '\\\\' | replace: '"', '\\"' | replace: '^t',
'    '  }}",

Note that the last replace, | replace: '^t', ' ' , looks for any tab character
and replaces it with four spaces. Yes, an innocent little tab character invalidates
JSON. Geez. If you run into other problematic formatting, you can use regex
expressions to find and replace the content. See Regular Expressions
(http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html)

for details on finding and replacing code.

It’s possible that the formatting may not account for all the scenarios that would
invalidate the JSON. (Sometimes it’s an extra comma after the last item that
makes it invalid.)

Search configuration PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 123

http://jsonlint.com/
http://jsonlint.com/
http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html
http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html
http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html


iTerm profiles
Summary: Set up profiles in iTerm to facilitate the build process with
just a few clicks. This can make it a lot easier to quickly build multiple
outputs.

About iTerm profiles
When you’re working with tech docs, a lot of times you’re single sourcing multiple
outputs. It can be a hassle to fire up each one of these outputs using the build
files containing the shell scripts. Instead, it’s easier to configure iTerm with profiles
that initiate the scripts.

Set up profiles
1. Open iTerm and go to Profiles > Open Profiles.

2. Click Edit Profiles.

3. Click the + button in the lower-left corner to create a new profile.

4. In the Name field, type a name describing the output, such as
Doc theme -- designers .

5. In the Send text at start field, type the command for the build script,
such as this:

jekyll serve --config configs/config_designers.yml

Leave the Login shell option selected.

6. In the Working Directory section, select Directory and enter the directory
for your project, such as /Users/tjohnson/projects/documentation-
theme-jekyll.

7. Close the profiles panel.

Here’s an example:

iTerm profiles PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 124



Launching a profile
1. In iTerm, make sure the Toolbar is shown. Go to View > Toggle Toolbar.

2. Click the New button and select your profile.

 Tip: When you're done with the session, make sure to click **Ctrl+C**.

iTerm profiles PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 125



Pushing builds to server
Summary: You can push your build to AWS using commands from
the command line. By including your copy commands in commands,
you can package all of the build and deploy process into executable
scripts.

Pushing to AWS S3
If you have the AWS Command Line Interface installed and are pushing your
builds to AWS, the following commands show how you can build and push to an
AWS location from the command line:

#aws s3 cp ~/users/tjohnson/projects/documentation-theme-jekyl
l-builds/mydoc_writers s3://[aws path]documentation-theme-jekyl
l/mydoc_writers --recursive

#aws s3 cp ~/users/tjohnson/projects/documentation-theme-jekyl
l-builds/mydoc_designers s3://[aws path]/documentation-theme-je
kyll/mydoc_designers --recursive

The first path is the local location; the second path is the destination.

Pushing to a regular server
If you’re pushing to a regular server that you can ssh into, you can use scp
commands to push your build. Here’s an example:

scp -r /users/tjohnson/projects/documentation-theme-jekyll-buil
ds/mydoc_writers name@domain:/var/www/html/documentation-them
e-jekyll/mydoc_writers

Similar to the above, the first path is the local location; the second path is the
destination.

Pushing builds to server PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 126



Getting around the password prompts
in SCP
You can publish your docs via SSH through a Terminal window or more likely, via
a shell script that you simply execute as part of the publishing process. However,
you will be prompted for your password with each file transfer unless you
configure passwordless SSH.

The basic process for setting up password less SSH is to create a key on your
own machine that you also transfer to the remote machine. When you use the
SCP command, the remote machine checks that you have the authorized key and
allows access without a password prompt.

To remove the password prompts when connecting to servers via SSH:

1. On your local machine, go to your .ssh directory:

cd ~/.ssh

Note that any directory that starts with a dot, like .ssh, is hidden. You can view
hidden folders by enabling them on your Mac. See this help topic
(http://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/).
Additionally, when you look at the files in a directory, use ls -a instead of just ls to
view the hidden files.

If you don’t have an .ssh directory, create one with mkdir .ssh .

Create a new key inside your .ssh directory:

ssh-keygen -t rsa

Press Enter. When prompted about “Enter file in which to save the key …”, press
Enter again.

This will create a file called id_rsa.pub (the key) and id_rsa (your identification) in
this .ssh folder.

When prompted for a passphrase for the key, just leave it empty and press Enter
twice. You should see something like this:

Getting around the password prompts in SCP PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 127

http://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/
http://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/
http://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/


tjohnson-mbpr13:.ssh tjohnson$ ssh-keygen -t rsa Generating public/private rsa
key pair. Enter passphrase (empty for no passphrase): Enter same passphrase
again: Your identification has been saved in /Users/tjohnson/.ssh/id_rsa. Your
public key has been saved in /Users/tjohnson/.ssh/id_rsa.pub. The key fingerprint
is: 9a:8f:b5:495:39:78:t5:dc:19:d6:29:66:02:e8:02:a0 tjohnson@tjohnson-
mbpr13.local The key’s randomart image is:

+--[ RSA 2048]----+
|.                |
|+                |
|E                |
|o.   .           |
|.. = o S        |
|.&^  + 7i = o       |
|      = B .      |
|     o O +       |
|      *.o        |
+-----------------+

Icon As you can see, RSA draws a picture for you. Take a screenshot of the
picture, print it out, and put it up on your fridge.

Open up another terminal window (in iTerm, open another tab), and SSH in to your
remote server:

ssh <your_username>@remoteserver.com

Change <your_username> to your actual username, such as tjohnson.

When you connect, you’ll be prompted for your password.

When you connect, by default you are routed to the personal folder on the
directory. For example, /home/remoteserver/<your_username> . To see this
directory, type pwd .

Create a new directory called .ssh on remoteserver.com server inside the
/home/remoteserver/<your_username> directory.

mkdir -p .ssh

You can ensure that it’s there with this command:

Getting around the password prompts in SCP PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 128



ls -a

Without the -a, the hidden directory won’t be shown.

Open another Terminal window and browse to /Users//.ssh on your local machine.

cd ~/.ssh

Copy the id_rsa.pub from the /.ssh directory on your local machine to the /home/
remoteserver//.ssh directory on the remoteserver server:

scp id_rsa.pub <your-username>@yourserver.com:/home/remoteserve
r/<your-username>/.ssh

Switch back into your terminal window that is connected to remoteserver.com,
change directory to the .ssh directory, and rename the file from id_rsa.pub to
authorized_keys (without any file extension):

mv id_rsa.pub authorized_keys

Change the file permissions to 700:

chmod 700 authorized_keys

Now you should be able to SSH onto remoteserver without any password
prompts.

Open another terminal (which is not already SSH’d into remoteserver.com) and try
the following:

ssh <your_username>@remoteserver.com

If successful, you shouldn’t be prompted for a password.

Now that you can connect without password prompts, you can use the scp
scripts to transfer files to the server without password prompts. For example:

Getting around the password prompts in SCP PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 129



scp -r ../doc_outputs/mydoc/writers <your-username>@remoteserve
r:/var/www/html/

Getting around the password prompts in SCP PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 130



Knowledge-base layout
Summary: This shows a sample layout for a knowledge base. Each
square could link to a tag archive page. In this example, font icons
from Font Awesome are enlarged to a large size. You can also add
captions below each icon.


Getting Started


Navigation


single_sourcing


Publishing



Knowledge-base layout PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 131

http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_getting_started.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_getting_started.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_getting_started.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_navigation.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_navigation.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_navigation.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_navigation.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_single_sourcing.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_single_sourcing.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_single_sourcing.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_publishing.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_publishing.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_publishing.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_special_layouts.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_special_layouts.html


## Generating a list of all pages with a certain tag If you don't want to link to a tag
archive index, but instead want to list all pages that have a certain tag, you could
use this code: ```html Getting started pages:

{% assign sorted_pages = (site.pages | sort: 'title') %} {% for page in
sorted_pages %} {% for tag in page.tags %} {% if tag ==
"getting_started" %}

• {{page.title}} (page 0)

{% endif %} {% endfor %} {% endfor %}

``` Getting started pages:

• About the theme author (page 16)

• Getting started (page 10)

• Introduction (page 0)

• Pages (page 18)

• Posts (page 24)

• Sidebar Navigation (page 38)

• Support (page 17)

• Supported features (page 4)

• Troubleshooting (page 136)

Special layouts


Formatting

Knowledge-base layout PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 132

http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_special_layouts.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_formatting.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_formatting.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/tag_formatting.html
http://127.0.0.1:4010/mydoc-pdf/mydoc_kb_layout/{{page.url%20|%20prepend:%20'..'}}
http://127.0.0.1:4010/mydoc-pdf/

Glossary layout
Summary: Your glossary page can take advantage of definitions
stored in a data file. This gives you the ability to reuse the same
definition in multiple places. Additionally, you can use Bootstrap
classes to arrange your definition list horizontally.

You can create a glossary for your content. First create your glossary items in a
data file such as glossary.yml.

Then create a page and use definition list formatting, like this:

<dl class="dl">

<dt id="fractious">fractious</dt>
<dd>Like a little mischevious child, full of annoying and const
ant trouble.</dd>

<dt id="gratuitous">gratuitous</dt>
<dd>Something that is unwarranted and uncouth, like the social
equivalent of a flagrant foul.</dd>

<dt id="haughty">haughty</dt>
<dd>Proud and flaunting it. Holding your head high up like a sn
ooty, too-good-for-everything rich person.</dd>

<dt id="gratuitous">gratuitous</dt>
<dd>Something that is unwarranted and uncouth, like the social
equivalent of a flagrant foul.</dd>

<dt id="impertinent">impertinent</dt>
<dd>Someone acting rude and insensitive to others.</dd>

<dt id="intrepid">intrepid</dt>
<dd>Brave and courageous especially in a difficult, dangerous s
ituation.</dd>

</dl>

Here’s what that looks like:

Glossary layout PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 133

fractious

Like a little mischevious child, full of annoying and constant trouble.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

haughty

Proud and flaunting it. Holding your head high up like a snooty, too-good-for-
everything rich person.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

impertinent

Someone acting rude and insensitive to others.

intrepid

Brave and courageous especially in a difficult, dangerous situation.

The glossary works well as a link in the top navigation bar.

Horizontally styled definiton lists
You can also change the definition list (dl) class to dl-horizontal . This is a
Bootstrap specific class. If you do, the styling looks like this:

fractious

Like a little mischevious child, full of annoying and constant trouble.

Glossary layout PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 134

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

haughty

Proud and flaunting it. Holding your head high up like a snooty, too-good-for-
everything rich person.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

impertinent

Someone acting rude and insensitive to others.

intrepid

Brave and courageous especially in a difficult, dangerous situation.

If you squish your screen small enough, at a certain breakpoint this style reverts to
the regular dl class.

Although I like the side-by-side view for shorter definitions, I found it problematic
with longer definitions.

Glossary layout PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 135

Troubleshooting
Summary: This page lists common errors and the steps needed to
troubleshoot them.

Issues building the site

Address already in use

When you try to build the site, you get this error in iTerm:

jekyll 2.5.3 | Error: Address already in use - bind(2)

This happens if a server is already in use. To fix this, edit your config file and
change the port to a unique number.

If the previous server wasn’t shut down properly, you can kill the server process
using these commands:

ps aux | grep jekyll

Find the PID (for example, it looks like “22298”).

Then type kill -9 22298 where “22298” is the PID.

Alternatively, type the following to stop all Jekyll servers:

kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')

Build not entirely finishing

If your build doesn’t entirely finish on the command line, check to see if you have
a space after a comma when using multiple configuration files, like this:

jekyll serve --config config_base.yml, config_designer.yml

Remove the space after the comma, and the build will finish executing:

Troubleshooting PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 136

jekyll serve --config config_base.yml,config_designer.yml

shell file not executable

If you run into permissions errors trying to run a shell script file (such as
mydoc_multibuild_web.sh), you may need to change the file permissions to make
the sh file executable. Browse to the directory containing the shell script and run
the following:

chmod +x build_writer.sh

Pygments not installed

The config file requires pygments for the highlighter. You must download and
install Pygments (http://pygments.org/download/), which requires Python, in order to
use this syntax highlighter. If you don’t want to bother with Pygments, open the
configuration file and change pygments to rouge .

“page 0” cross references in the PDF

If you see “page 0” cross-references in the PDF, the URL doesn’t exist. Check to
make sure you actually included this page in the build.

If it’s not a page but rather a file, you need to add a noCrossRef class to the file
so that your print stylesheet excludes the counter from it. Add
class="noCrossRef" as an attribute to the link. In the css/printstyles.css file,

there is a style that should remove the counter from anchor elements with this
class.

The PDF is blank

Check the prince-file-list.txt file in the output to see if it contains links. If not, you
have something wrong with the logic in the prince-file-list.txt file. Check the
conditions.html file in your _includes to see if the audience specified in your
configuration file aligns with the buildAudience in the conditions.html file

Sidebar not appearing

If you build your site but the sidebar doesn’t appear, check the following:

Troubleshooting PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 137

http://pygments.org/download/
http://pygments.org/download/
http://pygments.org/download/

Look in _includes/custom/sidebarconfigs.html and make sure the conditional
values there match up with the values declared in the configuration file.
Specifically, you need to make sure you’ve declared a value for project, product,
platform, and version.

If you don’t have any values for these properties, you still need to keep them in
your configuration file. Just put something like all as the value.

 Note: This theme is designed for single sourcing. If you're only building
one site, you can remove these values from the _includes/sidebar.html file
and _data/sidebar.yml files.

Understanding how the theme works can be helpful in troubleshooting. The
_includes/sidebar.html file loops through the values in the _data/sidebar.yml file.
There are if statements that check whether the conditions (as specified in the
conditions.html file) are met. If the sidebar.yml item has the right product,
platform, audience, and version, then it gets displayed in the sidebar. If not, it get
skipped.

Sidebar heading level not opening

In your _data/sidebar.yml file, you must also include the correct parameters
(platform, product, audience version) for each heading. If an item contains
something that should be displayed, the attributes for the heading should be
listed.

Without any attributes on heading levels, you could end up with scenarios where a
section is entirely designed for one output but appears in every output regardless.

Sidebar isn’t collapsed

If the sidebar levels aren’t collapsed, usually your JavaScript is broken
somewhere. Open the JavaScript Console and look to see where the problem is. If
one script breaks, then other scripts will break too, so troubleshooting it is a little
tricky.

Search isn’t working

If the search isn’t working, check the JSON validity in the search.json file in your
output folder. Usually something is invalid. Identify the problematic line, fix the file,
or put search: exclude in the frontmatter of the file to exclude it from search.

Troubleshooting PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 138

Adding all project dependencies
Summary:

You want to be sure that you have all the required gems and other utilities on your
computer to make the project run. Jekyll runs on Ruby, and there are various
plugins for Ruby that enable different functionality. These Ruby plugins are
referred to as gems, and you install the gems you need for your projects.

To manage the various gems and their versions needed for your project, you can
use a package manager called Bundler. Many projects will have a gemfile in their
project that lists the gems required for the project. You then run Bundler in order
to automatically install the required gems and any dependencies for those gems
on your machine.

RubyGems
Make sure you have RubyGems. This should be installed by default on Mac.

Open Terminal and type which gem . You should get a response indicating the
location of Rubygems, such as
/Users/MacBookPro/.rvm/rubies/ruby-2.2.1/bin/gem .

If you need to install Rubygems, see Download RubyGems
(https://rubygems.org/pages/download).

Install Bundler
Bundler (http://bundler.io/) is a package manager for RubyGems.

You install Bundler by using the gem command with RubyGems:

gem install bundler

If you’re prompted to which to superuser mode (sudo) to get the correct
permissions to install Bundler in that directory, avoid doing this. All other
applications that need to use Bundler will likely not have the needed permissions
to run.

Adding all project dependencies PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 139

https://rubygems.org/pages/download
https://rubygems.org/pages/download
https://rubygems.org/pages/download
http://bundler.io/
http://bundler.io/

If you get a permissions error when trying to install Bundler, use Homebrew to
install a Ruby package manager called rbenv.

Install Homebrew:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.co
m/Homebrew/install/master/install)"

Use brew to install rbenv:

brew install rbenv

Initialize rbenv:

rbenv init

Log out of terminal, and then then log back in.

Install Bundler:

gem install bundler

Open the gemfile:

open gemfile

You should see some gems listed. If you don’t have a gemfile, your project may
not need any gems, or those gems may not be managed at the project level but
rather directly installed manually. You can create a gemfile by typing
bundle init .

Your gemfile might look like this:

Adding all project dependencies PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 140

A sample Gemfile
source "https://rubygems.org"

gem "rails"
gem 'github-pages'
gem 'pygments.rb'
gem 'redcarpet'

Use Bundler to install the needed gems:

bundle install

Finally, you can run the following to make sure the installed gems get associated
or initialized with your project:

bundle exec jekyll serve

Ruby permissions errors
While trying to install a missing gem, you get an error message that says,

ERROR: While executing gem … (Gem::FilePermissionError)
You don’t have write permissions for the /Library/Ruby/Gems/
2.0.0 directory.

This most likely happens with El Capitan on the Mac.

As long as you have brew installed (see the previous section), run the following:

brew update
brew install ruby

Close your terminal, and then restart a fresh session.

Now run the gem you’re trying to install, such as the following:

gem install kramdown

Adding all project dependencies PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 141

Adding all project dependencies PDF last generated: March 18, 2016

Jekyll theme for documentation — mydoc product User Guide Page 142

	
	
	Table of Contents
	Introduction
	Overview
	Survey of features
	Getting started

	Supported features
	Supported feautres
	Features not available

	Getting started
	Getting up and running
	Configuring the theme
	Where to store your documentation topics
	Configuring the sidebar
	Sidebar syntax
	Page frontmatter
	Configure the top navigation
	Generating PDF
	Blogs / News
	Markdown
	Other instructions

	About the theme author
	Support
	Pages
	Where to author content
	Page names and excluding files from outputs
	Frontmatter
	Automatic mini-TOCs
	Specify a particular page layout
	Comments
	Custom keyboard shortcuts

	Posts
	About posts
	Allowed frontmatter

	WebStorm Text Editor
	About text editors and WebStorm
	Remove unnecessary plugins
	Add the Markdown Support plugin
	Enable Soft Wraps (word wrapping)
	Exclude a directory
	Shortcuts
	Finding files
	Identifying changed files
	Creating file templates
	Disable pair quotes

	Conditional logic
	About Liquid and conditional statements
	Where to store filtering values
	Conditional logic based on config file value
	Or operator
	Unless operator
	Storing conditions in the _data folder
	Specifying the location for _data
	Conditions versus includes

	Content reuse
	About content reuse
	Page-level variables

	Collections
	What are collections
	Create a collection
	Interacting with collections
	How to use collections
	Video tutorial on collections

	Sidebar Navigation
	Navgoco foundation
	Accordion sidebar feature
	Fixed position sidebar
	Opening sidebar links into external pages
	Sidebar item highlighting

	YAML tutorial in the context of Jekyll
	Overview
	YAML overview
	YAML basics
	Example 1: Simple mapping
	Example 2: Line breaks
	Example 3: Simple list
	Example 4: List items
	Regions

	Example 5: Table of contents
	Group 1
	Group 2
	Group 3

	Example 6: Variables
	Example 7: Positions in lists
	Example 8: Properties from list items at specific positions
	Example 9: Conditions
	More resources

	Tags
	Add a tag to a page
	Tags overview
	Setting up tags
	Retrieving pages for a specific tag
	Efficiency
	Empty tags?
	Remembering the right tags

	Series
	Using series for pages
	1. Create the series button
	2. Create the “next” include
	3. Add the correct frontmatter to each of your series pages
	4. Add links to the series button and next button on each page.
	Changing the series drop-down color
	Using a collection with your series

	Tooltips
	Creating tooltips

	Alerts
	About alerts
	Alerts
	Callouts
	Blast a warning to users
	Using Markdown inside of notes

	Icons
	Font icon options
	See Font Awesome icons available
	Creating your own combinations
	Glyphicon icons available
	Callouts

	Images
	Figure captions
	SVG Images

	Labels
	About labels

	Links
	Create an external link
	Linking to internal pages
	Avoiding broken links
	Other methods for managing links
	Always make sure your TOC page is accurate
	Checking for broken links

	Navtabs
	Common uses
	Navtabs demo
	Profile
	Code
	Design constraints
	Appearance in the mini-TOC
	Must use HTML
	Match up ID tags
	Set an active tab
	Sets a cookie
	Functionality to implement

	Tables
	Multimarkdown Tables
	jQuery datables

	Syntax highlighting
	About syntax highlighting
	Available lexers

	Commenting on files
	About the review process
	Add reviewers as collaborators
	Workflow
	Prose.io

	Build arguments
	How to build Jekyll sites
	Shortcuts for the build arguments
	Stop a server

	Themes
	Theme options
	Theme differences

	Check page title consistency
	Generating PDFs
	PDF overview
	Demo
	1. Set up Prince
	2. Create a new configuration file for each of your PDF targets
	3. Make sure your sidebar_doc.yml file has a titlepage.html and tocpage.html
	4. Customize your headers and footers
	5. Customize the PDF script
	6. Add a download button for the PDF
	JavaScript conflicts
	Overriding Bootstrap Print Styles

	Help APIs and UI tooltips
	Full code demo of content API
	Diagram overview
	1. Create a “collection” for the help content
	2. Create tooltip definitions in a YAML file
	3. Create pages in your collection
	4. Create a JSON file that loops through your collection pages
	5. Build your site and look for the JSON file
	6. Allow CORS access to your help if stored on a remote server
	7. Explain how developers can access the help
	8. Create easy links to embed the help in your help site
	Reuse Demo

	Search configuration
	About search
	Excluding pages from search
	Troubleshooting search

	iTerm profiles
	About iTerm profiles
	Set up profiles
	Launching a profile

	Pushing builds to server
	Pushing to AWS S3
	Pushing to a regular server

	Getting around the password prompts in SCP
	Knowledge-base layout
	Glossary layout
	Horizontally styled definiton lists

	Troubleshooting
	Issues building the site
	Address already in use
	Build not entirely finishing
	shell file not executable
	Pygments not installed
	“page 0” cross references in the PDF
	The PDF is blank
	Sidebar not appearing
	Sidebar heading level not opening
	Sidebar isn’t collapsed
	Search isn’t working

	Adding all project dependencies
	RubyGems
	Install Bundler
	Ruby permissions errors

