Files
EsfRixsApps/geometry.py

281 lines
10 KiB
Python

#!/usr/bin/env python
# *-----------------------------------------------------------------------*
# | |
# | Copyright (c) 2022 by Paul Scherrer Institute (http://www.psi.ch) |
# | |
# | Author Thierry Zamofing (thierry.zamofing@psi.ch) |
# *-----------------------------------------------------------------------*
'''
coordinate systems, optical center, xray axis, pixel sizes etc.
ppm= pixel per mm
update_pix2pos
modes:
0x01: update_pix2pos
0x02: update_optical_center
'''
import logging
_log=logging.getLogger(__name__)
import numpy as np
from scipy.optimize import fsolve
class VLSgrating:
def __init__(self):
# NEED TO CALL SETUP for parameters:
#self._param={'R':65.144m , # VLS curcature radius
# 'a0':1160.759, # gr/mm (gratings per mm)
# 'a1':0.3409, # gr/mm
# 'a2':-3.74E-5., # gr/mm^2
# 'a3':1.98E-7 # gr/mm^3
# } #spec
# gratings/mm = N(y)=a0+a1*y+a2*y^2+a3*y^3
#
#self._lut_energy2geometry
#lookuptable for starting values. The lut is a numpy array with collums:
#energy (sort asc), R1, R2, alpha, beta, gamma'
pass
def setup(R,a0,a1,a2,a3,lut):
self._param={'R':R,'a0':a0,'a1':a1,'a2':a2,'a3':a3}
self._lut_energy2geometry=np.array(lut)
pass
def setup_npz(self, fn):
#setup using a numpy npz file
pass
def save_npz(self, fn):
#save current parameters as an numpy npz file
pass
def update_lut(self, energyLst):
# recalculates the energy2geometry lut
# with the given energies
pass
def energy2geometry(self, energy,mode,prec):
# mode raytrace or interpolate lut
# prec precision requitements (precision iteration)
# returns R1,R2,aa,gg
pass
def geometry2raw(self, meas, debug=False):
# returns raw motor positions
pass
# ---------- eugenio calculation functions ----------
#def bring_to_focus(self, eV):
def solve_focus_equ(self, eV,p0=None):
es=self._equ
L, r1, alpha=es['L'], es['r1'], es['alpha'] # Take the current values from a dictionary
r2=L-r1 # starting R2 is taken as the difference between R1 and the maximum allowed length L
# p0=(np.deg2rad(88), 1650, 3500)
if not p0:
p0=[alpha, r1, r2]
p0=(np.deg2rad(88), 1650, 3500)
es['En']=eV # Update the dictionary with the energy at which I want to calculate the positions
es['Lam_nm']=1239.842/eV # Convert energy to wavelength
pn=fsolve(self.equations, p0, maxfev=100000000)
es['alpha'], es['r1'], es['r2']=pn
return pn
def equations(self, pn): # system of 3 equations for 3 parameters
return (self.Eq1(*pn), self.Eq2(*pn), self.Eq4(*pn))
def Eq1(self, alpha, r1, r2):
p=self._param;equ=self._equ
a1, R, a0, k, Lam_nm=p['a1'], p['R'], p['a0'], equ['k'], equ['Lam_nm']
return np.cos(alpha)**2/r1+np.cos(self.beta(alpha, a0))**2/r2-\
(np.cos(alpha)+np.cos(self.beta(alpha, a0)))/R-a1*k*Lam_nm/1e6
def Eq2(self, alpha, r1, r2):
p=self._param;equ=self._equ
a0, a1, a2, R, k, Lam_nm=p['a0'], p['a1'], p['a2'], p['R'], equ['k'], equ['Lam_nm']
return np.sin(alpha)/r1*(np.cos(alpha)**2/r1-np.cos(alpha)/R)-\
np.sin(self.beta(alpha, a0))/r2*(
np.cos(self.beta(alpha, a0))**2/r2-np.cos(self.beta(alpha, a0))/R)+2*a2*k*Lam_nm/1e6/3
def Eq4(self, alpha, r1, r2):
p=self._param;equ=self._equ
a3, R, k, Lam_nm, a0=p['a3'], p['R'], equ['k'], equ['Lam_nm'], p['a0']
return 4*np.sin(alpha)**2/r1**2*(np.cos(alpha)**2/r1-np.cos(alpha)/R)\
-1/r1*(np.cos(alpha)**2/r1-np.cos(alpha)/R)**2+1/R**2*(1/r1-np.cos(alpha)/R)\
+4*np.sin(self.beta(alpha, a0))**2/r2**2*(
np.cos(self.beta(alpha, a0))**2/r2-np.cos(self.beta(alpha, a0))/R)\
-1/r2*(np.cos(self.beta(alpha, a0))**2/r2-np.cos(self.beta(alpha, a0))/R)**2\
+1/R**2*(1/r2-np.cos(self.beta(alpha, a0))/R)-2*a3*k*Lam_nm/1e6
def beta(self, alpha, a0): # calculate beta as a function of alpha, energy, and diffraction order (k)
p=self._param;equ=self._equ
k, Lam_nm=equ['k'], equ['Lam_nm']
return np.arcsin(np.sin(alpha)-a0*k*Lam_nm/1e6)
def chi(self, alpha, r1, r2): # compute detector lean angle
p=self._param;equ=self._equ
alpha, a0, r2, R, a1=equ['alpha'], p['a0'], equ['r2'], p['R'], p['a1']
return np.arctan(np.cos(self.beta(alpha, a0))/(2*np.sin(self.beta(alpha, a0))-r2*(np.tan(self.beta(alpha, a0))/R+a1/a0)))
def testFunc():
def bring_to_focus(e, pars, std_guess):
L, r1, alpha=pars['L'], pars['r1'], pars['alpha'] # Take the current values from a dictionary
r2=L-r1 # starting R2 is taken as the difference between R1 and the maximum allowed length L
if (abs(pars['En']-e)>200): # If the new energy is far from the current energy, use the user-defined starting guess
p0=std_guess
else: # otherwise, take the current values as starting guess
p0=[alpha, r1, r2]
pars['En']=e # Update the dictionary with the energy at which I want to calculate the positions
pars['Lam_nm']=1239.842/e # Convert energy to wavelength
alpha, r1, r2=fsolve(equations, p0, maxfev=100000000, args=pars)
pars['alpha'], pars['r1'], pars['r2']=alpha, r1, r2
return pars
def equations(p, pars): # system of 3 equations for 3 parameters
alpha, r1, r2=p
return (Eq1(alpha, r1, r2, pars), Eq2(alpha, r1, r2, pars), Eq4(alpha, r1, r2, pars))
def Eq1(alpha, r1, r2, pars):
a1, R, a0, k, Lam_nm=pars['a1'], pars['R'], pars['a0'], pars['k'], pars['Lam_nm']
return np.cos(alpha)**2/r1+np.cos(beta(alpha, a0, pars))**2/r2-\
(np.cos(alpha)+np.cos(beta(alpha, a0, pars)))/R-a1*k*Lam_nm/1e6
def Eq2(alpha, r1, r2, pars):
a0, a1, a2, R, k, Lam_nm=pars['a0'], pars['a1'], pars['a2'], pars['R'], pars['k'], pars['Lam_nm']
return np.sin(alpha)/r1*(np.cos(alpha)**2/r1-np.cos(alpha)/R)-\
np.sin(beta(alpha, a0, pars))/r2*(
np.cos(beta(alpha, a0, pars))**2/r2-np.cos(beta(alpha, a0, pars))/R)+2*a2*k*Lam_nm/1e6/3
def Eq4(alpha, r1, r2, pars):
a3, R, k, Lam_nm, a0=pars['a3'], pars['R'], pars['k'], pars['Lam_nm'], pars['a0']
return 4*np.sin(alpha)**2/r1**2*(np.cos(alpha)**2/r1-np.cos(alpha)/R)\
-1/r1*(np.cos(alpha)**2/r1-np.cos(alpha)/R)**2+1/R**2*(1/r1-np.cos(alpha)/R)\
+4*np.sin(beta(alpha, a0, pars))**2/r2**2*(np.cos(beta(alpha, a0, pars))**2/r2-np.cos(beta(alpha, a0, pars))/R)\
-1/r2*(np.cos(beta(alpha, a0, pars))**2/r2-np.cos(beta(alpha, a0, pars))/R)**2\
+1/R**2*(1/r2-np.cos(beta(alpha, a0, pars))/R)-2*a3*k*Lam_nm/1e6
def beta(alpha, a0, pars): # calculate beta as a function of alpha, energy, and diffraction order (k)
k, Lam_nm=pars['k'], pars['Lam_nm']
return np.arcsin(np.sin(alpha)-a0*k*Lam_nm/1e6)
def get_chi(pars): # compute detector lean angle
alpha, a0, r2, R, a1=pars['alpha'], pars['a0'], pars['r2'], pars['R'], pars['a1']
return np.arctan(
np.cos(beta(alpha, a0, pars))/(2*np.sin(beta(alpha, a0, pars))-r2*(np.tan(beta(alpha, a0, pars))/R+a1/a0)))
gratings=np.load('../doc/ForThierry/Standard.obj', allow_pickle='TRUE').item()
pars=gratings['Typ_80meV']['grating']
#Es = np.arange(250,1550, 50)
Es=[300,]
mypars = np.zeros(5)
for i,e in enumerate(Es):
pars = bring_to_focus(e,pars,[np.deg2rad(88),1650,3500])
#pars = bring_to_focus(e,pars)
alpha, r1, r2, chi = pars['alpha'],pars['r1'],pars['r2'], get_chi(pars)
mypars = np.vstack((mypars, [e,np.rad2deg(alpha),r1,r2,np.rad2deg(chi)]))
print(mypars)
if __name__=="__main__":
import argparse
logging.basicConfig(level=logging.DEBUG, format='%(levelname)s:%(module)s:%(lineno)d:%(funcName)s:%(message)s ')
#(h, t)=os.path.split(sys.argv[0]);cmd='\n '+(t if len(h)>20 else sys.argv[0])+' '
#exampleCmd=('', '-m0xf -v0')
epilog=__doc__ #+'\nExamples:'+''.join(map(lambda s:cmd+s, exampleCmd))+'\n'
parser=argparse.ArgumentParser(epilog=epilog, formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("-m", "--mode", type=lambda x: int(x,0), help="mode (see bitmasks) default=0x%(default)x", default=0xff)
args=parser.parse_args()
_log.info('Arguments:{}'.format(args.__dict__))
logging.getLogger('matplotlib').setLevel(logging.INFO)
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import json
class MyJsonEncoder(json.JSONEncoder):
""" Special json encoder for numpy types """
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif type(obj) not in (dict, list, str, int):
_log.error('dont know how to json')
return repr(obj)
return json.JSONEncoder.default(self, obj)
np.set_printoptions(suppress=True)
np.set_printoptions(linewidth=196)
if args.mode&0x01:
testFunc()
gratings=np.load('../doc/ForThierry/Standard.obj', allow_pickle='TRUE').item()
pars=gratings['Typ_80meV']['grating']
###
#self._param={'R':65.144,'a0':1160.759,'a1':0.3409,'a2':-3.74E-5.,'a3':1.98E-7} #spec
#self._param={'R':65.144,'a0':1160.77 ,'a1':0.3409,'a2':-3.73E-5.,'a3':1.98E-7} #production param
param={'R':65.144,'a0':1160.759,'a1':0.3409,'a2':-3.74E-5,'a3':1.98E-7,
'lut': [#energy (eV), R1(mm), R2(mm), alpha(deg), beta(deg), gamma(deg)
[200 , 100., 300., .10, 20.0, 5.0],
[300 , 101., 301., .11, 20.1, 5.1],
[400 , 102., 302., .12, 20.2, 5.2],
[500 , 103., 303., .13, 20.3, 5.3],
],
}
param=dict()
for k in ('R','a0','a1','a2','a3',): #fixed VLS parameters
param[k]=pars.pop(k) #=pars[k]
equ=dict() #equation solve parameters
for k in ('L', 'r1', 'r2', 'alpha', 'k',): # starting guess values
equ[k]=pars.pop(k) #=pars[k]
vlsg=VLSgrating()
vlsg._param=param
vlsg._equ=equ
Es=np.arange(250, 1550, 50)
Es=[300, ]
mypars=[]
for i, eV in enumerate(Es):
pn=vlsg.solve_focus_equ(eV)
chi=vlsg.chi(*pn)
alpha, r1, r2=pn
mypars.append((eV, np.rad2deg(alpha), r1, r2, np.rad2deg(chi)))
mypars=np.array(mypars)
print(mypars)
for eV in range(300,1500,50):
alpha, r1, r2 = vlsg.solve_focus_equ(eV)
#vlsg.setup(param)
print(json.dumps(param, cls=MyJsonEncoder))