Files
pvAccess/testApp/utils/testInetAddressUtils.cpp
2020-08-12 18:55:26 -07:00

374 lines
11 KiB
C++

#include <epicsUnitTest.h>
#include <testMain.h>
#include <pv/pvUnitTest.h>
#include <pv/inetAddressUtil.h>
#include <pv/logger.h>
#include <pv/byteBuffer.h>
#include <pv/pvType.h>
#include <epicsAssert.h>
#include <osiSock.h>
#include <iostream>
#include <cstring>
using namespace epics::pvData;
using namespace epics::pvAccess;
using namespace std;
std::ostream& operator<<(std::ostream& strm, const osiSockAddr& addr)
{
char buf[32];
ipAddrToDottedIP(&addr.ia, buf, sizeof(buf));
strm<<buf;
return strm;
}
namespace {
void test_getSocketAddressList()
{
testDiag("Test getSocketAddressList()");
InetAddrVector vec;
getSocketAddressList(vec, "127.0.0.1 10.10.12.11:1234 192.168.3.4", 555);
testOk1(static_cast<size_t>(3) == vec.size());
osiSockAddr addr;
addr = vec.at(0);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0x7F000001) == addr.ia.sin_addr.s_addr);
testOk1("127.0.0.1:555" == inetAddressToString(addr));
addr = vec.at(1);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(1234) == addr.ia.sin_port);
testOk1(htonl(0x0A0A0C0B) == addr.ia.sin_addr.s_addr);
testOk1("10.10.12.11:1234" == inetAddressToString(addr));
addr = vec.at(2);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0xC0A80304) == addr.ia.sin_addr.s_addr);
testOk1("192.168.3.4:555" == inetAddressToString(addr));
InetAddrVector vec1;
getSocketAddressList(vec1, "172.16.55.160", 6789, &vec);
testOk1(static_cast<size_t>(4) == vec1.size());
addr = vec1.at(0);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(6789) == addr.ia.sin_port);
testOk1(htonl(0xAC1037A0) == addr.ia.sin_addr.s_addr);
testOk1("172.16.55.160:6789" == inetAddressToString(addr));
addr = vec1.at(1);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0x7F000001) == addr.ia.sin_addr.s_addr);
testOk1("127.0.0.1:555" == inetAddressToString(addr));
addr = vec1.at(2);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(1234) == addr.ia.sin_port);
testOk1(htonl(0x0A0A0C0B) == addr.ia.sin_addr.s_addr);
testOk1("10.10.12.11:1234" == inetAddressToString(addr));
addr = vec1.at(3);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0xC0A80304) == addr.ia.sin_addr.s_addr);
testOk1("192.168.3.4:555" == inetAddressToString(addr));
// empty
InetAddrVector vec2;
getSocketAddressList(vec2, "", 1111);
testOk1(static_cast<size_t>(0) == vec2.size());
// just spaces
InetAddrVector vec3;
getSocketAddressList(vec3, " ", 1111);
testOk1(static_cast<size_t>(0) == vec3.size());
// leading spaces
InetAddrVector vec4;
getSocketAddressList(vec4, " 127.0.0.1 10.10.12.11:1234 192.168.3.4", 555);
testOk1(static_cast<size_t>(3) == vec4.size());
addr = vec4.at(0);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0x7F000001) == addr.ia.sin_addr.s_addr);
testOk1("127.0.0.1:555" == inetAddressToString(addr));
addr = vec4.at(1);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(1234) == addr.ia.sin_port);
testOk1(htonl(0x0A0A0C0B) == addr.ia.sin_addr.s_addr);
testOk1("10.10.12.11:1234" == inetAddressToString(addr));
addr = vec4.at(2);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0xC0A80304) == addr.ia.sin_addr.s_addr);
testOk1("192.168.3.4:555" == inetAddressToString(addr));
}
void test_encodeAsIPv6Address()
{
testDiag("Test encodeAsIPv6Address()");
epics::auto_ptr<ByteBuffer> buff(new ByteBuffer(32, EPICS_ENDIAN_LITTLE));
char src[] = { (char)0, (char)0, (char)0, (char)0, (char)0, (char)0,
(char)0, (char)0, (char)0, (char)0, (char)0xFF, (char)0xFF,
(char)0x0A, (char)0x0A, (char)0x0C, (char)0x0B
};
osiSockAddr addr;
memset(&addr, 0, sizeof(addr));
addr.ia.sin_family = AF_INET;
addr.ia.sin_addr.s_addr = htonl(0x0A0A0C0B);
encodeAsIPv6Address(buff.get(), &addr);
testOk1(static_cast<size_t>(16) == buff->getPosition());
testOk1(strncmp(buff->getBuffer(), src, 16) == 0);
}
void test_isMulticastAddress()
{
testDiag("Test test_isMulticastAddress()");
InetAddrVector vec;
getSocketAddressList(vec, "127.0.0.1 255.255.255.255 0.0.0.0 224.0.0.0 239.255.255.255 235.3.6.3", 0);
testOk1(static_cast<size_t>(6) == vec.size());
testOk1(!isMulticastAddress(&vec.at(0)));
testOk1(!isMulticastAddress(&vec.at(1)));
testOk1(!isMulticastAddress(&vec.at(2)));
testOk1(isMulticastAddress(&vec.at(3)));
testOk1(isMulticastAddress(&vec.at(4)));
testOk1(isMulticastAddress(&vec.at(5)));
}
#ifdef _WIN32
// needed for ip_mreq
#include <ws2tcpip.h>
#endif
void test_multicastLoopback()
{
testDiag("Test test_multicast()");
osiSockAttach();
SOCKET socket = epicsSocketCreate(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
testOk1(socket != INVALID_SOCKET);
if (socket == INVALID_SOCKET)
testAbort("Can't allocate socket");
unsigned short port = 5555;
// set SO_REUSEADDR or SO_REUSEPORT, OS dependant
epicsSocketEnableAddressUseForDatagramFanout(socket);
osiSockAddr bindAddr;
memset(&bindAddr, 0, sizeof(bindAddr));
bindAddr.ia.sin_family = AF_INET;
bindAddr.ia.sin_port = ntohs(port);
bindAddr.ia.sin_addr.s_addr = htonl(INADDR_ANY);
int status = ::bind(socket, (sockaddr*)&(bindAddr.sa), sizeof(sockaddr));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Failed to bind: %s\n", errStr);
epicsSocketDestroy(socket);
return;
}
osiSockAddr loAddr;
memset(&loAddr, 0, sizeof(loAddr));
loAddr.ia.sin_family = AF_INET;
loAddr.ia.sin_port = ntohs(port);
loAddr.ia.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
osiSockAddr mcastAddr;
aToIPAddr("224.0.0.128", port, &mcastAddr.ia);
struct ip_mreq imreq;
memset(&imreq, 0, sizeof(struct ip_mreq));
imreq.imr_multiaddr.s_addr = mcastAddr.ia.sin_addr.s_addr;
imreq.imr_interface.s_addr = loAddr.ia.sin_addr.s_addr;
// join multicast group on default interface
status = ::setsockopt(socket, IPPROTO_IP, IP_ADD_MEMBERSHIP,
(char*)&imreq, sizeof(struct ip_mreq));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Error setting IP_ADD_MEMBERSHIP: %s\n", errStr);
}
testOk(status == 0, "IP_ADD_MEMBERSHIP set");
SOCKET sendSocket = epicsSocketCreate(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
testOk1(sendSocket != INVALID_SOCKET);
if (sendSocket == INVALID_SOCKET)
return;
// set the multicast outgoing interface
status = ::setsockopt(sendSocket, IPPROTO_IP, IP_MULTICAST_IF,
(char*)&loAddr.ia.sin_addr, sizeof(struct in_addr));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Error setting IP_MULTICAST_IF: %s\n", errStr);
}
testOk(status == 0, "IP_MULTICAST_IF set");
// send multicast traffic to myself too
unsigned char mcast_loop = 1;
status = ::setsockopt(sendSocket, IPPROTO_IP, IP_MULTICAST_LOOP,
(char*)&mcast_loop, sizeof(unsigned char));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Error setting IP_MULTICAST_LOOP: %s\n", errStr);
}
testOk(status == 0, "IP_MULTICAST_LOOP set");
// put some data in buffer
#define MAX_BUFFER_SIZE 1024
char txbuff[MAX_BUFFER_SIZE];
strcpy(txbuff, "mcastTest");
// send multicast packet
size_t len = strlen(txbuff);
status = ::sendto(sendSocket, txbuff, len, 0,
&(mcastAddr.sa), sizeof(sockaddr));
if (status < 0)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Multicast send error: %s\n", errStr);
}
testOk((size_t)status == len, "Multicast send");
// set timeout in case message is not sent
struct timeval timeout;
memset(&timeout, 0, sizeof(struct timeval));
timeout.tv_sec = 1;
timeout.tv_usec = 0;
status = ::setsockopt (socket, SOL_SOCKET, SO_RCVTIMEO,
(char*)&timeout, sizeof(timeout));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Error setting SO_RCVTIMEO: %s\n", errStr);
}
testOk(status == 0, "SO_RCVTIMEO set");
char rxbuff[MAX_BUFFER_SIZE];
osiSockAddr fromAddress;
osiSocklen_t addrStructSize = sizeof(sockaddr);
// receive packet from socket
status = ::recvfrom(socket, rxbuff, MAX_BUFFER_SIZE, 0,
(sockaddr*)&fromAddress, &addrStructSize);
if (status < 0)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Multicast recv error: %s\n", errStr);
}
testOk((size_t)status == len, "Multicast recv");
testOk(strncmp(rxbuff, txbuff, len) == 0, "Multicast content matches");
// shutdown sockets?
epicsSocketDestroy(sendSocket);
epicsSocketDestroy(socket);
}
void test_discoverInterfaces()
{
testDiag("test_discoverInterfaces()");
SOCKET sock(epicsSocketCreate(AF_INET, SOCK_DGRAM, 0));
if(sock==INVALID_SOCKET)
testAbort("Failed to allocate socket");
IfaceNodeVector ifaces;
osiSockAddr any;
memset(&any, 0, sizeof(any));
any.ia.sin_family = AF_INET;
any.ia.sin_addr.s_addr = htonl(INADDR_ANY);
testEqual(discoverInterfaces(ifaces, sock, &any), 0);
testOk(ifaces.size()>0u, "Found %u interfaces", unsigned(ifaces.size()));
for(size_t i=0; i<ifaces.size(); i++)
{
const ifaceNode& node = ifaces[i];
testShow()<<"Iface["<<i<<"] addr="<<node.addr;
if(node.validP2P) {
testShow()<<" peer="<<node.peer;
}
if(node.validBcast) {
testShow()<<" mask="<<node.mask<<" bcast="<<node.bcast;
epicsUInt32 ip =ntohl(node.addr.ia.sin_addr.s_addr),
mask =ntohl(node.mask.ia.sin_addr.s_addr),
bcast=ntohl(node.bcast.ia.sin_addr.s_addr),
net =ip&mask,
bcast2=net|~mask;
testDiag("IP %08x/%08x Bcast %08x == %08x", ip, mask, bcast, bcast2);
}
if(node.loopback) {
testShow()<<" loopback";
}
}
}
} // namespace
MAIN(testInetAddressUtils)
{
testPlan(65);
testDiag("Tests for InetAddress utils");
test_getSocketAddressList();
test_encodeAsIPv6Address();
test_isMulticastAddress();
test_multicastLoopback();
test_discoverInterfaces();
return testDone();
}