Files
cristallina_analysis_package/tests/test_analysis.py

100 lines
3.5 KiB
Python

import pytest
import numpy as np
import unittest.mock
import cristallina.analysis
__author__ = "Alexander Steppke"
@unittest.mock.patch("jungfrau_utils.file_adapter.locate_gain_file", lambda path, **kwargs: "tests/data/gains.h5")
@unittest.mock.patch("jungfrau_utils.file_adapter.locate_pedestal_file", lambda path, **kwargs: "tests/data/JF16T03V01.res.h5")
def test_image_calculations():
res = cristallina.analysis.perform_image_calculations(['tests/data/p20841/raw/run0185/data/acq0001.*.h5'])
# these values are only correct when using the specific gain and pedestal files included in the test data
# they do not correspond to the gain and pedestal files used in the actual analysis (otherwise we need to include several here as test data)
intensity = [1712858.6,
693994.06,
1766390.0,
1055504.9,
1516520.9,
461969.06,
3148285.5,
934917.5,
1866691.6,
798191.2,
2250207.0,
453842.6]
assert np.allclose(res["JF16T03V01_intensity"], intensity)
def test_joblib_memory():
""" We need joblib for fast caching of intermediate results in all cases. So we check
if the basic function caching to disk works.
"""
def calc_example(x):
return x**2
calc_cached = cristallina.analysis.memory.cache(calc_example)
assert calc_cached(8) == 64
assert calc_cached.check_call_in_cache(8) == True
def test_minimal_2d_gaussian():
image = np.array([[0,0,0,0,0],
[0,0,0,0,0],
[0,0,1,0,0],
[0,0,0,0,0],
[0,0,0,0,0],
])
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian(image)
assert np.allclose(center_x, 2.0, rtol=1e-04)
assert np.allclose(center_y, 2.0, rtol=1e-04)
def test_2d_gaussian():
# define normalized 2D gaussian
def gauss2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
return (1 / (2 * np.pi * sx * sy) * np.exp(-((x - mx) ** 2 / (2 * sx**2.0) + (y - my) ** 2 / (2 * sy**2))))
x = np.arange(0, 150, 1)
y = np.arange(0, 100, 1)
x, y = np.meshgrid(x, y)
z = gauss2d(x, y, mx=40, my=50, sx=20, sy=40)
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian(z)
assert np.allclose(center_x, 40, rtol=1e-04)
assert np.allclose(center_y, 50, rtol=1e-04)
def test_2d_gaussian_rotated():
# define normalized 2D gaussian
def gauss2d_rotated(x=0, y=0, center_x=0, center_y=0, sx=1, sy=1, rotation=0):
sr = np.sin(rotation)
cr = np.cos(rotation)
center_x_rot = center_x * cr - center_y * sr
center_y_rot = center_x * sr + center_y * cr
x_rot = x * cr - y * sr
y_rot = x * sr + y * cr
return (1 / (2 * np.pi * sx * sy) * np.exp(-((x_rot - center_x_rot) ** 2 / (2 * sx**2.0) + (y_rot - center_y_rot) ** 2 / (2 * sy**2))))
x = np.arange(0, 150, 1)
y = np.arange(0, 100, 1)
x, y = np.meshgrid(x, y)
z = 100*gauss2d_rotated(x, y, center_x=40, center_y=50, sx=10, sy=20, rotation=0.5)
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian_rotated(z, vary_rotation=True, plot=False)
assert np.allclose(center_x, 40, rtol=1e-04)
assert np.allclose(center_y, 50, rtol=1e-04)
assert np.allclose(result.params['rotation'].value, 0.5, rtol=1e-02)