edit histogram code

This commit is contained in:
Karina Kazarian
2025-03-29 17:06:02 +01:00
parent 34ddfb376f
commit 259212282b

View File

@@ -326,6 +326,95 @@ def perform_image_roi_crop(
return np.array(rois_within_batch)
@memory.cache(ignore=["batch_size"]) # we ignore batch_size for caching purposes
def calculate_image_histograms(
filesets,
channel="JF16T03V01",
alignment_channels=None,
batch_size=10,
roi: Optional[ROI] = None,
preview=False,
lower_cutoff_threshold=None,
bins=None,
):
"""
Calculates a histogram for a given region of interest (roi)
for an image channel from a fileset (e.g. "run0352/data/acq0001.*.h5" or step.fnames from a SFScanInfo object).
Allows alignment, i.e. reducing only to a common subset with other channels.
Calculations are performed in batches to reduce maximum memory requirements.
Preview only applies calculation to first batch and returns.
Returns:
(histogram, bins)
"""
with SFDataFiles(*filesets) as data:
if alignment_channels is not None:
channels = [channel] + [ch for ch in alignment_channels]
else:
channels = [channel]
subset = data[channels]
subset.drop_missing()
Images = subset[channel]
# create empty array for stack sum with right shape
im = Images[0]
if roi is None:
im_ROI = im[:]
else:
im_ROI = im[roi.rows, roi.cols]
summed = np.zeros(im_ROI[0].shape)
if bins is None:
for image_slice in Images.in_batches(batch_size):
index_slice, im = image_slice
if roi is None:
im_ROI = im
else:
im_ROI = im[:, roi.rows, roi.cols]
if lower_cutoff_threshold is not None:
im_ROI = np.where(im_ROI < lower_cutoff_threshold, 0, im_ROI)
bins = np.histogram_bin_edges(im.flatten(), bins='auto')
# only return first batch to calculate bins
break
all_hist = np.zeros(len(bins)-1)
for image_slice in Images.in_batches(batch_size):
index_slice, im = image_slice
if roi is None:
im_ROI = im
else:
im_ROI = im[:, roi.rows, roi.cols]
if lower_cutoff_threshold is not None:
im_ROI = np.where(im_ROI < lower_cutoff_threshold, 0, im_ROI)
if bins is None:
bins = np.histogram_bin_edges(im.flatten(), bins='auto')
summed = summed + np.sum(im_ROI, axis=(0))
hist, _ = np.histogram(im.flatten(), bins=bins)
all_hist += hist
# only return first batch
if preview:
break
return all_hist, bins
def fit_2d_gaussian(image, roi: Optional[ROI] = None, plot=False):
"""
2D Gaussian fit using LMFit for a given image and an optional region of interest.
@@ -585,4 +674,4 @@ def fit_1d_gaussian(x, y, use_offset=True, ax=None, print_results=False):
if ax is not None:
ax.plot(x, result.best_fit, label='fit')
return result
return result