//================================================================================================= // // Company: Paul Scherrer Institut // 5232 Villigen PSI // Switzerland // //------------------------------------------------------------------------------------------------- // // Project: Peltier Controller V2 // Author: Noah Piqué (noah.pique@psi.ch) // //------------------------------------------------------------------------------------------------- // // Module: Analog Ports Input // Filename: ANPI_AnalogPortsIn.c // Date: Handled by Subversion (version control system) // Revision: Handled by Subversion (version control system) // History: Handled by Subversion (version control system) // //------------------------------------------------------------------------------------------------- // // Description: This source file contains all functions dealing with the analog input ports // //================================================================================================= //================================================================================================= // Section: INCLUDES // Description: List of required include files. //================================================================================================= #include "../PDEF_ProjectDefinitions.h" #include "ANPI_AnalogPortsIn.h" //Application //#include "../Application/ELOG_ErrorLogger.h" // Toolbox #include "../Toolbox/UTIL_Utility.h" #include "DIPO_DigitalPorts.h" // include STM32 drivers #include "stm32l4xx_hal.h" #include "cmsis_os2.h" //================================================================================================= // Section: DEFINITIONS // Description: Definition of local constants (visible by this module only). //================================================================================================= #define ADC_RES (4096) // ADC resolution: 12 bits #define NR_OF_ADCS 5 // number of internal adc channels // definitions of internal adc #define INT_ADC_REF_HI (3.3f) // HI int. reference voltage for conversion #define INT_ADC_REF_LO (0.0f) // LO int. reference voltage for conversion #define INT_ADC_REF (INT_ADC_REF_HI-INT_ADC_REF_LO)// int. reference voltage for conversion #define BUFFER_SIZE NR_OF_ADCS * 2 #define BUFFER_HALF_SIZE NR_OF_ADCS #define ANPI_ADC_HALF_COMPLETE ((U32)1<<0) #define ANPI_ADC_FULL_COMPLETE ((U32)1<<1) #define ANPI_FLAGS_ALL ( ANPI_ADC_HALF_COMPLETE | ANPI_ADC_FULL_COMPLETE ) #define OVERSAMPLING_DIVISOR 16.0f // calculated with parameters from hardware oversampling // 6 bits(64x) - 2 bit shift = 4bit -> 16x //================================================================================================= // Section: MACROS // Description: Definition of local macros (visible by this module only). //================================================================================================= //================================================================================================= // Section: ENUMERATIONS // Description: Definition of local enumerations (visible by this module only). //================================================================================================= // the number of ADCs typedef enum { eADC1 = 0, eNumberOfADCs, } EnADC; //================================================================================================= // Section: STRUCTURES // Description: Definition of local Structures (visible by this module only). //================================================================================================= typedef struct { ADC_TypeDef* pstADC; } StADCInit; // struct for internal ACD //================================================================================================= // Section: LOCAL VARIABLES // Description: Definition of local variables (visible by this module only). //================================================================================================= LOCAL FLOAT m_aflValues[ANPI_eInNumberOfInputs]; // values LOCAL U16 m_au16ADCDataBuffer[eNumberOfADCs][BUFFER_SIZE]; LOCAL U32 m_au32ADCRawData[eNumberOfADCs*NR_OF_ADCS] = {0}; // raw adc values LOCAL osThreadId_t m_pstThreadID = NULL; LOCAL osEventFlagsId_t m_pstEventID = NULL; LOCAL osMutexId_t m_pstMutexID = NULL; //================================================================================================= // Section: LOCAL CONSTANTS // Description: Definition of local constants (visible by this module only). //================================================================================================= // conversion factors for the values // Order must fit enumeration "ANPI_EnAnalogInput" LOCAL CONST FLOAT m_aflConversionFactor[ANPI_eInNumberOfInputs] = { 34.103f * 1.0f / ADC_RES * INT_ADC_REF, // 00 ANPI_eControlVoltage 10.0f / ADC_RES * INT_ADC_REF, // 01 ANPI_eSupplyVoltage24V -(1.0f / (2.0f / 10.0f)) / ADC_RES * INT_ADC_REF, // 02 ANPI_eSupplyCurrent24V 34.103f * 1.0f / ADC_RES * INT_ADC_REF, // 03 ANPI_eOutputVoltage (1.0f / (2.0f / 10.0f)) / ADC_RES * INT_ADC_REF, // 04 ANPI_eOutputCurrent }; // offsets for the values before it gets multiplied // Order must fit enumeration "ANPI_EnAnalogInput" LOCAL CONST FLOAT m_aflOffset1[ANPI_eInNumberOfInputs] = { 0.0f, // 00 ANPI_eControlVoltage 0.0f, // 01 ANPI_eSupplyVoltage24V 1.65f * ADC_RES / INT_ADC_REF, // 02 ANPI_eSupplyCurrent24V 0.0f, // 03 ANPI_eOutputVoltage 1.65f * ADC_RES / INT_ADC_REF, // 04 ANPI_eOutputCurrent }; // offsets for the values after it gets multiplied // Order must fit enumeration "ANPI_EnAnalogInput" LOCAL CONST FLOAT m_aflOffset2[ANPI_eInNumberOfInputs] = { 18.788f, // 00 ANPI_eControlVoltage 0.0f, // 01 ANPI_eSupplyVoltage24V 0.0f, // 02 ANPI_eSupplyCurrent24V 18.788f, // 03 ANPI_eOutputVoltage 0.0f, // 04 ANPI_eOutputCurrent }; // initial values. Order must fit enumeration "ANPI_EnAnalogInput" LOCAL CONST FLOAT m_afInitValues[ANPI_eInNumberOfInputs] = { 0.0f, // 00 ANPI_eControlVoltage 0.0f, // 01 ANPI_eSupplyVoltage24V 0.0f, // 02 ANPI_eSupplyCurrent24V 0.0f, // 03 ANPI_eOutputVoltage 0.0f, // 04 ANPI_eOutputCurrent }; // configuration data for the ADC // order must fit enumeration EnADC LOCAL CONST StADCInit m_astADCInit[eNumberOfADCs] = { {ADC1}, // 00 eADC1 }; // inputs are connected to the following ADCs // ANPI_eControlVoltage ADC1, Channel 8 // ANPI_eSupplyVoltage24V ADC1, Channel 6 // ANPI_eSupplyCurrent24V ADC1, Channel 16 // ANPI_eOutputVoltage ADC1, Channel 7 // ANPI_eOutputCurrent ADC1, Channel 15 LOCAL CONST osThreadAttr_t stTaskAttribute = { "ANPI_Thread", // name of the thread osThreadDetached, // attribute bits NULL, // memory for control block 0, // size of provided memory for control block NULL, // memory for stack 1024, // size of stack osPriorityBelowNormal, // initial thread priority (default: osPriorityNormal) 0, // TrustZone module identifier 0, // reserved (must be 0) }; LOCAL CONST osEventFlagsAttr_t stEventAttribute = { "ANPI_Event_Flags", // name of the event flags 0, // attribute bits NULL, // memory for control block 0, // size of provided memory for control block }; LOCAL CONST osMutexAttr_t m_stMutexAttr = { "ANPI_Mutex", // human readable mutex name osMutexRecursive | osMutexPrioInherit, // attr_bits NULL, // memory for control block 0U // size for control block }; //================================================================================================= // Section: LOCAL FUNCTIONS (PROTOTYPES) // Description: Definition of local functions (visible by this module only). //================================================================================================= PRIVATE VOID ANPI_vTask( PVOID arg ); //================================================================================================= // Section: EXTERNAL FUNCTIONS // Description: Definition of external (global) functions. //================================================================================================= //================================================================================================= // Section: EXTERNAL VARIABLES // Description: Definition of external (global) variables. //================================================================================================= extern ADC_HandleTypeDef hadc1; //================================================================================================= // Section: GLOBAL FUNCTIONS // Description: Definition (implementation) of global functions. //================================================================================================= //------------------------------------------------------------------------------------------------- // Function: ANPI_boInitializeModule // Description: Initializes the module. Function must be called once immediately after power-up. // Parameters: None // Returns: Boolean TRUE if successful //------------------------------------------------------------------------------------------------- BOOL ANPI_boInitializeModule( VOID ) { BOOL boOK = TRUE; // set the init values UTIL_vMemCopyU32( (PU32)m_afInitValues, (PU32)m_aflValues, sizeof(m_aflValues)/sizeof(FLOAT) ); boOK &= ((m_pstThreadID = osThreadNew( ANPI_vTask, NULL, &stTaskAttribute )) == NULL ) ? FALSE : TRUE; boOK &= ((m_pstEventID = osEventFlagsNew( &stEventAttribute )) == NULL) ? FALSE : TRUE; boOK &= ((m_pstMutexID = osMutexNew( &m_stMutexAttr )) == NULL) ? FALSE : TRUE; return( boOK ); } //------------------------------------------------------------------------------------------------- // Function: ANPI_vTask // Description: ANPI_vTask // Parameters: None // Returns: None //------------------------------------------------------------------------------------------------- VOID ANPI_vTask( PVOID arg ) { U32 u32Flags; U16 u16Offset; osDelay( 1 ); // Wait 1ms to have a Valid Value HAL_ADC_Start_DMA( &hadc1, (PU32)&m_au16ADCDataBuffer[eADC1][0], BUFFER_SIZE); while ( TRUE ) { u32Flags = osEventFlagsWait( m_pstEventID, ANPI_FLAGS_ALL, osFlagsWaitAny, osWaitForever ); if( u32Flags & ANPI_ADC_FULL_COMPLETE ) { u16Offset = BUFFER_HALF_SIZE; } if( u32Flags & ANPI_ADC_HALF_COMPLETE ) { u16Offset = 0; } // reset the sum for calculating the mean memset( m_au32ADCRawData, 0, sizeof(m_au32ADCRawData) ); // ... multiply by the conversion factor and add the offset osMutexAcquire( m_pstMutexID, osWaitForever ); // aquire mutex // save the values in the buffer... for(U16 u16Cnt = 0; u16Cnt < BUFFER_HALF_SIZE; u16Cnt++ ) { m_au32ADCRawData[ u16Cnt ] = m_au16ADCDataBuffer[eADC1][u16Cnt + u16Offset]; } // ... multiply by the conversion factor and add the offset for(U16 u16Cnt = 0; u16Cnt < ANPI_eInNumberOfInputs; u16Cnt++ ) { if(u16Cnt == ANPI_eOutputVoltage){ m_aflValues[u16Cnt] = 0.0f; continue; } m_aflValues[u16Cnt] = ((((FLOAT)m_au32ADCRawData[u16Cnt] / OVERSAMPLING_DIVISOR) - (FLOAT)m_aflOffset1[u16Cnt] ) * (FLOAT)m_aflConversionFactor[u16Cnt]) - (FLOAT)m_aflOffset2[u16Cnt]; } osMutexRelease( m_pstMutexID ); // release mutex } } //------------------------------------------------------------------------------------------------- // Function: HAL_ADC_ConvCpltCallback // Description: Handles the ADC interrupts // Parameters: None // Returns: None //------------------------------------------------------------------------------------------------- void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { osEventFlagsSet( m_pstEventID, ANPI_ADC_FULL_COMPLETE ); } //------------------------------------------------------------------------------------------------- // Function: HAL_ADC_ConvHalfCpltCallback // Description: Handles the ADC interrupts // Parameters: None // Returns: None //------------------------------------------------------------------------------------------------- void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) { osEventFlagsSet( m_pstEventID, ANPI_ADC_HALF_COMPLETE ); } //------------------------------------------------------------------------------------------------- // Function: ANPI_flGetInputValue // Description: Gets the value of the analog input // Parameters: ANPI_EnAnalogInput enInput Analog input to read // Returns: FLOAT flValue Value from ADC in V //------------------------------------------------------------------------------------------------- FLOAT ANPI_flGetInputValue( ANPI_EnAnalogInput enInput ) { osMutexAcquire( m_pstMutexID, osWaitForever ); // aquire mutex FLOAT flValue = m_aflValues[enInput]; osMutexRelease( m_pstMutexID ); // release mutex return( flValue ); } //================================================================================================= // Section: LOCAL FUNCTIONS // Descriptionn: Definition (implementation) of local functions. //================================================================================================= //------------------------------------------------------------------------------------------------- // Function: HAL_ADC_ErrorCallback // Description: Error Callback for the ADC // Parameters: ADC_HandleTypeDef* hadc // Returns: None //------------------------------------------------------------------------------------------------- void HAL_ADC_ErrorCallback( ADC_HandleTypeDef* hadc ) { if( hadc->ErrorCode == HAL_ADC_ERROR_NONE ) { } if( hadc->ErrorCode == HAL_ADC_ERROR_INTERNAL ) { } if( hadc->ErrorCode == HAL_ADC_ERROR_OVR ) { //ELOG_ADDLOG( ELOG_eADCOverrunError, NULL ); } if( hadc->ErrorCode == HAL_ADC_ERROR_DMA ) { // ELOG_ADDLOG( ELOG_eDMAHTransferError, NULL ); } // check rx dma transfer error if( hadc->DMA_Handle->ErrorCode & HAL_DMA_ERROR_TE ) { // ELOG_ADDLOG( ELOG_eDMAHTransferError, NULL ); } }