optimation temp & adc

This commit is contained in:
Noah Piqué 2021-11-17 14:34:41 +01:00
parent 04d2bab659
commit cb3449f487
7 changed files with 51 additions and 40 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
Debug/**
Debug/
/Release/

View File

@ -58,15 +58,16 @@
#define INT_ADC_REF_LO (0.0f) // LO int. reference voltage for conversion
#define INT_ADC_REF (INT_ADC_REF_HI-INT_ADC_REF_LO)// int. reference voltage for conversion
#define BUFFER_SIZE NR_OF_ADCS * ANPI_OVERSAMPLING_FACTOR * 2
#define BUFFER_HALF_SIZE NR_OF_ADCS * ANPI_OVERSAMPLING_FACTOR
#define BUFFER_SIZE NR_OF_ADCS * 2
#define BUFFER_HALF_SIZE NR_OF_ADCS
#define ANPI_ADC_HALF_COMPLETE ((U32)1<<0)
#define ANPI_ADC_FULL_COMPLETE ((U32)1<<1)
#define ANPI_FLAGS_ALL ( ANPI_ADC_HALF_COMPLETE | ANPI_ADC_FULL_COMPLETE )
#define OFFSET 1.026f
#define OVERSAMPLING_DIVISOR 16.0f // calculated with parameters from hardware oversampling
// 6 bits(64x) - 2 bit shift = 4bit -> 16x
//=================================================================================================
// Section: MACROS
@ -270,8 +271,6 @@ VOID ANPI_vTask( PVOID arg )
{
u32Flags = osEventFlagsWait( m_pstEventID, ANPI_FLAGS_ALL, osFlagsWaitAny, osWaitForever );
DIPO_vSetOutput(DIPO_eLED);
if( u32Flags & ANPI_ADC_FULL_COMPLETE )
{
u16Offset = BUFFER_HALF_SIZE;
@ -285,28 +284,29 @@ VOID ANPI_vTask( PVOID arg )
// reset the sum for calculating the mean
memset( m_au32ADCRawData, 0, sizeof(m_au32ADCRawData) );
// calculate the mean of the samples to get a better result
// build the sum of the values...
for(U16 u16Cnt = 0; u16Cnt < BUFFER_HALF_SIZE; u16Cnt++ )
{
m_au32ADCRawData[ u16Cnt % NR_OF_ADCS ] += m_au16ADCDataBuffer[eADC1][u16Cnt + u16Offset];
//m_au32ADCRawData[ u16Cnt % NR_OF_ADCS ] = m_au16ADCDataBuffer[eADC1][u16Cnt + u16Offset];
}
// ... multiply by the conversion factor and add the offset
osMutexAcquire( m_pstMutexID, osWaitForever ); // aquire mutex
// save the values in the buffer...
for(U16 u16Cnt = 0; u16Cnt < BUFFER_HALF_SIZE; u16Cnt++ )
{
m_au32ADCRawData[ u16Cnt ] = m_au16ADCDataBuffer[eADC1][u16Cnt + u16Offset];
}
// ... multiply by the conversion factor and add the offset
for(U16 u16Cnt = 0; u16Cnt < ANPI_eInNumberOfInputs; u16Cnt++ )
{
m_aflValues[u16Cnt] = ((((FLOAT)m_au32ADCRawData[u16Cnt] / (FLOAT)ANPI_OVERSAMPLING_FACTOR * OFFSET) - (FLOAT)m_aflOffset1[u16Cnt] ) *
if(u16Cnt == ANPI_eOutputVoltage){
m_aflValues[u16Cnt] = 0.0f;
continue;
}
m_aflValues[u16Cnt] = ((((FLOAT)m_au32ADCRawData[u16Cnt] / OVERSAMPLING_DIVISOR) - (FLOAT)m_aflOffset1[u16Cnt] ) *
(FLOAT)m_aflConversionFactor[u16Cnt]) - (FLOAT)m_aflOffset2[u16Cnt];
//m_aflValues[u16Cnt] = (FLOAT)m_au32ADCRawData[u16Cnt];
}
osMutexRelease( m_pstMutexID ); // release mutex
DIPO_vResetOutput(DIPO_eLED);
}
}

View File

@ -40,13 +40,6 @@ extern "C" {
// Description: Definition of global constants (visible by all modules).
//=================================================================================================
// attention: perhaps you have to change the ADC sample time in ANPI_AnalogPortsIn.c
//#define ANPI_OVERSAMPLING_FACTOR 64
#define ANPI_OVERSAMPLING_FACTOR 64
#if( ANPI_OVERSAMPLING_FACTOR % 2 != 0 )
//#error "ANPI_OVERSAMPLING_FACTOR must be power of 2!"
#endif
//=================================================================================================
// Section: MACROS

View File

@ -82,6 +82,8 @@
LOCAL osThreadId_t m_pstThreadID = NULL;
BOOL boEnableOutput = FALSE;
//=================================================================================================
// Section: LOCAL CONSTANTS
@ -164,11 +166,22 @@ BOOL PECO_boSetTemperature( S16 Temperature ){
//-------------------------------------------------------------------------------------------------
// Function: PECO_Enable
// Description: Enables the Peltier Controller Output
// Parameters: BOOL Enable
// Parameters: BOOL boEnable
// Returns: None
//-------------------------------------------------------------------------------------------------
VOID PECO_Enable( BOOL Enable ){
DIPO_vSetState(DIPO_eEN, Enable);
VOID PECO_Enable( BOOL boEnable ){
DIPO_vSetState(DIPO_eEN, boEnable);
boEnableOutput = boEnable;
}
//-------------------------------------------------------------------------------------------------
// Function: PECO_isEnabled
// Description: Returns true if the Output is enabled
// Parameters: None
// Returns: BOOL boEnableOutput
//-------------------------------------------------------------------------------------------------
BOOL PECO_isEnabled( VOID ){
return boEnableOutput;
}
//=================================================================================================

View File

@ -241,12 +241,13 @@ PRIVATE VOID vTempTask( PVOID arg )
//if( u32Flags & EVENT_REFRESH )
//{
boOK &= ADCD_dReadData(ADCD_eHot, &error, &u16ADC_data[ADCD_eHot]);
if( boOK )
{
osMutexAcquire( m_pstMutexID, osWaitForever );
DIPO_vSetOutput(DIPO_eLED);
m_flTempData[ADCD_eHot] = flConvertADCData( u16ADC_data[ADCD_eHot] );
DIPO_vResetOutput(DIPO_eLED);
//temp = flConvertADCData( u16ADC_data[ADCD_eHot] ); // for debugging
//VARH_vSetVariableData( VARH_eTempHeatSink + u8Channel, (VARH_UVariable)(FLOAT)m_dbTempData[u8Channel] );
osMutexRelease( m_pstMutexID );
@ -266,6 +267,8 @@ PRIVATE VOID vTempTask( PVOID arg )
}
//}
osDelay(REFRESH_MS);
@ -321,15 +324,14 @@ PRIVATE VOID vTempTask( PVOID arg )
PRIVATE FLOAT flConvertADCData( U16 u16RTemp )
{
/*u16RTemp = u16RTemp / 1000;
FLOAT u16R = u16RTemp / 8192.0f;
FLOAT flT = 9.9714f * u16RTemp;
FLOAT flT = 9.9714f * u16R;
flT += 235.904f;
flT *= u16RTemp;
flT += -245.876f;*/
flT *= u16R;
flT += -245.876f;
FLOAT flZ1, flZ2, flZ3, flZ4, flRt, flTemp, flRpoly;
/*DOUBLE flZ1, flZ2, flZ3, flZ4, flRt, flTemp, flRpoly;
flRt = u16RTemp;
flRt /= 32768;
flRt *= R_REF;
@ -354,7 +356,9 @@ PRIVATE FLOAT flConvertADCData( U16 u16RTemp )
flRpoly *= flRt; // ^4
flTemp -= 2.8183e-8 * flRpoly;
flRpoly *= flRt; // ^5
flTemp += 1.5243e-10 * flRpoly;
flTemp += 1.5243e-10 * flRpoly;*/
return( flTemp );
return( flT );
}

View File

@ -251,8 +251,8 @@ static void MX_ADC1_Init(void)
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.OversamplingMode = ENABLE;
hadc1.Init.Oversampling.Ratio = ADC_OVERSAMPLING_RATIO_64;
hadc1.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_2;
hadc1.Init.Oversampling.Ratio = ADC_OVERSAMPLING_RATIO_256;
hadc1.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_4;
hadc1.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER;
hadc1.Init.Oversampling.OversamplingStopReset = ADC_REGOVERSAMPLING_CONTINUED_MODE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)

View File

@ -21,8 +21,8 @@ ADC1.Rank-1\#ChannelRegularConversion=2
ADC1.Rank-2\#ChannelRegularConversion=3
ADC1.Rank-3\#ChannelRegularConversion=4
ADC1.Rank-4\#ChannelRegularConversion=5
ADC1.Ratio=ADC_OVERSAMPLING_RATIO_64
ADC1.RightBitShift=ADC_RIGHTBITSHIFT_2
ADC1.Ratio=ADC_OVERSAMPLING_RATIO_256
ADC1.RightBitShift=ADC_RIGHTBITSHIFT_4
ADC1.SamplingTime-0\#ChannelRegularConversion=ADC_SAMPLETIME_640CYCLES_5
ADC1.SamplingTime-1\#ChannelRegularConversion=ADC_SAMPLETIME_640CYCLES_5
ADC1.SamplingTime-2\#ChannelRegularConversion=ADC_SAMPLETIME_640CYCLES_5