add ANPI to VARH

This commit is contained in:
2021-12-17 17:30:41 +01:00
parent 0a2750f3b6
commit 5dc13acb5c
5 changed files with 54 additions and 147 deletions

View File

@ -228,18 +228,9 @@ PRIVATE VOID vMainTask( PVOID arg )
if( u32Flags & EVENT_NEW_MESSAGE ) {
CAND_Message stMessage;
osMessageQueueGet( m_pstCANRxMsgQueueID, &stMessage, NULL, 0 );
osMessageQueueGet( m_pstCANRxMsgQueueID, &stMessage, NULL, 0 );
if(stMessage.u8Id == 0x10){
S16 ControlVoltage = ((S16)(ANPI_flGetInputValue(ANPI_eControlVoltage)*1000));
au8Buffer[0] = (ControlVoltage & 0xFF00) >> 8;
au8Buffer[1] = ControlVoltage & 0xFF;
CAND_boSendMessage(0x11, 2, au8Buffer);
} else if(stMessage.u8Id == 0x12){
if(stMessage.u8Id == 0x12){
S16 s16Voltage = stMessage.au8Data[0] << 8;
s16Voltage |= stMessage.au8Data[1];
@ -247,15 +238,10 @@ PRIVATE VOID vMainTask( PVOID arg )
} else if(stMessage.u8Id == 0x13){
S16 SupplyVoltage24V = ((S16)(ANPI_flGetInputValue(ANPI_eSupplyVoltage24V)*1000));
S16 SupplyCurrent24V = ((S16)(ANPI_flGetInputValue(ANPI_eSupplyCurrent24V)*1000));
S16 OutputVoltage = ((S16)(ANPI_flGetInputValue(ANPI_eOutputVoltage)*1000));
S16 OutputCurrent = ((S16)(ANPI_flGetInputValue(ANPI_eOutputCurrent)*1000));
/*U16 SupplyVoltage24V = ANPI_flGetInputValue(ANPI_eSupplyVoltage24V);
U16 SupplyCurrent24V = ANPI_flGetInputValue(ANPI_eSupplyCurrent24V);
U16 OutputVoltage = ANPI_flGetInputValue(ANPI_eOutputVoltage);
U16 OutputCurrent = ANPI_flGetInputValue(ANPI_eOutputCurrent);*/
S16 SupplyVoltage24V = ((S16)(VARH_uGetVariableData(VARH_eSupply_U).flVal*1000));
S16 SupplyCurrent24V = ((S16)(VARH_uGetVariableData(VARH_eSupply_I).flVal*1000));
S16 OutputVoltage = ((S16)(VARH_uGetVariableData(VARH_ePeltier_U).flVal*1000));
S16 OutputCurrent = ((S16)(VARH_uGetVariableData(VARH_ePeltier_I).flVal*1000));
au8Buffer[0] = (SupplyVoltage24V & 0xFF00) >> 8;
au8Buffer[1] = SupplyVoltage24V & 0xFF;
@ -270,7 +256,7 @@ PRIVATE VOID vMainTask( PVOID arg )
} else if(stMessage.u8Id == 0x15){
S16 Cold = (S16)(VARH_uGetVariableData(VARH_eTemp_C).flVal*100);
S16 Cold = (S16)(VARH_uGetVariableData(VARH_eTemp_C).flVal*100);
S16 Hot = (S16)(VARH_uGetVariableData(VARH_eTemp_H).flVal*100);
au8Buffer[0] = (Cold & 0xFF00) >> 8;

View File

@ -164,6 +164,7 @@ VOID VARH_vSetVariableData( U8 u8Variable, VARH_UVariable uData )
//-------------------------------------------------------------------------------------------------
// Function: VARH_vSetVariableDataFromSystem
// Description: Sets the Variable Data from System
// Use only internal, not for User!
// Parameters: U8 u8Variable
// VARH_UVariable uData
// Returns: None

View File

@ -23,8 +23,6 @@
//
//=================================================================================================
//=================================================================================================
// Section: INCLUDES
// Description: List of required include files.
@ -33,10 +31,13 @@
#include "../PDEF_ProjectDefinitions.h"
#include "ANPI_AnalogPortsIn.h"
#include "PECO_PeltierController.h"
//Application
//#include "../Application/ELOG_ErrorLogger.h"
#include "../Application/VARH_VariableHandler.h"
// Drivers
#include "PECO_PeltierController.h"
// Toolbox
#include "../Toolbox/UTIL_Utility.h"
@ -64,8 +65,8 @@
#define ANPI_FLAGS_ALL ( ANPI_ADC_HALF_COMPLETE | ANPI_ADC_FULL_COMPLETE )
#define OVERSAMPLING_DIVISOR 16.0f // calculated with parameters from hardware oversampling
// 6 bits(64x) - 2 bit shift = 4bit -> 16x
#define OVERSAMPLING_DIVISOR 16.0f // calculated with parameters from hardware oversampling
// 6 bits(64x) - 2 bit shift = 4bit -> 16x
//=================================================================================================
// Section: MACROS
@ -96,8 +97,6 @@ typedef struct
// Description: Definition of local variables (visible by this module only).
//=================================================================================================
LOCAL FLOAT m_aflValues[ANPI_eInNumberOfInputs]; // values
LOCAL U16 m_au16ADCDataBuffer[BUFFER_SIZE];
LOCAL osThreadId_t m_pstThreadID = NULL;
@ -113,8 +112,7 @@ LOCAL osMutexId_t m_pstMutexID = NULL;
// Order must fit enumeration "ANPI_EnAnalogInput"
LOCAL CONST FLOAT m_aflConversionFactor[ANPI_eInNumberOfInputs] =
{
34.103f * 1.0f / ADC_RES * INT_ADC_REF, // 00 ANPI_eControlVoltage
10, // 01 ANPI_eSupplyVoltage24V
10, // 01 ANPI_eSupplyVoltage24V
-5, // 02 ANPI_eSupplyCurrent24V
10, // 03 ANPI_eOutputVoltage
5, // 04 ANPI_eOutputCurrent
@ -123,7 +121,6 @@ LOCAL CONST FLOAT m_aflConversionFactor[ANPI_eInNumberOfInputs] =
// Order must fit enumeration "ANPI_EnAnalogInput"
LOCAL CONST FLOAT m_aflOffset[ANPI_eInNumberOfInputs] =
{
20.088f, // 00 ANPI_eControlVoltage
0.0f, // 01 ANPI_eSupplyVoltage24V
2.5f, // 02 ANPI_eSupplyCurrent24V
4.5f, // 03 ANPI_eOutputVoltage
@ -133,7 +130,6 @@ LOCAL CONST FLOAT m_aflOffset[ANPI_eInNumberOfInputs] =
// initial values. Order must fit enumeration "ANPI_EnAnalogInput"
LOCAL CONST FLOAT m_afInitValues[ANPI_eInNumberOfInputs] =
{
0.0f, // 00 ANPI_eControlVoltage
0.0f, // 01 ANPI_eSupplyVoltage24V
0.0f, // 02 ANPI_eSupplyCurrent24V
0.0f, // 03 ANPI_eOutputVoltage
@ -147,7 +143,6 @@ LOCAL CONST StADCInit m_astADCInit[1] =
{ADC1}, // 00 eADC1
};
// inputs are connected to the following ADCs
// ANPI_eControlVoltage ADC1, Channel 8
// ANPI_eSupplyVoltage24V ADC1, Channel 6
// ANPI_eSupplyCurrent24V ADC1, Channel 16
// ANPI_eOutputVoltage ADC1, Channel 7
@ -203,7 +198,6 @@ PRIVATE VOID ANPI_vTask( PVOID arg );
extern ADC_HandleTypeDef hadc1;
//=================================================================================================
// Section: GLOBAL FUNCTIONS
// Description: Definition (implementation) of global functions.
@ -241,7 +235,8 @@ VOID ANPI_vTask( PVOID arg )
U32 u32Flags;
U16 u16Offset;
FLOAT flUadc;
U32 m_au32ADCRawData[ANPI_eInNumberOfInputs];
U32 au32ADCRawData[ANPI_eInNumberOfInputs];
FLOAT aflValues[ANPI_eInNumberOfInputs]; // values
osDelay( 1 ); // Wait 1ms to have a Valid Value
@ -260,15 +255,24 @@ VOID ANPI_vTask( PVOID arg )
// copy the values in the buffer...
for(U16 u16Cnt = 0; u16Cnt < BUFFER_HALF_SIZE; u16Cnt++ )
m_au32ADCRawData[ u16Cnt ] = m_au16ADCDataBuffer[u16Cnt + u16Offset];
au32ADCRawData[ u16Cnt ] = m_au16ADCDataBuffer[u16Cnt + u16Offset];
// multiply conversion factor and add the offset
for(U16 u16Cnt = 0; u16Cnt < ANPI_eInNumberOfInputs; u16Cnt++ )
{
flUadc = (FLOAT)m_au32ADCRawData[u16Cnt] / OVERSAMPLING_DIVISOR / ADC_RES * INT_ADC_REF;
m_aflValues[u16Cnt] = flUadc * m_aflConversionFactor[u16Cnt] - m_aflOffset[u16Cnt];
flUadc = (FLOAT)au32ADCRawData[u16Cnt] / OVERSAMPLING_DIVISOR / ADC_RES * INT_ADC_REF;
aflValues[u16Cnt] = flUadc * m_aflConversionFactor[u16Cnt] - m_aflOffset[u16Cnt];
}
VARH_vSetVariableDataFromSystem(VARH_ePeltier_U, (VARH_UVariable)aflValues[ANPI_eOutputVoltage]);
VARH_vSetVariableDataFromSystem(VARH_ePeltier_I, (VARH_UVariable)aflValues[ANPI_eOutputCurrent]);
VARH_vSetVariableDataFromSystem(VARH_ePeltier_R, (VARH_UVariable)(aflValues[ANPI_eOutputVoltage] / aflValues[ANPI_eOutputCurrent]));
VARH_vSetVariableDataFromSystem(VARH_ePeltier_R, (VARH_UVariable)(aflValues[ANPI_eOutputVoltage] * aflValues[ANPI_eOutputCurrent]));
VARH_vSetVariableDataFromSystem(VARH_eSupply_U, (VARH_UVariable)aflValues[ANPI_eSupplyVoltage24V]);
VARH_vSetVariableDataFromSystem(VARH_eSupply_I, (VARH_UVariable)aflValues[ANPI_eSupplyCurrent24V]);
VARH_vSetVariableDataFromSystem(VARH_eSupply_P, (VARH_UVariable)(aflValues[ANPI_eSupplyVoltage24V] * aflValues[ANPI_eSupplyCurrent24V]));
osMutexRelease( m_pstMutexID ); // release mutex
}
}
@ -293,23 +297,6 @@ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
osEventFlagsSet( m_pstEventID, ANPI_ADC_HALF_COMPLETE );
}
//-------------------------------------------------------------------------------------------------
// Function: ANPI_flGetInputValue
// Description: Gets the value of the analog input
// Parameters: ANPI_EnAnalogInput enInput Analog input to read
// Returns: FLOAT flValue Value from ADC in V
//-------------------------------------------------------------------------------------------------
FLOAT ANPI_flGetInputValue( ANPI_EnAnalogInput enInput )
{
osMutexAcquire( m_pstMutexID, osWaitForever ); // aquire mutex
FLOAT flValue = m_aflValues[enInput];
osMutexRelease( m_pstMutexID ); // release mutex
return( flValue );
}
//=================================================================================================
@ -334,19 +321,20 @@ void HAL_ADC_ErrorCallback( ADC_HandleTypeDef* hadc )
{
}
if( hadc->ErrorCode == HAL_ADC_ERROR_OVR )
{
//ELOG_ADDLOG( ELOG_eADCOverrunError, NULL );
}
if( hadc->ErrorCode == HAL_ADC_ERROR_DMA )
{
// ELOG_ADDLOG( ELOG_eDMAHTransferError, NULL );
}
if( hadc->ErrorCode == HAL_ADC_ERROR_DMA )
{
}
// check rx dma transfer error
if( hadc->DMA_Handle->ErrorCode & HAL_DMA_ERROR_TE )
{
// ELOG_ADDLOG( ELOG_eDMAHTransferError, NULL );
}
}

View File

@ -58,11 +58,10 @@ extern "C" {
typedef enum
{
ANPI_eControlVoltage = 0, // 00 control Voltage
ANPI_eSupplyVoltage24V = 1, // 01 voltage of 24V power supply
ANPI_eSupplyCurrent24V = 2, // 02 current of 24V power supply
ANPI_eOutputVoltage = 3, // 03 output voltage peltier element
ANPI_eOutputCurrent = 4, // 04 output current peltier element
ANPI_eSupplyVoltage24V = 0, // voltage of 24V power supply
ANPI_eSupplyCurrent24V = 1, // current of 24V power supply
ANPI_eOutputVoltage = 2, // output voltage peltier element
ANPI_eOutputCurrent = 3, // output current peltier element
ANPI_eInNumberOfInputs, // Must be last entry
} ANPI_EnAnalogInput;
@ -95,7 +94,6 @@ typedef enum
//=================================================================================================
BOOL ANPI_boInitializeModule( VOID );
FLOAT ANPI_flGetInputValue( ANPI_EnAnalogInput enInput );
#ifdef __cplusplus
}

View File

@ -23,36 +23,26 @@
//
//=================================================================================================
//=================================================================================================
// Section: INCLUDES
// Description: List of required include files.
//=================================================================================================
#include "../Application/VARH_VariableHandler.h"
#include "../PDEF_ProjectDefinitions.h"
#include "TEMP_Temperature.h"
// Application
//#include "../Application/ELOG_ErrorLogger.h"
//#include "../Application/RTOS_RealTimeOs.h"
#include "../Application/VARH_VariableHandler.h"
// Toolbox
//#include "../Toolbox/ASRT_Assert.h"
#include "../Toolbox/UTIL_Utility.h"
// Drivers
#include "DIPO_DigitalPorts.h"
#include "SPID_SpiDriver.h"
#include "ADCD_ADCDriver.h"
// include STM32 drivers
#include "stm32l4xx_hal.h"
#include <math.h>
#include "cmsis_os2.h"
//=================================================================================================
@ -90,7 +80,6 @@ PRIVATE VOID vTempTask( PVOID arg );
// Description: Definition of local constants (visible by this module only).
//=================================================================================================
LOCAL CONST osThreadAttr_t stTaskAttribute =
{
"TEMP_Thread", // name of the thread
@ -116,15 +105,11 @@ LOCAL osThreadId_t m_pstThreadID = NULL;
// Description: Definition of external (global) functions.
//=================================================================================================
//=================================================================================================
// Section: EXTERNAL VARIABLES
// Description: Definition of external (global) variables.
//=================================================================================================
//=================================================================================================
// Section: GLOBAL FUNCTIONS
// Description: Definition (implementation) of global functions.
@ -171,70 +156,19 @@ PRIVATE VOID vTempTask( PVOID arg )
while( TRUE )
{
boOK &= ADCD_dReadData(ADCD_eHot, &error, &u16ADC_data[ADCD_eHot]);
boOK &= ADCD_dReadData(ADCD_eCold, &error, &u16ADC_data[ADCD_eCold]);
if( boOK )
{
flTempData[ADCD_eHot] = flConvertADCData( u16ADC_data[ADCD_eHot] );
flTempData[ADCD_eCold] = flConvertADCData( u16ADC_data[ADCD_eCold] );
VARH_vSetVariableDataFromSystem( VARH_eTemp_H, (VARH_UVariable)flTempData[ADCD_eHot] );
VARH_vSetVariableDataFromSystem( VARH_eTemp_C, (VARH_UVariable)flTempData[ADCD_eCold] );
VARH_vSetVariableDataFromSystem( VARH_eTemp_Diff, (VARH_UVariable)(flTempData[ADCD_eHot] - flTempData[ADCD_eCold]) );
//u32Flags = osEventFlagsWait( m_pstEventID, EVENT_REFRESH, osFlagsWaitAny, osWaitForever );
//if( u32Flags & EVENT_REFRESH )
//{
boOK &= ADCD_dReadData(ADCD_eHot, &error, &u16ADC_data[ADCD_eHot]);
boOK &= ADCD_dReadData(ADCD_eCold, &error, &u16ADC_data[ADCD_eCold]);
if( boOK )
{
flTempData[ADCD_eHot] = flConvertADCData( u16ADC_data[ADCD_eHot] );
flTempData[ADCD_eCold] = flConvertADCData( u16ADC_data[ADCD_eCold] );
VARH_vSetVariableData( VARH_eTemp_H, (VARH_UVariable)flTempData[ADCD_eHot] );
VARH_vSetVariableData( VARH_eTemp_C, (VARH_UVariable)flTempData[ADCD_eCold] );
VARH_vSetVariableData( VARH_eTemp_Diff, (VARH_UVariable)(flTempData[ADCD_eHot] - flTempData[ADCD_eCold]) );
}
//}
}
osDelay(REFRESH_MS);
// wait for ADC conversions completed
// u32Flags = osEventFlagsWait( m_pstEventID, OS_EVENT_ADC_COMPLETED_FLAG, osFlagsWaitAll , ADC_TIMEOUT_MS );
// boTimeout = (u32Flags == osFlagsErrorTimeout) ? TRUE : FALSE;
// boError = FALSE;
//
// // check if we have a timeout
// if( boTimeout )
// {
// //ELOG_ADD_LOG( ELOG_eADCTimeout );
// }
//
// // read ADC data
// if( !(boSuccess = boReadADCData() ) )
// {
// //ELOG_ADD_LOG( ELOG_eADCReadingDataFailed );
// }
//// vIncrementChannel();
//
// // reinit ADC on error, on spi failure or when timeout reached
// if( boTimeout || !boSuccess )
// {
// boError = TRUE;
//// vADCInit();
// }
// // send event to worker task, if all channels completed and no error
// if( m_stADCData.u8Cannel == 0 && !boError )
// {
// // send event to tasks
// for( U16 u16Cnt = 0; u16Cnt < NUMBER_OF_EVENT_CALLBACKS; u16Cnt++ )
// {
// if( m_apfnEventCallback[u16Cnt] != NULL )
// {
// m_apfnEventCallback[u16Cnt]( m_apvCallbackArgument[u16Cnt] );
// }
// }
// }
}
}