add ANPI to VARH

This commit is contained in:
2021-12-17 17:30:41 +01:00
parent 0a2750f3b6
commit 5dc13acb5c
5 changed files with 54 additions and 147 deletions

View File

@ -23,8 +23,6 @@
//
//=================================================================================================
//=================================================================================================
// Section: INCLUDES
// Description: List of required include files.
@ -33,10 +31,13 @@
#include "../PDEF_ProjectDefinitions.h"
#include "ANPI_AnalogPortsIn.h"
#include "PECO_PeltierController.h"
//Application
//#include "../Application/ELOG_ErrorLogger.h"
#include "../Application/VARH_VariableHandler.h"
// Drivers
#include "PECO_PeltierController.h"
// Toolbox
#include "../Toolbox/UTIL_Utility.h"
@ -64,8 +65,8 @@
#define ANPI_FLAGS_ALL ( ANPI_ADC_HALF_COMPLETE | ANPI_ADC_FULL_COMPLETE )
#define OVERSAMPLING_DIVISOR 16.0f // calculated with parameters from hardware oversampling
// 6 bits(64x) - 2 bit shift = 4bit -> 16x
#define OVERSAMPLING_DIVISOR 16.0f // calculated with parameters from hardware oversampling
// 6 bits(64x) - 2 bit shift = 4bit -> 16x
//=================================================================================================
// Section: MACROS
@ -96,8 +97,6 @@ typedef struct
// Description: Definition of local variables (visible by this module only).
//=================================================================================================
LOCAL FLOAT m_aflValues[ANPI_eInNumberOfInputs]; // values
LOCAL U16 m_au16ADCDataBuffer[BUFFER_SIZE];
LOCAL osThreadId_t m_pstThreadID = NULL;
@ -113,8 +112,7 @@ LOCAL osMutexId_t m_pstMutexID = NULL;
// Order must fit enumeration "ANPI_EnAnalogInput"
LOCAL CONST FLOAT m_aflConversionFactor[ANPI_eInNumberOfInputs] =
{
34.103f * 1.0f / ADC_RES * INT_ADC_REF, // 00 ANPI_eControlVoltage
10, // 01 ANPI_eSupplyVoltage24V
10, // 01 ANPI_eSupplyVoltage24V
-5, // 02 ANPI_eSupplyCurrent24V
10, // 03 ANPI_eOutputVoltage
5, // 04 ANPI_eOutputCurrent
@ -123,7 +121,6 @@ LOCAL CONST FLOAT m_aflConversionFactor[ANPI_eInNumberOfInputs] =
// Order must fit enumeration "ANPI_EnAnalogInput"
LOCAL CONST FLOAT m_aflOffset[ANPI_eInNumberOfInputs] =
{
20.088f, // 00 ANPI_eControlVoltage
0.0f, // 01 ANPI_eSupplyVoltage24V
2.5f, // 02 ANPI_eSupplyCurrent24V
4.5f, // 03 ANPI_eOutputVoltage
@ -133,7 +130,6 @@ LOCAL CONST FLOAT m_aflOffset[ANPI_eInNumberOfInputs] =
// initial values. Order must fit enumeration "ANPI_EnAnalogInput"
LOCAL CONST FLOAT m_afInitValues[ANPI_eInNumberOfInputs] =
{
0.0f, // 00 ANPI_eControlVoltage
0.0f, // 01 ANPI_eSupplyVoltage24V
0.0f, // 02 ANPI_eSupplyCurrent24V
0.0f, // 03 ANPI_eOutputVoltage
@ -147,7 +143,6 @@ LOCAL CONST StADCInit m_astADCInit[1] =
{ADC1}, // 00 eADC1
};
// inputs are connected to the following ADCs
// ANPI_eControlVoltage ADC1, Channel 8
// ANPI_eSupplyVoltage24V ADC1, Channel 6
// ANPI_eSupplyCurrent24V ADC1, Channel 16
// ANPI_eOutputVoltage ADC1, Channel 7
@ -203,7 +198,6 @@ PRIVATE VOID ANPI_vTask( PVOID arg );
extern ADC_HandleTypeDef hadc1;
//=================================================================================================
// Section: GLOBAL FUNCTIONS
// Description: Definition (implementation) of global functions.
@ -241,7 +235,8 @@ VOID ANPI_vTask( PVOID arg )
U32 u32Flags;
U16 u16Offset;
FLOAT flUadc;
U32 m_au32ADCRawData[ANPI_eInNumberOfInputs];
U32 au32ADCRawData[ANPI_eInNumberOfInputs];
FLOAT aflValues[ANPI_eInNumberOfInputs]; // values
osDelay( 1 ); // Wait 1ms to have a Valid Value
@ -260,15 +255,24 @@ VOID ANPI_vTask( PVOID arg )
// copy the values in the buffer...
for(U16 u16Cnt = 0; u16Cnt < BUFFER_HALF_SIZE; u16Cnt++ )
m_au32ADCRawData[ u16Cnt ] = m_au16ADCDataBuffer[u16Cnt + u16Offset];
au32ADCRawData[ u16Cnt ] = m_au16ADCDataBuffer[u16Cnt + u16Offset];
// multiply conversion factor and add the offset
for(U16 u16Cnt = 0; u16Cnt < ANPI_eInNumberOfInputs; u16Cnt++ )
{
flUadc = (FLOAT)m_au32ADCRawData[u16Cnt] / OVERSAMPLING_DIVISOR / ADC_RES * INT_ADC_REF;
m_aflValues[u16Cnt] = flUadc * m_aflConversionFactor[u16Cnt] - m_aflOffset[u16Cnt];
flUadc = (FLOAT)au32ADCRawData[u16Cnt] / OVERSAMPLING_DIVISOR / ADC_RES * INT_ADC_REF;
aflValues[u16Cnt] = flUadc * m_aflConversionFactor[u16Cnt] - m_aflOffset[u16Cnt];
}
VARH_vSetVariableDataFromSystem(VARH_ePeltier_U, (VARH_UVariable)aflValues[ANPI_eOutputVoltage]);
VARH_vSetVariableDataFromSystem(VARH_ePeltier_I, (VARH_UVariable)aflValues[ANPI_eOutputCurrent]);
VARH_vSetVariableDataFromSystem(VARH_ePeltier_R, (VARH_UVariable)(aflValues[ANPI_eOutputVoltage] / aflValues[ANPI_eOutputCurrent]));
VARH_vSetVariableDataFromSystem(VARH_ePeltier_R, (VARH_UVariable)(aflValues[ANPI_eOutputVoltage] * aflValues[ANPI_eOutputCurrent]));
VARH_vSetVariableDataFromSystem(VARH_eSupply_U, (VARH_UVariable)aflValues[ANPI_eSupplyVoltage24V]);
VARH_vSetVariableDataFromSystem(VARH_eSupply_I, (VARH_UVariable)aflValues[ANPI_eSupplyCurrent24V]);
VARH_vSetVariableDataFromSystem(VARH_eSupply_P, (VARH_UVariable)(aflValues[ANPI_eSupplyVoltage24V] * aflValues[ANPI_eSupplyCurrent24V]));
osMutexRelease( m_pstMutexID ); // release mutex
}
}
@ -293,23 +297,6 @@ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
osEventFlagsSet( m_pstEventID, ANPI_ADC_HALF_COMPLETE );
}
//-------------------------------------------------------------------------------------------------
// Function: ANPI_flGetInputValue
// Description: Gets the value of the analog input
// Parameters: ANPI_EnAnalogInput enInput Analog input to read
// Returns: FLOAT flValue Value from ADC in V
//-------------------------------------------------------------------------------------------------
FLOAT ANPI_flGetInputValue( ANPI_EnAnalogInput enInput )
{
osMutexAcquire( m_pstMutexID, osWaitForever ); // aquire mutex
FLOAT flValue = m_aflValues[enInput];
osMutexRelease( m_pstMutexID ); // release mutex
return( flValue );
}
//=================================================================================================
@ -334,19 +321,20 @@ void HAL_ADC_ErrorCallback( ADC_HandleTypeDef* hadc )
{
}
if( hadc->ErrorCode == HAL_ADC_ERROR_OVR )
{
//ELOG_ADDLOG( ELOG_eADCOverrunError, NULL );
}
if( hadc->ErrorCode == HAL_ADC_ERROR_DMA )
{
// ELOG_ADDLOG( ELOG_eDMAHTransferError, NULL );
}
if( hadc->ErrorCode == HAL_ADC_ERROR_DMA )
{
}
// check rx dma transfer error
if( hadc->DMA_Handle->ErrorCode & HAL_DMA_ERROR_TE )
{
// ELOG_ADDLOG( ELOG_eDMAHTransferError, NULL );
}
}