mirror of
https://gitea.psi.ch/APOG/acsmnode.git
synced 2025-06-29 04:40:48 +02:00
168 lines
5.0 KiB
Plaintext
168 lines
5.0 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Data integration workflow of experimental campaign\n",
|
|
"\n",
|
|
"In this notebook, we will go through a our data integration workflow. This involves the following steps:\n",
|
|
"\n",
|
|
"1. Specify data integration file through YAML configuration file.\n",
|
|
"2. Create an integrated HDF5 file of experimental campaign from configuration file.\n",
|
|
"3. Display the created HDF5 file using a treemap\n",
|
|
"\n",
|
|
"## Import libraries and modules\n",
|
|
"\n",
|
|
"* Excecute (or Run) the Cell below"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"import os\n",
|
|
"# Set up project root directory\n",
|
|
"root_dir = os.path.abspath(os.curdir)\n",
|
|
"sys.path.append(root_dir)\n",
|
|
"sys.path.append(os.path.join(root_dir,'dima'))\n",
|
|
"#sys.path.append(os.path.join(root_dir,'dima','instruments'))\n",
|
|
"#sys.path.append(os.path.join(root_dir,'dima','src'))\n",
|
|
"#sys.path.append(os.path.join(root_dir,'dima','utils'))\n",
|
|
"\n",
|
|
"import dima.src.hdf5_vis as hdf5_vis\n",
|
|
"import dima.pipelines.data_integration as dilib\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Step 1: Specify data integration task through YAML configuration file\n",
|
|
"\n",
|
|
"* Create your configuration file (i.e., *.yaml file) adhering to the example yaml file in the input folder.\n",
|
|
"* Set up input directory and output directory paths and Excecute Cell.\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"yaml_config_file_path = 'dima_config.yaml'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Step 2: Create an integrated HDF5 file of experimental campaign.\n",
|
|
"\n",
|
|
"* Excecute Cell. Here we run the function `integrate_data_sources` with input argument as the previously specified YAML config file."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"hdf5_file_path = dilib.integrate_data_sources(yaml_config_file_path)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Display integrated HDF5 file using a treemap\n",
|
|
"\n",
|
|
"* Excecute Cell. A visual representation in html format of the integrated file should be displayed and stored in the output directory folder"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"if isinstance(hdf5_file_path ,list):\n",
|
|
" for path_item in hdf5_file_path :\n",
|
|
" hdf5_vis.display_group_hierarchy_on_a_treemap(path_item)\n",
|
|
"else:\n",
|
|
" hdf5_vis.display_group_hierarchy_on_a_treemap(hdf5_file_path)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import dima.pipelines.metadata_revision as metadata\n",
|
|
"\n",
|
|
"import dima.src.hdf5_ops as h5de\n",
|
|
"\n",
|
|
"channels1 = ['Chl_11000','NH4_11000','SO4_11000','NO3_11000','Org_11000']\n",
|
|
"channels2 = ['FilamentEmission_mA','VaporizerTemp_C','FlowRate_mb','ABsamp']\n",
|
|
"\n",
|
|
"target_channels = {'location':'ACSM_TOFWARE/ACSM_JFJ_2024_JantoFeb_timeseries.txt/data_table',\n",
|
|
" 'names': ','.join(['t_start_Buf','Chl_11000','NH4_11000','SO4_11000','NO3_11000','Org_11000'])\n",
|
|
" }\n",
|
|
"diagnostic_channels = {'location':'ACSM_TOFWARE/ACSM_JFJ_2024_JantoFeb_meta.txt/data_table',\n",
|
|
" 'names': ','.join(['t_base','FilamentEmission_mA','VaporizerTemp_C','FlowRate_mb','ABsamp'])}\n",
|
|
"\n",
|
|
"DataOpsAPI = h5de.HDF5DataOpsManager(hdf5_file_path[0])\n",
|
|
"\n",
|
|
"DataOpsAPI.load_file_obj()\n",
|
|
"DataOpsAPI.append_metadata('/ACSM_TOFWARE/',{'target_channels' : target_channels, 'diagnostic_channels' : diagnostic_channels})\n",
|
|
"\n",
|
|
"DataOpsAPI.reformat_datetime_column('ACSM_TOFWARE/ACSM_JFJ_2024_JantoFeb_timeseries.txt/data_table','t_start_Buf',src_format='%d.%m.%Y %H:%M:%S.%f')\n",
|
|
"DataOpsAPI.reformat_datetime_column('ACSM_TOFWARE/ACSM_JFJ_2024_JantoFeb_meta.txt/data_table','t_base',src_format='%d.%m.%Y %H:%M:%S')\n",
|
|
"\n",
|
|
"DataOpsAPI.unload_file_obj()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "multiphase_chemistry_env",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.9"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|