mirror of
https://gitea.psi.ch/APOG/acsm-fairifier.git
synced 2025-07-05 07:34:50 +02:00
193 lines
7.7 KiB
Python
193 lines
7.7 KiB
Python
|
|
import dima.src.hdf5_ops as dataOps
|
|
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import plotly.graph_objects as go
|
|
def visualize_table_variables(data_file_path, dataset_name, flags_dataset_name, x_var, y_vars, yaxis_range_dict = {'FlowRate_ccs' : [0,100]}):
|
|
|
|
|
|
|
|
if not os.path.exists(data_file_path):
|
|
raise ValueError(f"Path to input file {data_file_path} does not exists. The parameter 'data_file_path' must be a valid path to a suitable HDF5 file. ")
|
|
APPEND_DIR = os.path.splitext(data_file_path)[0]
|
|
if not os.path.exists(APPEND_DIR):
|
|
APPEND_DIR = None
|
|
|
|
# Create data manager object
|
|
dataManager = dataOps.HDF5DataOpsManager(data_file_path)
|
|
|
|
try:
|
|
# Load the dataset
|
|
dataManager.load_file_obj()
|
|
dataset_df = dataManager.extract_dataset_as_dataframe(dataset_name)
|
|
except Exception as e:
|
|
print(f"Exception occurred while loading dataset: {e}")
|
|
finally:
|
|
# Unload file object to free resources
|
|
dataManager.unload_file_obj()
|
|
|
|
# Flags dataset loading and processing
|
|
try:
|
|
# Re-load the file for flags dataset
|
|
dataManager.load_file_obj()
|
|
flags_df = dataManager.extract_dataset_as_dataframe(flags_dataset_name)
|
|
|
|
# Ensure the time variable exists in both datasets
|
|
if x_var not in dataset_df.columns and x_var not in flags_df.columns:
|
|
raise ValueError(f"Invalid x_var: {x_var}. x_var must exist in both {dataset_name} and {flags_dataset_name}.")
|
|
|
|
# Convert the x_var column to datetime in flags_df
|
|
flags_df[x_var] = pd.to_datetime(flags_df[x_var].apply(lambda x: x.decode(encoding="utf-8")))
|
|
except Exception as e:
|
|
dataManager.unload_file_obj()
|
|
# If loading from the file fails, attempt alternative path
|
|
if APPEND_DIR:
|
|
# Remove 'data_table' part from the path for alternate location
|
|
if 'data_table' in flags_dataset_name:
|
|
flags_dataset_name_parts = flags_dataset_name.split(sep='/')
|
|
flags_dataset_name_parts.remove('data_table')
|
|
|
|
# Remove existing extension and append .csv
|
|
base_path = os.path.join(APPEND_DIR, '/'.join(flags_dataset_name_parts))
|
|
alternative_path = os.path.splitext(base_path)[0] + '_flags.csv'
|
|
|
|
# Attempt to read CSV
|
|
if not os.path.exists(alternative_path):
|
|
raise FileNotFoundError(
|
|
f"File not found at {alternative_path}. Ensure there are flags associated with {data_file_path}."
|
|
)
|
|
flags_df = pd.read_csv(alternative_path)
|
|
|
|
# Ensure the time variable exists in both datasets
|
|
if x_var not in dataset_df.columns and x_var not in flags_df.columns:
|
|
raise ValueError(f"Invalid x_var: {x_var}. x_var must exist in both {dataset_name} and {flags_dataset_name}.")
|
|
|
|
# Apply datetime conversion on the x_var column in flags_df
|
|
flags_df[x_var] = pd.to_datetime(flags_df[x_var].apply(lambda x: x))
|
|
finally:
|
|
# Ensure file object is unloaded after use
|
|
dataManager.unload_file_obj()
|
|
|
|
|
|
#if x_var not in dataset_df.columns and x_var not in flags_df.columns:
|
|
# raise ValueError(f'Invalid x_var : {x_var}. x_var must refer to a time variable name that is both in {dataset_name} and {flags_dataset_name}')
|
|
|
|
#flags_df[x_var] = pd.to_datetime(flags_df[x_var].apply(lambda x : x.decode(encoding="utf-8")))
|
|
|
|
#dataManager.unload_file_obj()
|
|
|
|
if not all(var in dataset_df.columns for var in y_vars):
|
|
raise ValueError(f'Invalid y_vars : {y_vars}. y_vars must be a subset of {dataset_df.columns}.')
|
|
|
|
#fig, ax = plt.subplots(len(y_vars), 1, figsize=(12, 5))
|
|
|
|
figs = [] # store each figure
|
|
for var_idx, var in enumerate(y_vars):
|
|
#y = dataset_df[var].to_numpy()
|
|
|
|
# Plot Flow Rate
|
|
#fig = plt.figure(var_idx,figsize=(12, 2.5))
|
|
#ax = plt.gca()
|
|
#ax.plot(dataset_df[x_var], dataset_df[var], label=var, alpha=0.8, color='tab:blue')
|
|
|
|
fig = go.Figure()
|
|
# Main line plot
|
|
fig.add_trace(go.Scatter(
|
|
x=dataset_df[x_var],
|
|
y=dataset_df[var],
|
|
mode='lines',
|
|
name=var,
|
|
line=dict(color='blue'),
|
|
opacity=0.8
|
|
))
|
|
|
|
|
|
# Specify flag name associated with var name in y_vars. By construction, it is assumed the name satisfy the following sufix convention.
|
|
var_flag_name = f"flag_{var}"
|
|
if var_flag_name in flags_df.columns:
|
|
|
|
# Identify valid and invalid indices
|
|
ind_invalid = flags_df[var_flag_name].to_numpy()
|
|
# ind_valid = np.logical_not(ind_valid)
|
|
# Detect start and end indices of invalid regions
|
|
# Find transition points in invalid regions
|
|
invalid_starts = np.diff(np.concatenate(([False], ind_invalid, [False]))).nonzero()[0][::2]
|
|
invalid_ends = np.diff(np.concatenate(([False], ind_invalid, [False]))).nonzero()[0][1::2]
|
|
|
|
# Fill invalid regions
|
|
t_base = dataset_df[x_var] #.to_numpy()
|
|
|
|
y_min, y_max = dataset_df[var].min(), dataset_df[var].max()
|
|
max_idx = len(t_base) - 1 # maximum valid index
|
|
|
|
for start, end in zip(invalid_starts, invalid_ends):
|
|
|
|
if start >= end:
|
|
print(f"Warning: Skipping invalid interval — start ({start}) >= end ({end})")
|
|
continue # Clip start and end to valid index range
|
|
start = max(0, start)
|
|
end = min(end, max_idx)
|
|
|
|
|
|
#ax.fill_betweenx([dataset_df[var].min(), dataset_df[var].max()], t_base[start], t_base[end],
|
|
# color='red', alpha=0.3, label="Invalid Data" if start == invalid_starts[0] else "")
|
|
# start = max(0, start)
|
|
|
|
|
|
fig.add_shape(
|
|
type="rect",
|
|
x0=t_base[start], x1=t_base[end],
|
|
y0=y_min, y1=y_max,
|
|
fillcolor="red",
|
|
opacity=0.3,
|
|
line_width=0,
|
|
layer="below"
|
|
)
|
|
# Add a dummy invisible trace just for the legend
|
|
fig.add_trace(go.Scatter(
|
|
x=[None], y=[None],
|
|
mode='markers',
|
|
marker=dict(size=10, color='red', opacity=0.3),
|
|
name='Invalid Region'
|
|
))
|
|
|
|
# Labels and Legends
|
|
#ax.set_xlabel(x_var)
|
|
#ax.set_ylabel(var)
|
|
#ax.legend()
|
|
#ax.grid(True)
|
|
|
|
#plt.tight_layout()
|
|
#plt.show()
|
|
|
|
#return fig, ax
|
|
if var in yaxis_range_dict:
|
|
y_axis_range = yaxis_range_dict[var]
|
|
else:
|
|
y_axis_range = [dataset_df[var].min(), dataset_df[var].max()]
|
|
|
|
print('y axis range:',y_axis_range)
|
|
|
|
# Add layout
|
|
fig.update_layout(
|
|
title=f"{var} over {x_var}",
|
|
xaxis_title=x_var,
|
|
yaxis_title=var,
|
|
xaxis_range = [t_base.min(), t_base.max()],
|
|
yaxis_range = y_axis_range,
|
|
showlegend=True,
|
|
height=300,
|
|
margin=dict(l=40, r=20, t=40, b=40),
|
|
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
|
|
)
|
|
|
|
fig.show()
|
|
figs.append(fig)
|
|
|
|
# Optionally return figs if needed
|
|
return figs
|
|
|
|
|
|
|