import sys, os try: thisFilePath = os.path.abspath(__file__) print(thisFilePath) except NameError: print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).") print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)") #print("Otherwise, path to submodule DIMA may not be resolved properly.") thisFilePath = os.getcwd() # Use current directory or specify a default projectPath = os.path.normpath(os.path.join(thisFilePath, "..","..")) print(projectPath) if not projectPath in sys.path: sys.path.insert(0,projectPath) #print(dimaPath) import pandas as pd import numpy as np import base64 import dash import io # Set up project root directory #root_dir = os.path.abspath(os.curdir) #sys.path.append(root_dir) #sys.path.append(os.path.join(root_dir,'dima')) import app.data_flagging_utils as data_flagging_utils from dash import Dash, html, dcc, callback, Output, Input, State, dash_table import plotly.graph_objs as go from plotly.subplots import make_subplots import dash_bootstrap_components as dbc import json import dima.src.hdf5_ops as hdf5_ops #import dima.instruments.readers.filereader_registry as filereader_registry #import instruments_.readers.flag_reader as flag_reader #filereader_registry.file_extensions.append('.json') #filereader_registry.file_readers.update({'ACSM_TOFWARE_flags_json' : lambda x: flag_reader.read_jsonflag_as_dict(x)}) import threading import webbrowser from time import sleep from app.components.instrument_dashboard import instrument_dashboard from app.components.flagging_dashboard import flagging_dashboard from app.components.upload_component import upload_component import yaml with open(os.path.join(projectPath,'app/flags/ebas_dict.yaml')) as stream: try: flags_dict = yaml.safe_load(stream)["flags"] except yaml.YAMLError as exc: flags_dict = {} print(exc) EnableVisCheckbox = dbc.Col(dbc.Row([dbc.Col(dcc.Checklist( id='enable-flag-checkbox', options=[{'label': html.Span('Enable Flag Visualization', style={'font-size': 15, 'padding-left': 10}), 'value': True}], value=[], inline=True),width=6), dbc.Col(dbc.Button("Load Flags", id='load-flags-button', color='primary'),width=4)], justify="center", align="center"), width=12) FlagVisTable = html.Div(dash_table.DataTable(data=[], columns=[{"name": i, "id": i} for i in ['id','startdate','enddate','description','parent_channel']], id='tbl', style_header={'textAlign': 'center'}, fixed_rows={'headers': True}, # Fixed table headers style_table={'height': '1000px'}, # Make table scrollable style_cell={'textAlign': 'left', 'padding': '10px'}, # Cell styling ), style={ 'background-color': '#f0f0f0', # Background color for the table #'height': '1000px', # Match the table's height 'padding': '5px', # Optional padding around the table 'border': '1px solid #ccc', # Optional border around the background } ) ReviewOpsPannel = dbc.Col([ # Row 1 dbc.Row([html.H2("Flagging workflow pannel", style={'font-size': 20})]), # Row 2 dbc.Row([ #dbc.Col(html.Div("Review Status"), width=6), dcc.Checklist( id='flag-review-status-checklist', options=[ {'label': [html.Span("Verify Flags", style={'font-size': 15, 'padding-left': 2})], 'value': 'will review'}, {'label': [html.Span("Ready to Record Flags", style={'font-size': 15, 'padding-left': 2})], 'value': 'will transfer'}, {'label': [html.Span("Finalize Flagging", style={'font-size': 15, 'padding-left': 2})], 'value': 'will apply'} ], value=[], #inline=True, style={ "display": "flex", # Flexbox for left alignment "flexDirection": "column", # Arrange the items vertically "alignItems": "flex-start" # Align the items to the left } ), ]), # Row 3 dbc.Row([ #dbc.Col(dbc.Button("Load Flags", id='button-1', color='primary'),width=4), dbc.Col(dbc.Button("Delete Flag", id='delete-flag-button', color='primary'),width=4), dbc.Col(dbc.Button("Record Flags", id='button-2', color='primary'),width=4), dbc.Col(dbc.Button("Apply Flags", id='button-3', color='primary'),width=4)], justify="center", align="center"), # Row 4 #dbc.Row([ # dbc.Col(html.Div("Apply Flags"), width=6), # dbc.Col(dbc.Button("Button 2", id='button-2', color='secondary'), width=6), #]), ],width=12) DatePickerRange = dbc.Col([ html.H2("Set date range for time series display", style={'font-size': '20px', 'margin-bottom': '10px'}), dcc.DatePickerRange( id='date-picker-range', display_format='YYYY-MM-DD', start_date_placeholder_text='Start Date', end_date_placeholder_text='End Date', minimum_nights=0, style={'width': '100%'} ) ]) # Initialize Dash app with Bootstrap theme app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) #df = pd.DataFrame.empty() app.layout = dbc.Container([ html.Div(children=[ html.Div(children=[ html.H1('QC/QA Data Flagging App'), html.H6('All measurements are assumed valid unless checked otherwise.') ] )],style={'textAlign': 'center'}), upload_component, instrument_dashboard, flagging_dashboard, dbc.Row([ dbc.Col([ html.Div([ html.Div(id='flag-mode-title', style={'whiteSpace': 'pre-line'}), dcc.Loading( type="circle", # Spinner style children=[ dcc.Graph(id='timeseries-plot', style={'height': '1200px','width' : '100%'})]) ], style={'height': '1000px', 'overflowY': 'auto'}) ], width=8, style={'background-color': '#e9ecef', 'padding': '20px', 'text-align': 'center','height': '1000px'}), #dbc.Col([html.Div(id='flag-record', style={'whiteSpace': 'pre-line'})], width=4), #config={'modeBarButtons': True, #'modeBarButtonsToAdd':['select2d','lasso2d'], #'modeBarButtonsToRemove': ['zoom', 'pan']}),], width=12) dbc.Col( [ html.Div([ EnableVisCheckbox, FlagVisTable, DatePickerRange, ], style={'height': '1000px','overflowY': 'auto'}), # Set a fixed height for the div ], width=4, style={'background-color': '#dee2e6', 'padding': '20px', 'text-align': 'center','height': '1000px'},) ],justify="center", align="center"), dbc.Row([ # row 3 dbc.Col([ dcc.Store(id='memory-output'), html.Div(id='textarea-example-output', style={'whiteSpace': 'pre-line'}) ], width=12) ],justify="center", align="center"), ], ) #@app.callback() @app.callback( Output('memory-output','data', allow_duplicate=True), Output("instrument-dropdown", "options"), Output("instrument-dropdown", "disabled"), [Input('upload-image','filename'), Input('upload-image','contents')], prevent_initial_call=True ) def load_data(filename, contents): data = {'data_loaded_flag': False} if filename and contents and filename.endswith('.h5'): try: path_to_file = data_flagging_utils.save_file(filename,contents) DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file) DataOps.load_file_obj() #content_type, content_string = contents.split(',') #decoded = base64.b64decode(content_string) #file_path = io.BytesIO(decoded) DataOps.extract_and_load_dataset_metadata() df = DataOps.dataset_metadata_df.copy() DataOps.unload_file_obj() # TODO: allow selection of instrument folder instrument_list = [{"label": instFolder, "value": instFolder} for instFolder in df['parent_instrument'].unique()] # Create list of file names in dict format for the first instFolder instFolderName = df['parent_instrument'].unique()[0] instFolderFileList = list(df.loc[df['parent_instrument']==instFolderName,'parent_file'].to_numpy()) #file_list = [{"label": fileName, "value": fileName} for fileName in child_files] #fig, channel_names = data_flagging_utils.create_loaded_file_figure(path_to_file, instfolder) data['data_loaded_flag'] = True data['path_to_uploaded_file'] = path_to_file data['dataset_metadata_table'] = {}# df.to_dict() data[instFolderName] = instFolderFileList data['instFolder'] = instFolderName #data['channel_names'] = channel_names return data, instrument_list, False except Exception as e: print(f"Error processing file: {e}") return data, [], False finally: DataOps.unload_file_obj() return data, [], False @app.callback( Output("file-dropdown", "options"), Output("file-dropdown", "disabled"), Input("instrument-dropdown", "value"), State('memory-output','data'), prevent_initial_call=True ) def update_file_dropdown(instFolderName, data): # Verify if dataset_metadata from uploaded HDF5 file was loaded correctly if not all([instFolderName, data]): return [], False if not 'dataset_metadata_table' in data.keys(): return [], False file_list = [] # Get files in instFolder instFolderFileList = data.get(instFolderName,[]) # Otherwise, if there is no precomputed file list associated with a instFolder, compute that from dataset_metadata if instFolderFileList: file_list = [{"label": fileName, "value": fileName} for fileName in instFolderFileList] else: path_to_file = data['path_to_uploaded_file'] DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file) DataOps.load_file_obj() #content_type, content_string = contents.split(',') #decoded = base64.b64decode(content_string) #file_path = io.BytesIO(decoded) DataOps.extract_and_load_dataset_metadata() tmp = DataOps.dataset_metadata_df.copy() DataOps.unload_file_obj() instFolderFileList = tmp.loc[tmp['parent_instrument']==instFolderName,'parent_file'].to_numpy() file_list = [{"label": fileName, "value": fileName} for fileName in instFolderFileList] return file_list, False @app.callback( Output("sub-dropdown", "options"), Output("sub-dropdown", "disabled"), Output("sub-dropdown", "value"), Input("instrument-dropdown", "value"), Input("file-dropdown", "value"), State('memory-output','data'), prevent_initial_call=True, ) def update_variable_dropdown(instFolderName, fileName, data): # Verify if dataset_metadata from uploaded HDF5 file was loaded correctly #if not isinstance(data,dict): # return [], False if not all([instFolderName, fileName, data]): return [], False, [] #file_list = [] # Get files in instFolder #instFolderFileList = data.get(instFolderName,[]) # Otherwise, if there is no precomputed file list associated with a instFolder, compute that from dataset_metadata try: path_to_file = data['path_to_uploaded_file'] DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file) DataOps.load_file_obj() dataset_name = '/'.join([instFolderName,fileName,'data_table']) # Get attributes for data table datetime_var, datetime_var_format = DataOps.infer_datetime_variable(dataset_name) metadata_dict = DataOps.get_metadata(dataset_name) #content_type, content_string = contents.split(',') #decoded = base64.b64decode(content_string) #file_path = io.BytesIO(decoded) #DataOps.extract_and_load_dataset_metadata() #tmp = DataOps.dataset_metadata_df.copy() #DataOps.unload_file_obj() #instFolderFileList = tmp.loc[tmp['parent_instrument']==instFolderName,'parent_file'].to_numpy() variableList = [] for var_name in metadata_dict.keys(): if var_name != datetime_var: variableList.append(var_name) DataOps.unload_file_obj() except Exception as e: DataOps.unload_file_obj() print(f"Error processing dataset_name: {e}") return [], False, [] return [{"label": var_name, "value": var_name} for var_name in variableList] , False, variableList from datetime import datetime import numpy as np @app.callback( Output('timeseries-plot', 'figure'), Output('memory-output','data'), Input('instrument-dropdown', 'value'), Input('file-dropdown', 'value'), Input('sub-dropdown', 'value'), Input('date-picker-range', 'start_date'), Input('date-picker-range', 'end_date'), Input('memory-output', 'data'), prevent_initial_call=True ) def update_figure(instFolderName, fileName, variableList, start_date, end_date, data): fig = go.Figure() # Always define it to avoid UnboundLocalError if not all([instFolderName, fileName, variableList, data]): return go.Figure(), dash.no_update path_to_file = data.get('path_to_uploaded_file') if not path_to_file: return go.Figure(), dash.no_update try: DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file) DataOps.load_file_obj() dataset_name = '/'.join([instFolderName, fileName, 'data_table']) datetime_var, datetime_var_format = DataOps.infer_datetime_variable(dataset_name) if not isinstance(data.get('time_cache'), dict): data['time_cache'] = {} cache_key = f"{path_to_file}|{dataset_name}|{datetime_var}|{datetime_var_format}" if cache_key in data['time_cache']: time_column = np.array(data['time_cache'][cache_key]) else: time_column = DataOps.reformat_datetime_column( dataset_name, datetime_var, datetime_var_format ) data['time_cache'][cache_key] = time_column.astype(str).tolist() # Convert to datetime64, safely handling NaNs or invalid entries try: time_column = np.array(time_column, dtype='datetime64[ns]') except Exception: # If conversion fails (e.g. mixed formats), fall back to pandas import pandas as pd time_column = pd.to_datetime(time_column, errors='coerce').to_numpy() # Apply mask if date range provided mask = ~np.isnat(time_column) # Exclude NaT values if start_date and end_date: start = np.datetime64(start_date) end = np.datetime64(end_date) mask &= (time_column >= start) & (time_column <= end) fig, channel_names = data_flagging_utils.create_loaded_file_figure( path_to_file, instFolderName, dataset_name, time_column, variableList, mask=mask ) data['channel_names'] = channel_names except Exception as e: print(f'Error while processing file {path_to_file}: {e}') finally: DataOps.unload_file_obj() return fig, data """@app.callback( Output('memory-output','data'), Output('timeseries-plot', 'figure'), Output("instrument-dropdown", "options"), Output("instrument-dropdown", "disabled"), [Input('upload-image','filename')], [Input('upload-image','contents')] ) def load_data(filename, contents): data = {'data_loaded_flag': False} if filename and contents and filename.endswith('.h5'): try: path_to_file = data_flagging_utils.save_file(filename,contents) DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file) DataOps.load_file_obj() #content_type, content_string = contents.split(',') #decoded = base64.b64decode(content_string) #file_path = io.BytesIO(decoded) DataOps.extract_and_load_dataset_metadata() df = DataOps.dataset_metadata_df.copy() # TODO: allow selection of instrument folder instfolder = df['parent_instrument'].unique()[0] instrument_list = [{"label": instFolder, "value": instFolder} for instFolder in df['parent_instrument'].unique()] #fig, channel_names = data_flagging_utils.create_loaded_file_figure(path_to_file, instfolder) data['data_loaded_flag'] = True data['path_to_uploaded_file'] = path_to_file data['instfolder'] = instfolder #data['channel_names'] = channel_names DataOps.unload_file_obj() return data, dash.no_update, instrument_list, False except Exception as e: DataOps.unload_file_obj() print(f"Error processing file: {e}") return data, dash.no_update, instrument_list, False return data, dash.no_update, [], False""" @app.callback( Output('timeseries-plot', 'figure', allow_duplicate=True), Output('flag-mode-title','children'), Input('flag-button', 'n_clicks'), State('timeseries-plot', 'figure'), State('memory-output', 'data'), prevent_initial_call=True, ) def create_flag(n_clicks, fig, data): #if not data or not data.get('data_loaded_flag', False): if not all([n_clicks, fig, data]): return dash.no_update, dash.no_update fig['layout'].update({'dragmode' : 'select', 'activeselection' : dict(fillcolor='yellow'), 'doubleClick' : 'reset' }) #fig['layout'].update({'title':"Flagging Mode Enabled: Select ROI to Define Flagging Interval."}) #value = '{} amigos'.format(n_clicks) title = "Flagging Mode Enabled: Select ROI to Define Flagging Interval." return fig, title #return fig #@app.callback( # Output('timeseries-plot', 'figure', allow_duplicate=True), # Output('timeseries-plot', 'selectedData', allow_duplicate=True), # #Output('textarea-example-output','children'), # Input('reset-flag-button', 'n_clicks'), # State('timeseries-plot', 'figure'), # #State('memory-output', 'data'), # prevent_initial_call=True #) #def clear_flag(n_clicks, fig): #if not data or not data.get('data_loaded_flag', False): # return dash.no_update, dash.no_update # fig['layout'].update({'dragmode': 'zoom', 'activeselection': None}) #fig.update_layout() #update_layout(dragmode='select', activeselection=dict(fillcolor='yellow')) #shapes = [] #if relayoutData and 'xaxis.range[0]' in relayoutData: # start = relayoutData['xaxis.range[0]'] # end = relayoutData['xaxis.range[1]'] #else: # start, end = None, None #if start and end: # shapes.append({ # 'type': 'rect', # 'xref': 'x', # 'yref': 'paper', # 'x0': start, # 'y0': 0, # 'x1': end, # 'y1': 1, # 'fillcolor': 'rgba(128, 0, 128, 0.3)', # 'line': {'width': 0} # }) # fig['layout'].update(shapes=shapes) #value = '{} amigos'.format(n_clicks) # return fig, None #, f'You have entered: \n{value}' @app.callback( [Output('timeseries-plot', 'selectedData'), Output('timeseries-plot', 'figure', allow_duplicate=True), Output('flag-mode-title', 'children',allow_duplicate=True)], [Input('reset-flag-button', 'n_clicks'), State('timeseries-plot', 'figure'), State('memory-output', 'data')], prevent_initial_call = True) def clear_flag(n_clicks, fig, data): if n_clicks > 0 and data.get('data_loaded_flag', False): # Clear selection selected_data = None fig['layout'].update({'dragmode': 'zoom', 'activeselection': None, 'selections':{'line': None}}) instFolder =data['instFolder'] fig['layout'].update({'title': f'{instFolder}: Target and Diagnostic Channels'}) flagging_mode_message = '' return selected_data, fig, flagging_mode_message else: return dash.no_update, dash.no_update, dash.no_update @app.callback( [Output('timeseries-plot', 'figure', allow_duplicate=True), Output('timeseries-plot', 'selectedData',allow_duplicate=True), Output('flag-mode-title', 'children',allow_duplicate=True)], [Input('timeseries-plot', 'relayoutData'), State('timeseries-plot', 'figure'), State('memory-output', 'data')], prevent_initial_call = True) def clear_flag_mode_title(relayoutData, fig, data): if not all([relayoutData, fig, data]): return dash.no_update, dash.no_update, dash.no_update if data.get('data_loaded_flag', False) and not fig['layout'].get('dragmode',None) == 'select': # Clear selection selected_data = None fig['layout'].update({'dragmode': 'zoom', 'activeselection': None, 'selections':{'line': None}}) #instFolder =data['instfolder'] #fig['layout'].update({'title': f'{instFolder}: Target and Diagnostic Channels'}) flagging_mode_message = '' return fig, selected_data, flagging_mode_message else: return dash.no_update, dash.no_update, dash.no_update def extract_number(s): return int(s[1:])-1 if s[1:].isdigit() else 0 @callback(Output('tbl', 'data'), Input('commit-flag-button','n_clicks'), State('flag-options','value'), State('timeseries-plot','selectedData'), State('memory-output', 'data'), prevent_initial_call=True) def commit_flag(n_clicks,flag_value,selected_Data, data): value = selected_Data if (selected_Data is None) and (not isinstance(selected_Data,dict)): return [] elif not selected_Data.get('range',[]): # verify if there is a flag's time interval to commit return [] # TODO: modify the name path/to/name to reflect the directory provenance instFolder = data['instFolder'] filePath = data['path_to_uploaded_file'] # Modified version (appending "_flags" to the first folder) flagFolder = instFolder.split('/') flagFolder[0] = f"{flagFolder[0]}_flags" # Modify first folder flagFolder = '/'.join(flagFolder) flagfolderpath = os.path.join(os.path.splitext(data['path_to_uploaded_file'])[0], flagFolder) flagfolderpath = os.path.normpath(flagfolderpath) #print("Without modification:", flagfolderpath_original) print("With modification:", flagfolderpath) if not os.path.isdir(flagfolderpath): os.makedirs(flagfolderpath) #dirlist = os.listdir(flagfolderpath) # Get all files in the directory with their full paths files = [os.path.join(flagfolderpath, f) for f in os.listdir(flagfolderpath)] # Sort files by creation time dirlist_sorted_by_creation = sorted(files, key=os.path.getctime) #dirlist = dirlist.sort(key=lambda x: int(x.split('_')[1].split('.')[0])) display_flag_registry = True if display_flag_registry: tableData = data_flagging_utils.load_flags(flagfolderpath) else: tableData = [] #tableData = [] #for pathtofile in dirlist_sorted_by_creation: # if '.json' in pathtofile: # with open(pathtofile,'r') as f: # tableData.append(json.load(f)) number_of_existing_flags = len(dirlist_sorted_by_creation) flagid = number_of_existing_flags+1 #if not os.path.exists(flag_filename): # with open(flag_filename,'r') as open_flagsfile: # json_flagsobject = json.load(open_flagsfile) # data = [json_flagsobject[key] for key in json_flagsobject.keys()] #return f'You have entered: \n{value}' channel_names = data.get('channel_names', []) for key, value in selected_Data['range'].items(): if 'x' in key: new_row = {'id':flagid,'startdate':value[0],'enddate':value[1],'flag_code': flag_value} new_row.update(flags_dict.get(flag_value,{})) if channel_names: channel_pos = extract_number(key) parent_channel, parent_dataset = tuple(channel_names[channel_pos].split(',')) new_row.update({'parent_ch_pos': str(channel_pos), 'parent_channel':parent_channel, 'parent_dataset': parent_dataset}) tableData.append(new_row) #data = [{'startdate':value[0],'enddate':value[1],'value':90}] flag_filename = os.path.join(flagfolderpath,f'flag_{flagid}_{parent_channel}.json') if not os.path.exists(flag_filename): with open(flag_filename,'w') as flagsfile: #json_flagsobject = json.dump({'row'+str(len(data)): new_row}, flagsfile) json.dump(new_row, flagsfile) #else: # with open(flag_filename,'a') as flagsfile: # json.dump(new_row, flagsfile) #json.dump({'row'+str(len(data)): new_row}, flagsfile) #data = [json_flagsobject[key] for key in json_flagsobject.keys()] return tableData #@callback(Output('memory-output','data',allow_duplicate=True), # [Input('enable-flag-checkbox', 'value'), State('memory-output','data')], # prevent_initial_call=True) #[Input('tbl','active_cell'), Input('enable-flag-checkbox', 'value') State('timeseries-plot', 'figure'), State('tbl','data')],) #def enable_flag_visualization(value, memory): # if isinstance(memory,dict): # memory.update({'vis_enabled' : value}) # return memory # return dash.no_update @callback(Output('timeseries-plot', 'figure',allow_duplicate=True), [Input('enable-flag-checkbox', 'value'), State('timeseries-plot', 'figure')], prevent_initial_call = True) def clear_flags_from_figure(value, figure): vis_enabled = value[0] if value and isinstance(value, list) else False if not vis_enabled and figure: shapes = figure.get('layout', {}).get('shapes', []) if shapes: # If there are shapes in the figure, clear them new_figure = figure.copy() # Create a copy to avoid mutation new_figure['layout']['shapes'] = [] return new_figure return dash.no_update @callback(Output('timeseries-plot', 'figure',allow_duplicate=True), [Input('tbl','active_cell'), State('enable-flag-checkbox', 'value'), State('timeseries-plot', 'figure'), State('tbl','data')], prevent_initial_call = True) def visualize_flag_on_figure(active_cell, value, figure, data): if value: vis_enabled = value[0] else: vis_enabled = False if active_cell and vis_enabled: row = active_cell['row'] startdate = data[row]['startdate'] enddate = data[row]['enddate'] parent_ch_pos = data[row].get('parent_ch_pos',None) if parent_ch_pos != None: # Ensure that startdate and enddate are parsed correctly #startdate = pd.to_datetime(startdate) #enddate = pd.to_datetime(enddate) # Determine y-axis range directly from layout yaxis_key = f"yaxis{int(parent_ch_pos) + 1}" if int(parent_ch_pos) > 0 else "yaxis" xaxis_key = f"xaxis{int(parent_ch_pos) + 1}" if int(parent_ch_pos) > 0 else "xaxis" #y_min = figure['layout'].get(yaxis_key, {}).get('range', [0, 1])[0] #y_max = figure['layout'].get(yaxis_key, {}).get('range', [0, 1])[1] # Add a vertical region to the specified subplot figure['layout']['shapes'] = figure['layout'].get('shapes', []) + [ dict( type="rect", xref=xaxis_key.replace('axis', ''), yref=yaxis_key.replace('axis', ''), x0=startdate, x1=enddate, y0=figure['layout'][yaxis_key]['range'][0], y1=figure['layout'][yaxis_key]['range'][1], line=dict(color="rgba(50, 171, 96, 1)", width=2), fillcolor="rgba(50, 171, 96, 0.3)", ) ] return figure return dash.no_update @callback(Output('tbl', 'data',allow_duplicate=True), [Input('load-flags-button','n_clicks'),State('enable-flag-checkbox', 'value'),State('memory-output', 'data')], prevent_initial_call = True) def visualize_flags_on_table(n_clicks,value,memoryData): instFolder = memoryData.get('instFolder', '') filePath = memoryData.get('path_to_uploaded_file', None) #flagfolderpath = os.path.join(os.path.splitext(memoryData['path_to_uploaded_file'])[0],f'{instfolder}_flags') if not filePath: return dash.no_update # Modified version (appending "_flags" to the first folder) flagFolder = instFolder.split('/') flagFolder[0] = f"{flagFolder[0]}_flags" # Modify first folder flagFolder = '/'.join(flagFolder) # Remove .h5 ext from filepath and define expected flag folder flagfolderpath = os.path.join(os.path.splitext(filePath)[0], flagFolder) flagfolderpath = os.path.normpath(flagfolderpath) #flagfolderpath = os.path.join(os.path.splitext(memoryData['path_to_uploaded_file'])[0],f'{instfolder}_flags') ## Return no table update if there is no flags folder #if not os.path.exists(flagfolderpath): # return dash.no_update #files = [os.path.join(flagfolderpath, f) for f in os.listdir(flagfolderpath)] vis_enabled = value[0] if value and isinstance(value, list) else False if n_clicks > 0 and vis_enabled: # and len(files) > 0: tableData = data_flagging_utils.load_flags(flagfolderpath) if not tableData: return dash.no_update else: return tableData # # Sort files by creation time # dirlist_sorted_by_creation = sorted(files, key=os.path.getctime) # tableData = [] # for pathtofile in dirlist_sorted_by_creation: # if '.json' in pathtofile: # try: # with open(pathtofile,'r') as f: # tableData.append(json.load(f)) # except (json.JSONDecodeError, FileNotFoundError) as e: # print(e) # continue # Skip invalid or missing files # return tableData return dash.no_update def open_browser(): """Wait for the server to start, then open the browser (only on the host).""" sleep(1) # Give the server time to start # Open in browser only if running outside Docker if not os.getenv("DOCKER_CONTAINER"): webbrowser.open_new("http://127.0.0.1:8050/") def main(): # Start the browser-opening function in a separate thread threading.Thread(target=open_browser).start() # Run the Dash app server on 0.0.0.0 to allow external access app.run_server(host="0.0.0.0", port=8050, debug=True, use_reloader=False) if __name__ == '__main__': main()