diff --git a/pipelines/steps/prepare_ebas_submission.py b/pipelines/steps/prepare_ebas_submission.py index 7302b44..cf099e7 100644 --- a/pipelines/steps/prepare_ebas_submission.py +++ b/pipelines/steps/prepare_ebas_submission.py @@ -19,10 +19,11 @@ import argparse import pandas as pd import json, yaml import numpy as np -from utils import get_metadata -from utils import metadata_dict_to_dataframe +from pipelines.steps.utils import get_metadata +from pipelines.steps.utils import metadata_dict_to_dataframe from pipelines.steps.utils import load_project_yaml_files + def join_tables(csv_files: list): """ Joins multiple CSV files based on their metadata-defined datetime column. @@ -142,6 +143,9 @@ def main(paths_to_processed_files : list, path_to_flags : str, month : int = Non #output_file1 = os.path.join(output_dir, f'JFJ_ACSM-017_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_2024.txt') #output_file2 = os.path.join(output_dir, f'JFJ_ACSM-017_FLAGS_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_FLAGS_2024.txt') + #acum_df = acum_df[[col for col in acsm_to_ebas['column_order'] if col in acum_df.columns]] + #flags_acum_df = flags_acum_df[[col for col in acsm_to_ebas['flags_column_order'] if col in flags_acum_df.columns]] + acum_df.loc[:, :].to_csv(output_file1, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S") flags_acum_df.loc[:, :].to_csv(output_file2, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")