diff --git a/TODO.md b/TODO.md index 9b25023..ce05f0a 100644 --- a/TODO.md +++ b/TODO.md @@ -1,8 +1,10 @@ # TODO -* [from Leïla] Add flagging based on CPC flags -* [from Leïla] Correct calibration_params copying -* [from Leïla] Plot for auto flags visualization should be able to zoom in vertically -* [from Leïla] Remove inletP column in level 2 .nas data +* [from Leïla] Correct error when flags are loaded in the flagging app +* [from Leïla] End the file at end of year (or filter only current year) +* [from Leïla] Change "9999.999" to "9999999.9999" in header +* [from Leïla] Update Detection limit values in L2 header: take the ones (1h) from limits_of_detection.yaml +* [from Leïla] For PAY, calculate error as 50% of concentration +* [from Leïla] Correct errors (uncertainties) that they can't be lower than 0.0001 * [from Leïla] Change flow rate values to 10% of flow rate ref * [New] Create data flows to validate and replace existing data chain params. data/campaignData/param/ -> pipelines/params and campaignDescriptor.yaml -> acsm data converter. * [New] DIMA. Add dictionaries to explain variables at different levels. diff --git a/campaignDescriptor.yaml b/campaignDescriptor.yaml index 9739a70..1444f52 100644 --- a/campaignDescriptor.yaml +++ b/campaignDescriptor.yaml @@ -30,8 +30,10 @@ originator: email: leila.simon@psi.ch affiliation: Paul Scherrer Institute, PSI department: Laboratory of Atmospheric Chemistry - city: Villigen PSI + address_line_1: "" + address_line_2: "" postal_code: 5232 + city: Villigen PSI country: Switzerland submitter: @@ -39,6 +41,8 @@ submitter: email: leila.simon@psi.ch affiliation: Paul Scherrer Institute, PSI department: Laboratory of Atmospheric Chemistry - city: Villigen PSI + address_line_1: "" + address_line_2: "" postal_code: 5232 + city: Villigen PSI country: Switzerland diff --git a/pipelines/steps/generate_flags.py b/pipelines/steps/generate_flags.py index dd56015..3eb571c 100644 --- a/pipelines/steps/generate_flags.py +++ b/pipelines/steps/generate_flags.py @@ -264,7 +264,7 @@ def generate_species_flags(data_table : pd.DataFrame, calib_param_dict : dict, f numflag_columns = [col for col in data_table.columns if 'numflag_' in col] - if interpolated_cpc_flags: + if len(interpolated_cpc_flags)>0: data_table = reconcile_flags(data_table, interpolated_cpc_flags, 0, interpolated_cpc_flags.size, numflag_columns)