mirror of
https://gitea.psi.ch/APOG/acsmnode.git
synced 2025-06-25 13:41:08 +02:00
Completed command line interface for pipelines/steps/prepare_ebas_submission.py. This finishes WIP associated with commit 2eb88e4
.
This commit is contained in:
@ -62,87 +62,67 @@ def join_tables(csv_files: list):
|
||||
|
||||
return acum_df
|
||||
|
||||
#import argparse
|
||||
#import os
|
||||
#import pandas as pd
|
||||
from third_party.acsmProcessingSoftware.src import rawto012
|
||||
#from utils import load_project_yaml_files, metadata_dict_to_dataframe, join_tables # Adjust imports based on actual file locations
|
||||
|
||||
def main(paths_to_processed_files : list, path_to_flags : str, month : int = None):
|
||||
# Set up argument parsing
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
path1 = 'data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17/ACSM_TOFWARE_processed/2024/ACSM_JFJ_2024_timeseries_calibrated.csv'
|
||||
path2 = 'data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17/ACSM_TOFWARE_processed/2024/ACSM_JFJ_2024_timeseries_calibrated_err.csv'
|
||||
path3 = 'data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17/ACSM_TOFWARE_processed/2024/ACSM_JFJ_2024_timeseries_calibration_factors.csv'
|
||||
path4 = 'data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17/ACSM_TOFWARE_flags/2024/ACSM_JFJ_2024_timeseries_flags.csv'
|
||||
|
||||
acum_df = join_tables([path1,path2,path3])
|
||||
|
||||
acum_df = join_tables(paths_to_processed_files)
|
||||
acsm_to_ebas = load_project_yaml_files(projectPath, "acsm_to_ebas.yaml")
|
||||
|
||||
# Select variables that are both in the acsm to ebas dict and acum_df
|
||||
# Select variables that are both in the acsm_to_ebas dict and acum_df
|
||||
reduced_set_of_vars = [key for key in acum_df.columns if key in acsm_to_ebas['renaming_map'].keys()]
|
||||
acum_df = acum_df.loc[:, reduced_set_of_vars].rename(columns=acsm_to_ebas['renaming_map'])
|
||||
|
||||
acum_df = acum_df.loc[:,reduced_set_of_vars].rename(columns=acsm_to_ebas['renaming_map'])
|
||||
#print("Before renaming:", acum_df.columns)
|
||||
#print("Renaming map keys:", acsm_to_ebas['renaming_map'].keys())
|
||||
|
||||
|
||||
|
||||
|
||||
#print(reduced_set_of_vars)
|
||||
|
||||
flags_acum_df = join_tables([path4])
|
||||
flags_acum_df = join_tables([path_to_flags])
|
||||
flags_acum_df = flags_acum_df.rename(columns=acsm_to_ebas['renaming_map'])
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Ensure time columns are datetime
|
||||
acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
|
||||
flags_acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
|
||||
flags_acum_df['ACSM_time'] = pd.to_datetime(flags_acum_df['ACSM_time'])
|
||||
|
||||
# Apply month filter if specified
|
||||
if month:
|
||||
acum_df = acum_df[acum_df['ACSM_time'].dt.month == month]
|
||||
flags_acum_df = flags_acum_df[flags_acum_df['ACSM_time'].dt.month == month]
|
||||
|
||||
# Count the number of NaT (null) values
|
||||
num_nats = acum_df['ACSM_time'].isna().sum()
|
||||
# Get the total number of rows
|
||||
total_rows = len(acum_df)
|
||||
# Calculate the percentage of NaT values
|
||||
percentage_nats = (num_nats / total_rows) * 100
|
||||
|
||||
print(f"Total rows: {total_rows}")
|
||||
print(f"NaT (missing) values: {num_nats}")
|
||||
print(f"Percentage of data loss: {percentage_nats:.2f}%")
|
||||
|
||||
# Count the number of NaT (null) values
|
||||
num_nats = flags_acum_df['ACSM_time'].isna().sum()
|
||||
# Get the total number of rows
|
||||
total_rows = len(flags_acum_df)
|
||||
# Calculate the percentage of NaT values
|
||||
percentage_nats = (num_nats / total_rows) * 100
|
||||
|
||||
print(f"Total rows: {total_rows}")
|
||||
print(f"NaT (missing) values: {num_nats}")
|
||||
print(f"Percentage of data loss: {percentage_nats:.2f}%")
|
||||
|
||||
|
||||
nat_acum = acum_df['ACSM_time'].isna()
|
||||
nat_flags = flags_acum_df['ACSM_time'].isna()
|
||||
|
||||
valid_rows = ~(nat_acum | nat_flags) # Compute valid rows in one step
|
||||
|
||||
# Define file paths
|
||||
#path_to_detection_limits = os.path.normpath(os.path.join(projectPath, 'pipelines/params/limits_of_detection.yaml'))
|
||||
#path_to_station_params = os.path.normpath(os.path.join(projectPath, 'pipelines/params/station_params.yaml'))
|
||||
|
||||
# Load YAML files
|
||||
#detection_limits = load_yaml(path_to_detection_limits)
|
||||
detection_limits = load_project_yaml_files(projectPath, "limits_of_detection.yaml")
|
||||
station_params = load_project_yaml_files(projectPath, "station_params.yaml") # load_yaml(path_to_station_params)
|
||||
station_params = load_project_yaml_files(projectPath, "station_params.yaml")
|
||||
|
||||
# Extract dictionaries from required keys
|
||||
lod_dict = detection_limits.get('LOD', {}).get('variables',{}) # Extract "LOD" dictionary
|
||||
jfj_dict = station_params.get('stations', {}).get('JFJ', {}) # Extract "JFJ" dictionary
|
||||
lod_dict = detection_limits.get('LOD', {}).get('variables', {})
|
||||
jfj_dict = station_params.get('stations', {}).get('JFJ', {})
|
||||
|
||||
# Convert dictionaries to DataFrames using the existing function
|
||||
lod_df = metadata_dict_to_dataframe(lod_dict, shape = (len(acum_df),len(lod_dict)))
|
||||
jfj_df = metadata_dict_to_dataframe(jfj_dict, shape = (len(acum_df),len(jfj_dict)))
|
||||
lod_df = metadata_dict_to_dataframe(lod_dict, shape=(len(acum_df), len(lod_dict)))
|
||||
jfj_df = metadata_dict_to_dataframe(jfj_dict, shape=(len(acum_df), len(jfj_dict)))
|
||||
|
||||
# Ensure indexes are properly aligned for merging
|
||||
acum_df = acum_df.reset_index() # Convert index to a column for merging
|
||||
@ -153,22 +133,36 @@ if __name__ == "__main__":
|
||||
# Merge with JFJ DataFrame
|
||||
acum_df = acum_df.merge(jfj_df, left_index=True, right_index=True, how='left')
|
||||
|
||||
|
||||
acum_df = acum_df.rename(columns=acsm_to_ebas['renaming_map'])
|
||||
|
||||
# Save results
|
||||
output_dir = os.path.join(projectPath,'data')
|
||||
output_file1 = os.path.join(output_dir, 'JFJ_ACSM-017_2024.txt')
|
||||
output_file2 = os.path.join(output_dir, 'JFJ_ACSM-017_FLAGS_2024.txt')
|
||||
#output_file1 = os.path.join(output_dir, f'JFJ_ACSM-017_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_2024.txt')
|
||||
#output_file2 = os.path.join(output_dir, f'JFJ_ACSM-017_FLAGS_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_FLAGS_2024.txt')
|
||||
|
||||
#reduced_set_of_vars = [key for key in reduced_set_of_vars if '' not in key]
|
||||
acum_df.loc[valid_rows.to_numpy(),:].to_csv('data/JFJ_ACSM-017_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
|
||||
flags_acum_df.loc[valid_rows.to_numpy(),:].to_csv('data/JFJ_ACSM-017_FLAGS_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
|
||||
|
||||
|
||||
|
||||
from third_party.acsmProcessingSoftware.src import rawto012
|
||||
acum_df.loc[:, :].to_csv(output_file1, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")
|
||||
flags_acum_df.loc[:, :].to_csv(output_file2, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")
|
||||
|
||||
# Run external processing application
|
||||
app = rawto012.Application()
|
||||
infile = 'data/JFJ_ACSM-017_2024.txt'
|
||||
acq_err_log = 'data/JFJ_ACSM-017_FLAGS_2024.txt'
|
||||
outdir = 'data/'
|
||||
infile = output_file1
|
||||
acq_err_log = output_file2
|
||||
outdir = output_dir
|
||||
app.process(infile, acq_err_log, outdir=outdir)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = argparse.ArgumentParser(description="Process and calibrate ACSM data for JFJ station.")
|
||||
parser.add_argument('--acsm_paths', type=str, required=True, nargs=3, help="Paths to the ACSM timeseries calibrated CSV file, the error CSV file, and the calibration factors CSV file.")
|
||||
parser.add_argument('--acsm_flags_path', type=str, required=True, help="Path to the ACSM flags CSV file.")
|
||||
parser.add_argument('--month', type=int, choices=range(1, 13), help="Filter data for a specific month (1-12).")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load data
|
||||
csv_files = args.acsm_paths # list of filenames
|
||||
flags_file = args.acsm_flags_path
|
||||
month = args.month
|
||||
main(csv_files, flags_file, month)
|
||||
|
Reference in New Issue
Block a user