Completed command line interface for pipelines/steps/prepare_ebas_submission.py. This finishes WIP associated with commit 2eb88e4.

This commit is contained in:
2025-03-14 13:09:09 +01:00
parent bfc9f0ab82
commit 8cdd8a0771

View File

@ -62,83 +62,63 @@ def join_tables(csv_files: list):
return acum_df
#import argparse
#import os
#import pandas as pd
from third_party.acsmProcessingSoftware.src import rawto012
#from utils import load_project_yaml_files, metadata_dict_to_dataframe, join_tables # Adjust imports based on actual file locations
def main(paths_to_processed_files : list, path_to_flags : str, month : int = None):
# Set up argument parsing
if __name__ == "__main__":
path1 = 'data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17/ACSM_TOFWARE_processed/2024/ACSM_JFJ_2024_timeseries_calibrated.csv'
path2 = 'data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17/ACSM_TOFWARE_processed/2024/ACSM_JFJ_2024_timeseries_calibrated_err.csv'
path3 = 'data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17/ACSM_TOFWARE_processed/2024/ACSM_JFJ_2024_timeseries_calibration_factors.csv'
path4 = 'data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17/ACSM_TOFWARE_flags/2024/ACSM_JFJ_2024_timeseries_flags.csv'
acum_df = join_tables([path1,path2,path3])
acum_df = join_tables(paths_to_processed_files)
acsm_to_ebas = load_project_yaml_files(projectPath, "acsm_to_ebas.yaml")
# Select variables that are both in the acsm to ebas dict and acum_df
# Select variables that are both in the acsm_to_ebas dict and acum_df
reduced_set_of_vars = [key for key in acum_df.columns if key in acsm_to_ebas['renaming_map'].keys()]
acum_df = acum_df.loc[:, reduced_set_of_vars].rename(columns=acsm_to_ebas['renaming_map'])
#print("Before renaming:", acum_df.columns)
#print("Renaming map keys:", acsm_to_ebas['renaming_map'].keys())
#print(reduced_set_of_vars)
flags_acum_df = join_tables([path4])
flags_acum_df = join_tables([path_to_flags])
flags_acum_df = flags_acum_df.rename(columns=acsm_to_ebas['renaming_map'])
# Ensure time columns are datetime
acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
flags_acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
flags_acum_df['ACSM_time'] = pd.to_datetime(flags_acum_df['ACSM_time'])
# Apply month filter if specified
if month:
acum_df = acum_df[acum_df['ACSM_time'].dt.month == month]
flags_acum_df = flags_acum_df[flags_acum_df['ACSM_time'].dt.month == month]
# Count the number of NaT (null) values
num_nats = acum_df['ACSM_time'].isna().sum()
# Get the total number of rows
total_rows = len(acum_df)
# Calculate the percentage of NaT values
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
# Count the number of NaT (null) values
num_nats = flags_acum_df['ACSM_time'].isna().sum()
# Get the total number of rows
total_rows = len(flags_acum_df)
# Calculate the percentage of NaT values
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
nat_acum = acum_df['ACSM_time'].isna()
nat_flags = flags_acum_df['ACSM_time'].isna()
valid_rows = ~(nat_acum | nat_flags) # Compute valid rows in one step
# Define file paths
#path_to_detection_limits = os.path.normpath(os.path.join(projectPath, 'pipelines/params/limits_of_detection.yaml'))
#path_to_station_params = os.path.normpath(os.path.join(projectPath, 'pipelines/params/station_params.yaml'))
# Load YAML files
#detection_limits = load_yaml(path_to_detection_limits)
detection_limits = load_project_yaml_files(projectPath, "limits_of_detection.yaml")
station_params = load_project_yaml_files(projectPath, "station_params.yaml") # load_yaml(path_to_station_params)
station_params = load_project_yaml_files(projectPath, "station_params.yaml")
# Extract dictionaries from required keys
lod_dict = detection_limits.get('LOD', {}).get('variables',{}) # Extract "LOD" dictionary
jfj_dict = station_params.get('stations', {}).get('JFJ', {}) # Extract "JFJ" dictionary
lod_dict = detection_limits.get('LOD', {}).get('variables', {})
jfj_dict = station_params.get('stations', {}).get('JFJ', {})
# Convert dictionaries to DataFrames using the existing function
lod_df = metadata_dict_to_dataframe(lod_dict, shape=(len(acum_df), len(lod_dict)))
@ -153,22 +133,36 @@ if __name__ == "__main__":
# Merge with JFJ DataFrame
acum_df = acum_df.merge(jfj_df, left_index=True, right_index=True, how='left')
acum_df = acum_df.rename(columns=acsm_to_ebas['renaming_map'])
# Save results
output_dir = os.path.join(projectPath,'data')
output_file1 = os.path.join(output_dir, 'JFJ_ACSM-017_2024.txt')
output_file2 = os.path.join(output_dir, 'JFJ_ACSM-017_FLAGS_2024.txt')
#output_file1 = os.path.join(output_dir, f'JFJ_ACSM-017_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_2024.txt')
#output_file2 = os.path.join(output_dir, f'JFJ_ACSM-017_FLAGS_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_FLAGS_2024.txt')
#reduced_set_of_vars = [key for key in reduced_set_of_vars if '' not in key]
acum_df.loc[valid_rows.to_numpy(),:].to_csv('data/JFJ_ACSM-017_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
flags_acum_df.loc[valid_rows.to_numpy(),:].to_csv('data/JFJ_ACSM-017_FLAGS_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
from third_party.acsmProcessingSoftware.src import rawto012
acum_df.loc[:, :].to_csv(output_file1, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")
flags_acum_df.loc[:, :].to_csv(output_file2, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")
# Run external processing application
app = rawto012.Application()
infile = 'data/JFJ_ACSM-017_2024.txt'
acq_err_log = 'data/JFJ_ACSM-017_FLAGS_2024.txt'
outdir = 'data/'
infile = output_file1
acq_err_log = output_file2
outdir = output_dir
app.process(infile, acq_err_log, outdir=outdir)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Process and calibrate ACSM data for JFJ station.")
parser.add_argument('--acsm_paths', type=str, required=True, nargs=3, help="Paths to the ACSM timeseries calibrated CSV file, the error CSV file, and the calibration factors CSV file.")
parser.add_argument('--acsm_flags_path', type=str, required=True, help="Path to the ACSM flags CSV file.")
parser.add_argument('--month', type=int, choices=range(1, 13), help="Filter data for a specific month (1-12).")
args = parser.parse_args()
# Load data
csv_files = args.acsm_paths # list of filenames
flags_file = args.acsm_flags_path
month = args.month
main(csv_files, flags_file, month)