diff --git a/pipelines/steps/apply_calibration_factors.py b/pipelines/steps/apply_calibration_factors.py index b8e95dc..d3ef9cf 100644 --- a/pipelines/steps/apply_calibration_factors.py +++ b/pipelines/steps/apply_calibration_factors.py @@ -210,8 +210,8 @@ def main(data_file, calibration_file): dataManager.extract_and_load_dataset_metadata() dataset_metadata_df = dataManager.dataset_metadata_df.copy() - - keywords = ['ACSM_TOFWARE/', 'ACSM_JFJ_', '_timeseries.txt/data_table'] + STATION = load_project_yaml_files(projectPath,'campaignDescriptor.yaml')['station'] + keywords = ['ACSM_TOFWARE/', f'ACSM_{STATION}_', '_timeseries.txt/data_table'] find_keyword = [all(keyword in item for keyword in keywords) for item in dataset_metadata_df['dataset_name']] if sum(find_keyword) != 1: diff --git a/pipelines/steps/generate_flags.py b/pipelines/steps/generate_flags.py index db4f534..655f8d4 100644 --- a/pipelines/steps/generate_flags.py +++ b/pipelines/steps/generate_flags.py @@ -238,14 +238,14 @@ def main(data_file, flag_type): dataManager.extract_and_load_dataset_metadata() dataset_metadata_df = dataManager.dataset_metadata_df.copy() - + STATION = load_project_yaml_files(projectPath,'campaignDescriptor.yaml')['station'] # Find dataset associated with diagnostic channels if flag_type == 'diagnostics': - keywords = ['ACSM_JFJ_','_meta.txt/data_table'] + keywords = [f'ACSM_{STATION}_','_meta.txt/data_table'] find_keyword = [all(keyword in item for keyword in keywords) for item in dataset_metadata_df['dataset_name']] if flag_type == 'species': - keywords = ['ACSM_JFJ_','_timeseries.txt/data_table'] + keywords = [f'ACSM_{STATION}_','_timeseries.txt/data_table'] find_keyword = [all(keyword in item for keyword in keywords) for item in dataset_metadata_df['dataset_name']] # Specify source dataset to be extracted from input hdf5 data file