mirror of
https://gitea.psi.ch/APOG/acsmnode.git
synced 2025-06-26 01:01:09 +02:00
Moved get_metadata() from pipelines/steps/prepare_ebas_submission.py to utils.py
This commit is contained in:
@ -1,9 +1,22 @@
|
|||||||
|
import sys, os
|
||||||
|
|
||||||
|
try:
|
||||||
|
thisFilePath = os.path.abspath(__file__)
|
||||||
|
print(thisFilePath)
|
||||||
|
except NameError:
|
||||||
|
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
|
||||||
|
print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)")
|
||||||
|
#print("Otherwise, path to submodule DIMA may not be resolved properly.")
|
||||||
|
thisFilePath = os.getcwd() # Use current directory or specify a default
|
||||||
|
|
||||||
|
|
||||||
|
projectPath = os.path.normpath(os.path.join(thisFilePath, "..", "..",'..')) # Move up to project root
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import json
|
import json, yaml
|
||||||
import os
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
from utils import get_metadata
|
||||||
|
|
||||||
def join_tables(csv_files: list):
|
def join_tables(csv_files: list):
|
||||||
"""
|
"""
|
||||||
@ -43,22 +56,22 @@ def join_tables(csv_files: list):
|
|||||||
return acum_df
|
return acum_df
|
||||||
|
|
||||||
|
|
||||||
def get_metadata(path_to_file):
|
def load_acsm_to_ebas_dict():
|
||||||
|
|
||||||
path, filename = os.path.split(path_to_file)
|
# Implicit input
|
||||||
|
dict_file = os.path.normpath(os.path.join(projectPath,"pipelines/dictionaries/acsm_to_ebas.yaml"))
|
||||||
|
|
||||||
path_to_metadata = None
|
output_dict = {}
|
||||||
for item in os.listdir(path):
|
try:
|
||||||
if 'metadata.json' in item:
|
with open(dict_file, 'r') as stream:
|
||||||
path_to_metadata = os.path.normpath(os.path.join(path,item))
|
output_dict = yaml.load(stream, Loader=yaml.FullLoader)
|
||||||
metadata = {}
|
except Exception as e:
|
||||||
if path_to_file:
|
|
||||||
with open(path_to_metadata,'r') as stream:
|
|
||||||
metadata = json.load(stream)
|
|
||||||
|
|
||||||
metadata = metadata.get(filename,{})
|
print(f'Error loading {dict_file}: {e}')
|
||||||
|
return {}
|
||||||
|
|
||||||
|
return output_dict
|
||||||
|
|
||||||
return metadata
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
@ -68,8 +81,47 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
acum_df = join_tables([path1,path2])
|
acum_df = join_tables([path1,path2])
|
||||||
|
|
||||||
acum_df.to_csv('data/all_table.txt',sep='\t',index=None)
|
acsm_to_ebas = load_acsm_to_ebas_dict()
|
||||||
|
|
||||||
|
#print("Before renaming:", acum_df.columns)
|
||||||
|
#print("Renaming map keys:", acsm_to_ebas['renaming_map'].keys())
|
||||||
|
|
||||||
|
acum_df = acum_df.rename(columns=acsm_to_ebas['renaming_map'])
|
||||||
|
acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
|
||||||
|
|
||||||
|
reduced_set_of_vars = [key for key in acum_df.columns if 'factor' not in key]
|
||||||
|
print(reduced_set_of_vars)
|
||||||
|
acum_df.loc[:,reduced_set_of_vars].to_csv('data/JFJ_ACSM-017_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
|
||||||
|
|
||||||
|
# Count the number of NaT (null) values
|
||||||
|
num_nats = acum_df['ACSM_time'].isna().sum()
|
||||||
|
|
||||||
|
# Get the total number of rows
|
||||||
|
total_rows = len(acum_df)
|
||||||
|
|
||||||
|
# Calculate the percentage of NaT values
|
||||||
|
percentage_nats = (num_nats / total_rows) * 100
|
||||||
|
|
||||||
|
print(f"Total rows: {total_rows}")
|
||||||
|
print(f"NaT (missing) values: {num_nats}")
|
||||||
|
print(f"Percentage of data loss: {percentage_nats:.2f}%")
|
||||||
|
|
||||||
acum_df = join_tables([path3])
|
acum_df = join_tables([path3])
|
||||||
|
acum_df = acum_df.rename(columns=acsm_to_ebas['renaming_map'])
|
||||||
|
acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
|
||||||
|
|
||||||
acum_df.to_csv('data/all_table_flags.txt',sep='\t',index=None)
|
|
||||||
|
# Count the number of NaT (null) values
|
||||||
|
num_nats = acum_df['ACSM_time'].isna().sum()
|
||||||
|
|
||||||
|
# Get the total number of rows
|
||||||
|
total_rows = len(acum_df)
|
||||||
|
|
||||||
|
# Calculate the percentage of NaT values
|
||||||
|
percentage_nats = (num_nats / total_rows) * 100
|
||||||
|
|
||||||
|
print(f"Total rows: {total_rows}")
|
||||||
|
print(f"NaT (missing) values: {num_nats}")
|
||||||
|
print(f"Percentage of data loss: {percentage_nats:.2f}%")
|
||||||
|
|
||||||
|
acum_df.to_csv('data/JFJ_ACSM-017_FLAGS_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
|
@ -31,3 +31,20 @@ def record_data_lineage(path_to_output_file, projectPath, metadata):
|
|||||||
print(f"Metadata for calibrated data saved to {path_to_metadata_file}")
|
print(f"Metadata for calibrated data saved to {path_to_metadata_file}")
|
||||||
|
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
|
def get_metadata(path_to_file):
|
||||||
|
|
||||||
|
path, filename = os.path.split(path_to_file)
|
||||||
|
|
||||||
|
path_to_metadata = None
|
||||||
|
for item in os.listdir(path):
|
||||||
|
if 'metadata.json' in item:
|
||||||
|
path_to_metadata = os.path.normpath(os.path.join(path,item))
|
||||||
|
metadata = {}
|
||||||
|
if path_to_file:
|
||||||
|
with open(path_to_metadata,'r') as stream:
|
||||||
|
metadata = json.load(stream)
|
||||||
|
|
||||||
|
metadata = metadata.get(filename,{})
|
||||||
|
|
||||||
|
return metadata
|
Reference in New Issue
Block a user