Files
acsm-fairifier/notebooks/demo_acsm_pipeline.ipynb

146 lines
4.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"# Set up project root directory\n",
"\n",
"\n",
"notebook_dir = os.getcwd() # Current working directory (assumes running from notebooks/)\n",
"project_path = os.path.normpath(os.path.join(notebook_dir, \"..\")) # Move up to project root\n",
"dima_path = os.path.normpath(os.path.join(project_path, \"dima\")) # Move up to project root\n",
"\n",
"if project_path not in sys.path: # Avoid duplicate entries\n",
" sys.path.append(project_path)\n",
"if dima_path not in sys.path:\n",
" sys.path.insert(0,dima_path)\n",
"#sys.path.append(os.path.join(root_dir,'dima','instruments'))\n",
"#sys.path.append(os.path.join(root_dir,'dima','src'))\n",
"#sys.path.append(os.path.join(root_dir,'dima','utils'))\n",
"\n",
"#import dima.visualization.hdf5_vis as hdf5_vis\n",
"#import dima.pipelines.data_integration as data_integration\n",
"import subprocess\n",
"\n",
"\n",
"for item in sys.path:\n",
" print(item)\n",
"\n",
"CAMPAIGN_DATA_FILE = \"../data/collection_JFJ_2024_2025-03-17_2025-02-17.h5\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pipelines.steps.apply_calibration_factors import main as run_apply_calibration_factors\n",
"\n",
"path_to_data_file = CAMPAIGN_DATA_FILE\n",
"path_to_calibration_file = '../pipelines/params/calibration_factors.yaml'\n",
"dataset_name = 'ACSM_TOFWARE/2024/ACSM_JFJ_2024_timeseries.txt/data_table'\n",
"#command = ['python', 'pipelines/steps/apply_calibration_factors.py', path_to_data_file, dataset_name, path_to_calibration_file]\n",
"#status = subprocess.run(command, capture_output=True, check=True)\n",
"#print(status.stdout.decode())\n",
"\n",
"run_apply_calibration_factors(path_to_data_file,path_to_calibration_file)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pipelines.steps.generate_flags import main as run_generate_flags\n",
"path_to_data_file = CAMPAIGN_DATA_FILE\n",
"dataset_name = 'ACSM_TOFWARE/2024/ACSM_JFJ_2024_meta.txt/data_table'\n",
"path_to_config_file = 'pipelines/params/validity_thresholds.yaml'\n",
"#command = ['python', 'pipelines/steps/compute_automated_flags.py', path_to_data_file, dataset_name, path_to_config_file]\n",
"#status = subprocess.run(command, capture_output=True, check=True)\n",
"#print(status.stdout.decode())\n",
"run_generate_flags(path_to_data_file, 'diagnostics')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pipelines.steps.generate_flags import main as run_generate_flags\n",
"path_to_data_file = CAMPAIGN_DATA_FILE\n",
"dataset_name = 'ACSM_TOFWARE/2024/ACSM_JFJ_2024_meta.txt/data_table'\n",
"path_to_config_file = 'pipelines/params/validity_thresholds.yaml'\n",
"#command = ['python', 'pipelines/steps/compute_automated_flags.py', path_to_data_file, dataset_name, path_to_config_file]\n",
"#status = subprocess.run(command, capture_output=True, check=True)\n",
"#print(status.stdout.decode())\n",
"run_generate_flags(path_to_data_file, 'species')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import dima.src.hdf5_ops as dataOps \n",
"\n",
"dataManager = dataOps.HDF5DataOpsManager(CAMPAIGN_DATA_FILE)\n",
"dataManager.update_file('../data/collection_JFJ_2024_LeilaS_2025-02-17_2025-02-17')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataManager = dataOps.HDF5DataOpsManager(path_to_data_file)\n",
"dataManager.load_file_obj()\n",
"dataManager.extract_and_load_dataset_metadata()\n",
"df = dataManager.dataset_metadata_df\n",
"print(df.head(10))\n",
"dataManager.unload_file_obj()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "dash_multi_chem_env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}