Files
acsm-fairifier/pipelines/steps/visualize_datatable_vars.py

214 lines
8.3 KiB
Python

import os
import sys
import yaml
import argparse
try:
thisFilePath = os.path.abspath(__file__)
print(thisFilePath)
except NameError:
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
thisFilePath = os.getcwd()
projectPath = os.path.normpath(os.path.join(thisFilePath, "..", "..", '..'))
if projectPath not in sys.path:
sys.path.insert(0, projectPath)
import dima.src.hdf5_ops as dataOps
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
def visualize_table_variables(data_file_path, dataset_name, flags_dataset_name, x_var, y_vars,
yaxis_range_dict={'FlowRate_ccs': [0, 100]},
capture_renku_metadata=False,
workflow_name="visualize_flagged_variables"):
if not os.path.exists(data_file_path):
raise ValueError(f"Path to input file {data_file_path} does not exists. The parameter 'data_file_path' must be a valid path to a suitable HDF5 file. ")
APPEND_DIR = os.path.splitext(data_file_path)[0]
if not os.path.exists(APPEND_DIR):
APPEND_DIR = None
# Create data manager object
dataManager = dataOps.HDF5DataOpsManager(data_file_path)
try:
dataManager.load_file_obj()
dataset_df = dataManager.extract_dataset_as_dataframe(dataset_name)
except Exception as e:
print(f"Exception occurred while loading dataset: {e}")
finally:
dataManager.unload_file_obj()
try:
dataManager.load_file_obj()
flags_df = dataManager.extract_dataset_as_dataframe(flags_dataset_name)
if x_var not in dataset_df.columns and x_var not in flags_df.columns:
raise ValueError(f"Invalid x_var: {x_var}. x_var must exist in both {dataset_name} and {flags_dataset_name}.")
flags_df[x_var] = pd.to_datetime(flags_df[x_var].apply(lambda x: x.decode(encoding="utf-8")))
except Exception as e:
dataManager.unload_file_obj()
if APPEND_DIR:
if 'data_table' in flags_dataset_name:
flags_dataset_name_parts = flags_dataset_name.split(sep='/')
flags_dataset_name_parts.remove('data_table')
base_path = os.path.join(APPEND_DIR, '/'.join(flags_dataset_name_parts))
alternative_path = os.path.splitext(base_path)[0] + '_flags.csv'
if not os.path.exists(alternative_path):
raise FileNotFoundError(
f"File not found at {alternative_path}. Ensure there are flags associated with {data_file_path}."
)
flags_df = pd.read_csv(alternative_path)
if x_var not in dataset_df.columns and x_var not in flags_df.columns:
raise ValueError(f"Invalid x_var: {x_var}. x_var must exist in both {dataset_name} and {flags_dataset_name}.")
flags_df[x_var] = pd.to_datetime(flags_df[x_var].apply(lambda x: x))
finally:
dataManager.unload_file_obj()
if not all(var in dataset_df.columns for var in y_vars):
raise ValueError(f'Invalid y_vars : {y_vars}. y_vars must be a subset of {dataset_df.columns}.')
figs = []
output_paths = []
figures_dir = os.path.join(projectPath, "figures")
os.makedirs(figures_dir, exist_ok=True)
for var_idx, var in enumerate(y_vars):
fig = go.Figure()
fig.add_trace(go.Scatter(
x=dataset_df[x_var],
y=dataset_df[var],
mode='lines',
name=var,
line=dict(color='blue'),
opacity=0.8
))
var_flag_name = f"flag_{var}"
if var_flag_name in flags_df.columns:
ind_invalid = flags_df[var_flag_name].to_numpy()
invalid_starts = np.diff(np.concatenate(([False], ind_invalid, [False]))).nonzero()[0][::2]
invalid_ends = np.diff(np.concatenate(([False], ind_invalid, [False]))).nonzero()[0][1::2]
t_base = dataset_df[x_var]
y_min, y_max = dataset_df[var].min(), dataset_df[var].max()
max_idx = len(t_base) - 1
for start, end in zip(invalid_starts, invalid_ends):
if start >= end:
print(f"Warning: Skipping invalid interval — start ({start}) >= end ({end})")
continue
start = max(0, start)
end = min(end, max_idx)
fig.add_shape(
type="rect",
x0=t_base[start], x1=t_base[end],
y0=y_min, y1=y_max,
fillcolor="red",
opacity=0.3,
line_width=0,
layer="below"
)
fig.add_trace(go.Scatter(
x=[None], y=[None],
mode='markers',
marker=dict(size=10, color='red', opacity=0.3),
name='Invalid Region'
))
if var in yaxis_range_dict:
y_axis_range = yaxis_range_dict[var]
else:
y_axis_range = [dataset_df[var].min(), dataset_df[var].max()]
fig.update_layout(
title=f"{var} over {x_var}",
xaxis_title=x_var,
yaxis_title=var,
xaxis_range=[t_base.min(), t_base.max()],
yaxis_range=y_axis_range,
showlegend=True,
height=300,
margin=dict(l=40, r=20, t=40, b=40),
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
fig_path = os.path.join(figures_dir, f"fig_{var_idx}_{var}.html")
fig.write_html(fig_path)
output_paths.append(fig_path)
figs.append(fig)
# Display figure in notebook
fig.show()
inputs = []
outputs = []
parameters = []
if capture_renku_metadata:
from workflows.utils import RenkuWorkflowBuilder
inputs.append(("script_py", {'path': os.path.relpath(thisFilePath, start=projectPath)}))
inputs.append(("data_file", {'path': os.path.relpath(data_file_path, start=projectPath)}))
# Track alternative path if used
if 'alternative_path' in locals():
inputs.append(("alternative_flags_csv", {
'path': os.path.relpath(alternative_path, start=projectPath),
'implicit' : True
}))
for fig_path in output_paths:
outputs.append((os.path.splitext(os.path.basename(fig_path))[0],
{'path': os.path.relpath(fig_path, start=projectPath)}))
parameters.append(("dataset_name", {'value': dataset_name}))
parameters.append(("flags_dataset_name", {'value': flags_dataset_name}))
parameters.append(("x_var", {'value': x_var}))
parameters.append(("y_vars", {'value': y_vars}))
workflowfile_builder = RenkuWorkflowBuilder(name=workflow_name)
workflowfile_builder.add_step(
step_name=workflow_name,
base_command="python",
inputs=inputs,
outputs=outputs,
parameters=parameters
)
workflowfile_builder.save_to_file(os.path.join(projectPath, 'workflows'))
return 0
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Visualize table variables and associated flags.")
parser.add_argument("data_file_path", type=str, help="Path to HDF5 file")
parser.add_argument("dataset_name", type=str, help="Dataset name in HDF5 file")
parser.add_argument("flags_dataset_name", type=str, help="Flags dataset name")
parser.add_argument("x_var", type=str, help="Time variable (x-axis)")
parser.add_argument("y_vars", nargs='+', help="List of y-axis variable names")
parser.add_argument("--capture_renku_metadata", action="store_true", help="Flag to capture Renku workflow metadata")
args = parser.parse_args()
visualize_table_variables(
data_file_path=args.data_file_path,
dataset_name=args.dataset_name,
flags_dataset_name=args.flags_dataset_name,
x_var=args.x_var,
y_vars=args.y_vars,
capture_renku_metadata=args.capture_renku_metadata
)