# -*- coding: utf-8 -*- """ Created on Mon May 27 11:45:19 2024 @author: bertoz_b """ import time import pandas as pd import numpy as np import sys import pickle import dask.dataframe as dd from dask.distributed import Client from dask_jobqueue import SLURMCluster import datetime import struct import zipfile from dask import delayed import itertools import gc from SP2XR_toolkit import * #%% Define directories and folders parent_directory = '/data/user/bertoz_b/SP2XR/data/NyA' source_directory = parent_directory + '/SP2XR_files' target_directory_pbp_parquet = parent_directory + '/SP2XR_pbp_parquet' filter_string_pbp = 'PbP' target_directory_sp2b_parquet = parent_directory + '/SP2XR_sp2b_parquet' filter_string_sp2b = 'sp2b' target_directory_hk_parquet = parent_directory + '/SP2XR_hk_parquet' filter_string_hk = 'hk' meta_file_pbp = pd.read_parquet('/data/user/bertoz_b/SP2XR/final_test_script_and_data/meta_files/pbp_meta.parquet', engine='fastparquet') meta_file_hk = pd.read_parquet('/data/user/bertoz_b/SP2XR/final_test_script_and_data/meta_files/hk_meta.parquet', engine='fastparquet') meta_file_sp2b = pd.read_parquet('/data/user/bertoz_b/SP2XR/final_test_script_and_data/meta_files/meta_sp2b_20240619.parquet', engine='pyarrow') matching_files_pbp = find_files(source_directory, filter_string_pbp) matching_files_hk = find_files(source_directory, filter_string_hk) # matching_files_sp2b = find_files(source_directory, filter_string_sp2b)[10000:50000] #%% PBP: From csv/zip to parquet start_time = time.time() cluster = SLURMCluster(cores=64, processes=64, memory="128GB", walltime="05:59:00", job_extra_directives=['--partition=daily'] ) cluster.scale(1) client = Client(cluster) print(client.dashboard_link) i = 0 for chunk_pbp in chunks(matching_files_pbp, 100): print(f'chunk: {i}') dask.compute(*[read_csv_files_with_dask_2(f, meta_file_pbp, meta_file_hk, target_directory_pbp_parquet) for f in chunk_pbp]) gc.collect() i += 1 client.close() cluster.close() print("--- %s seconds ---" % (time.time() - start_time)) #%% HK: From csv/zip to parquet start_time = time.time() cluster = SLURMCluster(cores=16, processes=16, memory="128GB", walltime="07:59:00", job_extra_directives=['--partition=daily'] ) cluster.scale(1) client = Client(cluster) print(client.dashboard_link) i = 0 for chunk_hk in chunks(matching_files_hk, 100): print(f'chunk: {i}') dask.compute(*[read_csv_files_with_dask_2(f, meta_file_pbp, meta_file_hk, target_directory_hk_parquet) for f in chunk_hk]) gc.collect() i += 1 client.close() cluster.close() print("--- %s seconds ---" % (time.time() - start_time)) #%% SP2B: From csv/zip to parquet start_time = time.time() cluster = SLURMCluster(cores=64, processes=64, memory="128GB", # 2GB/process should sufficient walltime="02:59:00", job_extra_directives=['--partition=daily'] ) cluster.scale(1) client = Client(cluster) print(client.dashboard_link) sp2b_orig = read_and_process_sp2b(matching_files_sp2b, target_directory_sp2b_parquet, meta_file_sp2b) client.close() cluster.close() print("--- %s seconds ---" % (time.time() - start_time)) #%% PBP: from single particle to specified dt # config_path = '/data/user/bertoz_b/SP2XR/data/Granada/SP2XR_files/20240612/20240612061852' config_path = '/data/user/bertoz_b/SP2XR/data/NyA/SP2XR_files/20200922/20200922064903' files_pbp = get_file_dict(target_directory_pbp_parquet, 'PbP') files_hk = get_file_dict(target_directory_hk_parquet, 'HK') list_pbp = [] list_hk = [] for key in files_pbp: if key in files_hk: list_pbp.append(files_pbp[key]) list_hk.append(files_hk[key]) start_time = time.time() cluster = SLURMCluster(cores=8, processes=8, memory="128GB", walltime="10:59:00", job_extra_directives=['--partition=general'] ) cluster.scale(1) client = Client(cluster) print(client.dashboard_link) i = 0 for chunk_pbp, chunk_hk in zip(chunks(list_pbp, 50), chunks(list_hk, 50)): print(f'chunk: {i}') dask.compute(*[process_new_test(dir_path_pbp, dir_path_hk, dt=1, rho_eff=1800, BC_type='constant_effective_density', inc_calib_curve='polynomial', inc_calib_params=[0.05, 2.0470000507725255e-07], scatt_calib_curve='powerlaw', scatt_calib_params=[17.21724257, 0.16908516, -1.49431104], config_file_dir=config_path, minM=0.3, maxM=400, n_incbins=50, minOptD=100, maxOptD=500, n_scattbins=20, minTL=-10, maxTL=400, n_timelag=100, path_parquet='/data/user/bertoz_b/SP2XR/data/NyA/SP2XR_pbp_processed_new/', save_final_data=True) for dir_path_pbp, dir_path_hk in zip(chunk_pbp, chunk_hk)]) gc.collect() i += 1 client.close() cluster.close() print("--- %s seconds ---" % (time.time() - start_time)) #%% PBP: Resample dir_pbp_1s = list_first_level_subdirs('/data/user/bertoz_b/SP2XR/data/NyA/SP2XR_pbp_processed_new') start_time = time.time() cluster = SLURMCluster(cores=8, processes=8, memory="32GB", walltime="00:20:00", job_extra_directives=['--partition=hourly'] ) cluster.scale(1) client = Client(cluster) print(client.dashboard_link) i = 0 for chunk_pbp in chunks(dir_pbp_1s, 50): print(f'chunk: {i}') dask.compute(*[resample_to_dt(dir_path_pbp, dt=60, path_parquet='/data/user/bertoz_b/SP2XR/data/NyA/SP2XR_pbp_processed_new_1min/', save_final_data=True) for dir_path_pbp in chunk_pbp]) gc.collect() i += 1 client.close() cluster.close() print("--- %s seconds ---" % (time.time() - start_time)) #%% SP2B: Process parquet files # This is a very old function, it might need revisiting start_time = time.time() cluster = SLURMCluster(cores=8, processes=8, memory="16GB", walltime="00:30:00", job_extra_directives=['--partition=hourly'] ) cluster.scale(1) client = Client(cluster) print(client.dashboard_link) sp2_raw_traces = dd.read_parquet('/data/user/bertoz_b/SP2XR/data/NyA/SP2XR_sp2b_parquet', calculate_divisions=True)#.repartition(freq='1h') test2 = process_sp2b_parquet(sp2_raw_traces, scatt_sat_threshold = 1e9, inc_sat_threshold = 1e8, scatt_noise_threshold = 1e4, end_bkgr_ch0 = 100, end_bkgr_ch1 = 350, output_path = '/data/user/bertoz_b/SP2XR/data/NyA/SP2XR_sp2b_processed' ) client.close() cluster.close() print("--- %s seconds ---" % (time.time() - start_time))