

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 1

psi_multi_stream_daq
Documentation

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 2

Content

Table of Contents
1 Introduction .. 4

1.1 Feature List .. 4

1.2 Memory Organization .. 5

2 Architecture ... 6

2.1 Overview .. 6

2.2 Input Logic ... 7

2.3 Acquisition Logic.. 8

2.3.1 Context RAM ... 8

2.3.2 Control State Machine ... 9

2.3.3 DMA Logic ... 11

2.4 Memory Interface Master .. 12

3 Interfaces ... 13

3.1 Generics .. 13

3.1.1 Common Generics ... 13

3.1.2 Generics for AXI-4 Version only .. 13

3.1.3 Generics for Tosca2 Version only ... 13

3.1.4 Generic Configuration Guide ... 14

3.2 Ports .. 15

3.2.1 Common Ports ... 15

3.2.2 Ports for AXI-4 Version only .. 15

3.2.3 Ports for Tosca2 Version only ... 16

3.3 Address Map ... 17

3.3.1 Overview .. 17

3.3.2 ACQCONF – Acquisition Configuration .. 17

3.3.3 CTXMEMn – Context Memory for Stream N ... 24

3.3.4 WNDWn – Window Memory for Stream N .. 25

4 Implementation Details.. 27

4.1 Clock Crossings ... 27

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 3

Figures
Figure 1: Memory organization .. 5

Figure 2: Data in window buffers may be wrapped ... 5

Figure 3: Architecture overview ... 6

Figure 4: Input logic .. 7

Figure 5: Acquisition logic .. 8

Figure 6: DAQ control state machine ... 9

Figure 7: DMA logic .. 11

Figure 8: Memory interface master .. 12

Figure 9: Continuous Recording Mode .. 22

Figure 10: Trigger-Mask Recording Mode ... 22

Figure 11: Single Shot Recording Mode .. 22

Figure 12: Manual Recording Mode ... 22

Figure 13: Clock Crossings .. 27

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 4

1 Introduction
The purpose of the psi_multi_stream_daq is to implement one data acquisition component that fulfills all
common requirements for recording data of multiple streams in an external memory.
The bus-interfaces are properly separated, so the same logic can be used for different bus systems. Currently
the component is implemented for AXI4 (standard) and tosca2 (IOXOS specific bus system).

1.1 Feature List
• Separate clock domain for each stream

• Separate clock domains for configuration interface and memory interface

• Trigger signal handled per stream

• Up to 32 windows per stream (i.e. up to 32 trigger events can be recorded without overwriting existing
recordings)

• Buffer configuration at runtime through software (address of the buffer, buffer size, etc.)

• Optional protection of recorded data (data is only overwritten after software acknowledged that the
data was read)

• Buffers can be used linearly or as ring-buffers

• 64-bit internal datapath, bandwidth is 8-byte per clock cycle

• Each stream is configurable separately

o Width (16, 32 or 64 bits)
o Input buffer depth

o Priority (3 different levels)

• Configurable burst size for memory access
o Maximum burst size (to not exceed limitations of the bus-system or memory controller)

o Minimum burst size (to not waste memory performance by doing many small transfers)

• 32-bit address range for external memory (4 GB)

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 5

1.2 Memory Organization
All data recorded is written into the external memory. There is a separate memory region reserved for each
stream (called buffer). Each buffer is split into multiple windows that hold data for individual trigger events.
Buffer and window sizes are configurable per stream. The same applies for the buffer base-address but not to
the window base-addresses (windows are placed back to back in the memory).

The buffer organization is shown in the figure below.

Figure 1: Memory organization

Each window can be regarded as ring-buffer into which data is written continuously. After a trigger, the
amount of post-trigger data is written and afterwards the next window (the next ring-buffer) is selected and the
same procedure starts again.
Since every window is a ring-buffer, the first sample may not be stored at the first address of the window but
the data may be wrapped as shown in the figure below. The software is responsible for unwrapping the data
according to the address of the last sample, which can be read via the register bank. The software is also
responsible for detecting which sample is the trigger-sample based on the last sample address and the
configured amount of post-trigger data to record.

Note that each window must have the size of an integer number of samples.

Figure 2: Data in window buffers may be wrapped

Optionally it is possible to disable the ring-buffer behavior and store data linearly. In this case, the recording
for one window is finished and the next window is selected if either a trigger occurs or the window is full.

Window 0

Window 1

Window N

0xAB000000

0xAB00FFFF
0xAB010000

0xAB01FFFF

Buffer

Buffer 0

Buffer 1

Buffer N

0xAB000000

0xAB0FFFFF
0x23000000

0x23007FFF

Sample 0
Sample 1

Sample N

Sample N+2

Sample M

Sample N+10xAB000000

0xAB00FFFF

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 6

2 Architecture

2.1 Overview
The figure below gives a rough overview over the architecture.

Figure 3: Architecture overview

For each stream there is some separate input logic required that does width conversion, trigger handling,
clock-crossing and buffering of the data.
The acquisition logic is responsible for writing the data received to the correct memory addresses in an
efficient way.

The memory interface master is implemented in a separate entity to allow interfacing with different bus
standards such as Tosca-SMEM or AXI4.
To sustain high bandwidths, all logic must be designed in a way that the memory interface can be kept busy
all the time if required. This means that data transfers have to be executed in parallel to the decisions about
the next data transfers.

Back-pressure is handled through the whole chain, so the READY handshaking at the stream input goes low
if not all data can be written to the memory. This is crucial since not handling back-pressure could lead to
undetected loss of data.

The diagram also shows the clock-domains. All recording logic is running on clock domain of the memory
interface to avoid unnecessary overhead due to clock-crossings in the main datapath. Since this is the main
clock domain, it is also called “acquisition clock domain” in this document.

DAQ-Logic

MEM-IF
master

64-bit

64-bit

64-bit

n-bit

n-bit Memory
Controller

n-bit Input Logic

Clk0

ClkN

ClkMem

Reg-IF
slave

ClkReg

Input Logic

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 7

2.2 Input Logic
The input logic is implemented per stream. Its main responsibility is to buffer the input data and make it
available to the acquisition logic in the correct format (64-bit wide, acquisition clock domain).
It also does the framing of the data. After the configured number of post-trigger samples was recorded, it ends
the recording frame by asserting TLAST (end of frame signal according to AXI-S specification). Additionally
the input logic ends a frame when no samples arrive for a configured timeout to ensure all data is written to
the memory eventually. The reason for ending a frame (timeout or trigger) is sent to the acquisition logic
together with the frame data.
For each trigger input, the timestamp is sampled ad stored in a FIFO. The sampling of the timestamp
happens in the source clock domain to ensure jitter-free operation. A FIFO is required since data for multiple
trigger events may be stored in the data FIFO. The resource usage of this concept is acceptable because the
timestamp FIFO is shallow and can therefore be realized in distributed RAMs.

Figure 4: Input logic

Since the end of the frame may not be aligned to a 64-bit word, some data may be stuck in the width
conversion. To prevent this, the width conversion is flushed at the end of a recording. This leads to not all
data in the last 64-bit word being valid. The information about what parts of a 64-bit word are valid is
transferred to the acquisition logic together with the data.
The FIFO status (fill level) is made available to the acquisition logic, so it can transfer the data to the external
memory whenever enough data for an efficient burst is available.
Additionally the acquisition logic can see if there is a TLAST (end of frame) in the FIFO. In this case the data
must be written to the external memory independently of the fill level to make it available to the software that
reads it. It is possible that triggers arrive quickly one after the other, so there may be multiple TLAST signals
in the FIFO. Therefore the framing logic counts how many TLAST signals are in the FIFO and only de-asserts
“Has Tlast” only after all frames are read from the FIFO.
Note that triggers arriving during the recording of post-trigger data of the last trigger event are ignored.

If a trigger pulse arrives between two samples, the sample after the trigger pulse is regarded as “trigger
sample”.

Input Logic

64-bitn/64n-bit

Framing Logic

flush
type

FIFO Data (AXI-S)

FIFO Status

Data

Trigger Has Tlast

tlast

TS CurrentTimestamp 64-bit

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 8

2.3 Acquisition Logic
The main goal of the acquisition logic is to write data to the external memory as efficiently as possible. The
bandwidth shall only be limited by Tosca, so data transfers must happen back-to-back and no time must be
lost when taking the decision what data to transfer next. This requirement is accounted for by separating the
control state machine that decides about what data to transfer next from the DMA logic that actually executes
the data transfers.
With this setup, the control state machine can be kept simple because it is allowed to take a few clock cycles
to decide about the next data transfer. During that time, the DMA logic stays running and data keeps flowing.

Figure 5: Acquisition logic

2.3.1 Context RAM
For every data stream the buffer configuration and status must be stored. This requires many bits and it would
therefore not be efficient to implement this storage in registers. Not only because it just requires a lot of flip-
flops, but also because many LUTs would be wasted for multiplexing all these registers. Therefore all that
information is stored in a context RAM. This is a dual-port RAM. One port is accessed by the control state
machine to obtain the current write pointer and the configuration of the buffer to use for the next transfer. The
other port is accessible over the register bank to configure the buffers and read information such as the
location of the last sample of a frame in the buffer.

Context RAM

Control
Statemachine

DMA Logic

TMEM
Interface

resp

AccessInfo

Done

Register Bank

Write-Info (AXI-S)

cmd

Done

Irq

FIFO Data (AXI-S)

FIFO Status

TMEM
DAQ-Logic

64-bit
N x 64-bit

Has Tlast N-bit

N
Current TS N

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 9

2.3.2 Control State Machine
The figure below shows the control state-machine. Note that the figure only depicts the concept but may not
contain all substates that are required for implementation reasons.

Figure 6: DAQ control state machine

Prio1
FIFO AlmFull

Prio2
FIFO AlmFull

Prio3
FIFO AlmFull

Tlast Check

Read Buffer
Context Start Transfer

Idle

Reset

Data Available

No ongoing cmd
Check

Responses

Read Buffer
Context

Calculate
Response

Write Buffer
context

Data Available

Ongoing cm
d

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 10

The state machine checks whether enough data for the minimum configured burst size is available from any
FIFO. This check is done for all three priorities, one after the other. This way it is ensured that the streams
with highest priority get the access first if data is available.
The state machine ensures that only one DMA command per stream is started by masking streams with
ongoing commands before arbitrating. Since the state machine runs faster than the commands are executed,
this also leads to each stream getting a fair share of the bandwidth: If data on all streams of a given priority is
available, for each stream one command is scheduled before waiting for the responses.

If data on a higher priority stream is available, lower priority streams are not checked, even if no command
can be issued on the high priority stream. This is required since the state machine would otherwise usually
just always schedule one command per stream, independently of the priority since the state machine
operates way faster than the commands can be executed.
If no buffer has enough data for an efficient burst, the state machine checks if any stream completed a
recording (FIFO contains TLAST).
The state machine is also responsible for ensuring that all data transfers are aligned correctly. This includes
not requesting transfers that go over 4k boundaries or window boundaries.

If a data transfer has to be executed, the context for the corresponding stream is read from the context RAM
and the data transfer is started by sending the corresponding stream to the DMA logic. The command
contains the following information:

• Start address of the transfer

• Maximum transfer size in bytes (limited by maximum burst length or end-address of the buffer)

• Stream number
At the end of a transfer, the DMA logic passes its response back to the control state machine. The response
contains the following information:

• Stream number

• Actual transfer size in bytes

• Information about whether a the recording of this window was completed in the transfer (TLAST +
type=end of recording)

If there are pending responses from the DMA logic, the state machine updates the context memory
accordingly before it starts the next transfer. Since it is crucial that the context memory is updated before the
next transfer on the same stream is started, the state machine can only start transfers on different streams
simultaneously. As a result, the full memory bandwidth cannot be achieved for single-stream systems.
The state machine also fires interrupts whenever the recording of one window is completed and all related
data is written to the memory. For implementation reasons, the order of the DMA response and the “Done”
signal for the memory interface is not known. Therefore some synchronization logic is implemented that
ensures that IRQs are only fired if the response from both sides is received.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 11

2.3.3 DMA Logic
The DMA Logic is responsible for transferring the data for a given stream to the bus interface that will write it
into the memory. It contains a small command FIFO that can store multiple commands to allow executing
transfers back-to-back. Another small FIFO contains the responses. Both FIFOs support one entry per
stream, so they are small and can be implemented in distributed memory.
The control logic counts the exact number of bytes transferred because this information is required for the
response.
The actual length of the transfer is detected by the DMA logic since the transfer must be stopped whenever
the stream FIFO is empty or a TLAST arrives (in this case the next sample is potentially transferred to another
window buffer).
The state machine may request transfers that are not 64-bit aligned. This can for example happen if a timeout
occurred that cause all data to be written to the memory. If the size of “all data” is not a multiple of 64-bits, the
next write is not 64-bit aligned. As a result data alignment logic is required.
Another case that increases the complexity of the DMA logic is that the size of the full transfer is not
necessarily a multiple of 64-bits. This situation usually occurs at window boundaries, either because the
boundaries are not 64-bit aligned or because the transfers went out of alignment because of timeouts. In this
situation some bytes of the last QWORD must be saved for the next transfer. For this purpose the remaining
data is stored in the Remaining RAM.
To allow for frame-based operation the timeout in the input stage can be configured to be active only between
the start of a frame transmission and the corresponding TLAST. After a TLAST, the timeout counter is cleared
and turned off until the next data sample is received. Furthermore, the timeout can be disabled completely.
One important corner case occurs when the last few bytes of a window finished by a trigger are stored in the
Remaining RAM. In this case the input logic does not see the TLAST anymore (it was already extracted from
the FIFO) but the data is also not yet in the memory. To handle this case, the DMA logic has an output that
says if any data related to a TLAST is stored in the remaining RAM, so the state machine can schedule
another transfer quickly.

Figure 7: DMA logic

Cmd-FIFO

Control Logic
Resp-FIFO

FIFO Data [0]

FIFO Data [N]

tlast

word enables

DMA Logic

Command Response

Write-Info (AXI-S)

Data
Alignment

Remaining
RAM

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 12

2.4 Memory Interface Master
The memory interface master implements write transactions only because no read operations are required for
the data-recorder.
Two interface types are implemented:

• Tosca2 (IOXOS specific)

• AXI-4 (Industry Standard)

The figure below shows the architecture of the memory interface master.

Figure 8: Memory interface master

Write commands are stored in a small FIFO with one entry per stream, so operations of all streams can be
pending at the same time.
For tosca SMEM: Since Tosca SMEM does not implement any throttling, write transfers are only started when
all data of the full transfer is in the write data FIFO. Only in this situation it is clear that data can be sent to
Tosca in one single burst. For AXI-4, the implementation is the same for simplicity reasons, even if throttling
would be available for AXI-4.

Completion of a transfer is signaled using the done port. In the context of the psi_multi_stream_daq this
information will be used to trigger interrupts.
Because of timeouts, it can happen that the write data is not 64-bit aligned but the most bus standards require
all access to be aligned (in this case to 64-bits). Therefore the memory interface master ensures 64-bit
alignment by shifting the write data accordingly if the bus requires alignment.

WrData-FIFO

RdInfo-FIFO

Logic <bus>
Write-Data (AXI-S)

Write Done

Write-Info (AXI-S)

MEM-IF Master

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 13

3 Interfaces

3.1 Generics

3.1.1 Common Generics
Streams_g integer Number of data streams
StreamWidth_g integer array Width of each stream (must be 64, 32 or 16)
StreamPrio_g integer array Priority of each stream (1..3, 1 is highest)
StreamBuffer_g integer array Buffer depth per stream (in samples at input width).
StreamTimeout_g real array Timeout for each stream (see 2.2) in seconds
StreamClkFreq_g real array Clock frequency for each stream in Hz
StreamTsFifoDepth_g integer array Depth of the timestamp FIFO per stream
 Should be set to the maximum number of triggers expected during
 StreamBuffer_g[N] input samples.
StreamUseTs_g boolean array For each stream the timestamp logic can be enabled or disabled in
 order to save resources. If disabled, the timestamp is always
 0xFF…F
MaxWindows_g integer Maximum number of windows per stream (applies for all streams,
 range is 0..32)
MinBurstSize_g integer Minimum burst size on the Memory interface (in words of the
 memory interface, i.e. 64-bit words for Tosca, AxiDataWidth_g-
 words for AXI).
 For good bandwidth results, this value should be >= 64
MaxBurstSize_g integer Maximum burst size on the memory interface (in words of the
 memory interface, i.e. 64-bit words for Tosca, AxiDataWidth_g-
 words for AXI).
 For Tosca this value must be <= 512

3.1.2 Generics for AXI-4 Version only
AxiDataWidth_g integer Width of the AXI master interface to the memory in bits
AxiMaxBurstBeats_g integer Maximum beats in one AXI burst (usually 256, 16 for AXI-3)
AxiMaxOpenTransactions_g integer Maximum pending transactions on the AXI bus
AxiFifoDepth_g integer Depth of the AXI-side buffer for the memory interface (in AXI
 words)

3.1.3 Generics for Tosca2 Version only
There are no tosca2 specific generics.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 14

3.1.4 Generic Configuration Guide
Check the list of considerations below to choose generics properly:

• If MinBurstSize_g is chosen to the same value as MaxBurstSize_g, the core always writes bursts of
the same size except for flushing the data out after a trigger. This results in bursts being 4kB aligned
after the first crossing of a 4kB boundary. If MinBurstSize_g/MaxBurstSize_g are chosen to 4kB (or an
integer part of it), no bursts have to be split at 4kB boundaries, so bandwidth is optimally utilized.

• Setting MinBurstSize_g and MaxBurstSize_g to different values generally leads to more transfers
begin unaligned to 4kB boundaries and hence transfers have to be split into multiple parts more often.
This results in slightly more overhead on the memory bus.

• Setting MinBurstSize_g low can lead to high overhead since many small transfers are executed over
the memory bus.

• The psi_multi_stream_daq only writes data to the memory if either MinBurstSize_g words are buffered
in the input buffer or a trigger arrives. As a result, the StreamBuffer_g setting must be at least
MinBurstSize_g. Otherwise the core will never write data because even a full buffer contains too little
data for the smallest allowed burst.

• Choosing MaxBurstSize_g higher than the maximum AXI burst allowed by AxiMaxBurstBeats_g does
not help much with bandwidth. It also does not harm but there is not much benefit from it.

• AxiFifoDepth_g should be chosen at least 2x AxiMaxBurstBeats_g in order to have space available in
the FIFO while a burst of maximal size is pending but access to the bus is not yet possible.

• When using different StreamPrio_g, be aware that no low-prio stream can write any data to the
memory until all pending data of high priority streams is written. If MinBurstSize_g is chosen low, high-
priority streams may have data pending all the time.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 15

3.2 Ports

3.2.1 Common Ports
Signal Direction Width Description
Data Streams

Str_Clk Input Streams_g Clock (one clock per stream)

Str_Data Input Streams_g x 64

Stream data. For streams with less than 64 bit width,
only the bits [W-1:0] are used and all other bits can
be left unconnected.
Handshaking via StrVld and StrRdy

Str_Ts Input Streams_g x 32 Timestamp input (sampled on Str_Trig = ‘1’)

Str_Vld Input Streams_g AXI-S handshaking signal (per stream)

Str_Rdy Input Streams_g AXI-S handshaking signal (per stream)

Str_Trig Input Streams_g

Trigger signal (per stream). The trigger does not
necessarily have to be aligned with StrData (i.e. it
can occur independently of the handshaking). In this
case the next sample arriving after the trigger is
regarded as “trigger sample”.

Miscellaneous

Irq Output 1 Interrupt output (leven sensitive, high active)
Synchronous to Tmem_Clk

3.2.2 Ports for AXI-4 Version only
Register Interface

S_Axi_Aclk Input 1 Register interface clock

S_Axi_Aresetn Input 1 Register interface reset (low active)

S_Axi_* * * AXI signals, see AXI specification

Memory Interface

M_Axi_Aclk Input 1 Memory interface clock

M_Axi_Aresetn Input 1 Memory interface reset (low active)

M_Axi_* * * AXI signals, see AXI specification

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 16

3.2.3 Ports for Tosca2 Version only
Register Interface

Tmem_Clk Input 1 TMEM interface clock

Tmem_Rst Input 1 TMEM interface reset

AcqTmem.PIPE* Output 2 TMEM read latency indicator

AcqTmem.BUSY* Output 1
TMEM throttling
Not working according to Patric Bucher, so it will not
be used.

TmemAcq.ADD* Input 24 TMEM byte address (64-bit aligned)

TmemAcq.DATW* Input 64 TMEM write data

AcqTmem.DATR* Output 64 TMEM read data

TmemAcq.ENA* Input 1 TMEM enable

TmemAcq.WE* Input 8 TMEM byte enable

Memory Interface

Smem_Clk Input 1 SMEM interface clock

Smem_Rst Input 1 SMEM interface reset

AcqSmem.WREQ* Output 2 SMEM write request

SmemAcq.WACK* Input 2 SMEM write acknowledge

AcqSmem.WSIZ* Output 10 SMEM write transfer size in bytes

AcqSmem.WADD* Output 32 SMEM write address (byte address)

AcqSmem.WDAT* Output 64 SMEM write data

AcqSmem.WBE* Output 8 SMEM write byte enable

AcqSmem.WCCMD* Output 2 SMEM write cache control

AcqSmem.WCTAG* Output 32 SMEM write cache tag

AcqSmem.RREQ* Output 2 SMEM read request

SmemAcq.RACK* Input 2 SMEM read acknowledge

AcqSmem.RSIZ* Output 10 SMEM read size in bytes

AcqSmem.RADD* Output 32 SMEM read address (byte address)

SmemAcq.RDAT* Input 64 SMEM read data
* This is not an individual port but a signal within a record

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 17

3.3 Address Map
The address map is preliminary and may change during development.

The following conventions are used for register field descriptions:
R Read only (do not modify content!)
W Write only
RW Read/Write
RCW1 Read, clear by writing ‘1’
SPCL Special handling (other than mentioned above)

3.3.1 Overview
All registers are 32-bit wide.

Byte Address Name Description
0x000000 ACQCONF Acquisition configuration registers
0x001000
+ 0x20 * N CTXMEMn Context memory for stream N

0x004000
+ 0x10 * W * N WNDWn Window memory for stream N

N = stream number
W = window number

3.3.2 ACQCONF – Acquisition Configuration

3.3.2.1 Overview
Byte Address
Offset Name Description

0x000 GCFG General configuration register

0x004 GSTAT General status register

0x010 IRQVEC Interrupt vector register

0x014 IRQENA Interrupt enable register

0x020 STRENA Data stream enable register

0x024 ACPCFG AXI cache and protection configuration

- - Reserved

0x200 + 0x10 * N MAXLVLn Maximum FIFO level for stream N

0x204 + 0x10 * N POSTTRIGn Post-trigger samples for stream N

0x208 + 0x10 * N MODEn Operation mode of stream N

0x20C + 0x10 * N LASTWINn Last window written to memory for stream N
N = stream number

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 18

3.3.2.2 GCFG – General Configuration Register (0x000)

Field Bit(s) Type Reset Description

ENA 0 RW 0 1 Data acquisition is enabled
0 Data acquisition is disabled

IRQENA 8 RW 0 1 Interrupts are enabled
0 Interrupts are disabled

If IRQENA is zero, interrupts are still detected (i.e. IRQVEC is set) but the interrupt output is not asserted.

3.3.2.3 GSTAT – General Status Register (0x004)

Field Bit(s) Type Reset Description

TBD - - - -

3.3.2.4 IRQVEC – Interrupt Vector Register (0x010)

Field Bit(s) Type Reset Description

IRQVECn 31:0 RCW1 0
Interrupt flag for each stream
1 Interrupts is pending for the related stream
0 No interrupts is pending for the related stream

The corresponding bit in the IRQVEC is set whenever the recording of a window is completed. Usually this is
the case when a trigger occurred but depending on other settings, it can also happen if one window is full
(SCFG[RINGBUF] = ‘0’).

3.3.2.5 IRQENA – Interrupt Enable Register (0x014)

Field Bit(s) Type Reset Description

IRQENAn 31:0 RW 0
Interrupt enable for each stream.
1 Interrupts are enabled for a given stream
0 Interrupts are disabled for a given stream

If IRQENAn is zero, interrupts are still detected (i.e. IRQVEC is set) but the interrupt output is not asserted.

3.3.2.6 STRENA – Data Stream Enable Register (0x020)

Field Bit(s) Type Reset Description

STRENAn 31:0 RW 0
Enable for each stream.
1 Data stream is enabled (data is recorded)
0 Data stream is disabled

If a data stream is disabled, the input FIFO is cleared automatically to ensure no old data is persisting in the
FIFO after it is re-enabled.
Disabling a stream also disables the assertion of the related bit in IRQVEC. As a result, the last IRQ of a
stream disabled in full operation may be lost. This is not critical since the arrival of this IRQ is a race condition
anyway.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 19

3.3.2.7 ACPCFG – AXI Cache and Protection Configuration Register (0x024)

Field Bit(s) Type Reset Description

ARPROT 2:0 RW 0 ARPROT signal of the AXI interface

ARCACHE 7:4 RW 0 ARCACHE signal of the AXI interface

AWPROT 10:8 RW 0 AWPROT signal of the AXI interface

AWCACHE 15:12 RW 0 AWCACHE signal of the AXI interface

This register configures the way cache and protection support is configured on both read and write of the AXI
interface. The bits will be applied 1:1 to the corresponding AXI interface signal, i.e. cache support is
configured in a quasi-static way. A dynamic transfer by transfer configuration is not yet implemented. Please
see the AXI documentation for more details about the meaning of the bits.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 20

3.3.2.8 MAXLVLn – Maximum FIFO level for stream N (0x200 + 0x10*N)

Field Bit(s) Type Reset Description

LVL 31:0 SPCL 0

Maximum level of the input FIFO for the corresponding
stream.
The maximum level register can be cleared by writing to
it.

The maximum FIFO level is obtained to allow users to check if there was potentially a loss of data (if the FIFO
was full).
It also can be used to measure how much margin exists: If the maximum FIFO level is close to full, the margin
is small and the buffer size may have to be changed to improve system stability. If the maximum FIFO level is
close to empty, not the full buffer is used and the buffer size could possibly be reduced to save resources.

3.3.2.9 POSTTRIGn – Post-trigger samples for stream N (0x204 + 0x10*N)

Field Bit(s) Type Reset Description

POSTTRIG 31:0 RW 0 Number of post-trigger samples to record for the
corresponding stream.

The trigger sample itself is not regarded as post-trigger sample. So if POSTTRIG is set to 7, the trigger
sample plus 7 post trigger samples is recorded.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 21

3.3.2.10 MODEn – Operation mode of stream N (0x208 + 0x10*N)

Field Bit(s) Type Reset Description

RECM 1:0 RW 0

Recording mode
0 Continuously record data
1 Trigger Mask Mode
 Pre-trigger is always recorded but a trigger event
 is detected only once after ARM is set.
2 Single Shot Mode
 Pre-trigger recording is started after ARM is set.
 Then one trigger event is detected and the
 recording is stopped to not use bandwidth for the
 continuous recording of pre-trigger
3 Manual Mode
 After ARM is set, “POST-TRIGGER+1” samples
 are recorded immediately and the recording is
 stopped. The recorder does not wait for the
 external trigger event.

ARM 8 RW 0

This bit is only used for single shot mode.
After a trigger was received, this bit is automatically
cleared.
The ARM bit is high during pre-trigger recording only.
1 Trigger detection is armed
0 Trigger detection is not armed or trigger already
 occured

REC 16 R 0

This bit shows if the recorder is currently recording data.
This is especially interesting in single-shot mode to see
if a recording is still ongoing or already finished.
The REC bit is high during pre- and post-trigger
recording.
1 Data is being recorded
0 No data being recorded, waiting for arming

TODE 24 RW 0 Disable timeout in input stage

FRAMETO 25 RW 0 Enable frame based timeout
The figures below show the behavior in different recording modes.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 22

Continuous (0)

Figure 9: Continuous Recording Mode

In continuous recording mode, each trigger is detected (except it occurs during the post-trigger recording of
the last trigger). The ARM signal is not used and therefore always zero, independently of what is written to it.
Since pre-trigger data is always recording, the REC bit is always high.

Trigger Mask (1)

Figure 10: Trigger-Mask Recording Mode

In trigger mask mode only one trigger is detected after arming the recorder. The ARM bit shows whether the
trigger already occurred or not (on trigger it is reset). Pre-trigger data is always recorded in order to be able to
detect a trigger (and have all pre-trigger data recorded) after arming instantaneously. As a result, the REC
flag is always set.

Single Shot (2)

Figure 11: Single Shot Recording Mode

Single shot mode works similar to trigger mask mode described above. The only difference is that pre-trigger
data recording is started on arming and recording is stopped after all post-trigger data is recorded. As a result,
a stream does not use bandwidth if no recording is ongoing. The drawback is that no pre-trigger data is
available if a trigger occurs directly after arming the recorder.
The REC flag shows whether data is currently recorded. Note that the flag corresponds to the state of the
input engine. So a falling edge of REC does not mean that all data is already written to the memory but only
that all data is recorded (but possibly still in some internal buffers).

Manual (3)

Figure 12: Manual Recording Mode

In manual mode, a recording is executed after writing a one to ARM. Data is only written during the time a
recording is really ongoing. In this mode, the trigger input does not have any effect.

ARM

REC

Trigger

ARM

REC

Trigger

ARM

REC

Trigger

ARM

REC

Trigger

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 23

3.3.2.11 LASTWINn – Last window written to memory for stream N (0x20C + 0x10*N)

Field Bit(s) Type Reset Description

LASTWIN 4:0 R 0 Window number of the last window written to memory
completely

The CTXMEMn values can be used to determine the current state of the recorder and to what window it is
currently writing. However, this does not mean that the data of the last window was already written to memory
completely. The write command is set-up but it could be delayed for example because the bus towards the
memory is not yet accessible or because the memory is busy with some refresh operations.
The LASTWINn register allows finding out if the write of all data of a window fully completed. This register is
only updated when the writing of the data to the memory is acknowledged.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 24

3.3.3 CTXMEMn – Context Memory for Stream N

3.3.3.1 Overview
Byte Address
Offset Name Description

0x000 SCFG Stream configuration register

0x004 BUFSTART Buffer start address

0x008 WINSIZE Window size

0x00C PTR Next memory location to write

0x010 WINEND End address of the currently active window

- - Reserved

3.3.3.2 SCFG – Stream Configuration Register (0x000)

Field Bit(s) Type Reset Description

RINGBUF 0 RW 0

1 Each window is handled as ring-buffer and only
 trigger events lead to switching to the next
 window.
0 Windows are handled as linear buffers. If a
 window is fully written, switching to the next
 window happens automatically (regardless of
 trigger events)

OVERWRITE 8 RW 0

1 Windows that contain data (WINCNTw != 0) are
 overwritten if new data arrives.
0 Windows that contain data (WINCNTw != 0) are
 not overwritten. If new data arrives but the next
 window to use contains data, recording is blocked
 until the window is cleared.

WINCNT 20:16 RW 0 Number of windows to use – 1
(0  1 Window, 13  14 Windows)

WINCUR 28:24 R 0 Window number that is currently in use

Modifying this register while the recording for the corresponding stream is running is not allowed.

If OVERWRITE = ‘0’, the field WINCNTw must be cleared by software whenever the data was read to mark
the window as free for the next recording.
Note that this register contains the state of the recorder state machine that defines calculates the next write
command. This does not mean that all pending commands are yet completed (i.e not all data may yet be
written to memory). To find out if all data of a window was written to the memory, use the LASTWINn register.

3.3.3.3 BUFSTART – Buffer Start Address (0x004)

Field Bit(s) Type Reset Description

ADDR 31:0 RW 0 Start address of the buffer for the corresponding stream
(byte address)

Modifying this register while the recording for the corresponding stream is running is not allowed.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 25

3.3.3.4 Window Size (0x008)

Field Bit(s) Type Reset Description

SIZE 31:0 RW 0

Size of the windows for the corresponding stream (in
bytes).
The size of a window must always be an integer number
of samples. Other values can lead to undefined
behavior.

Modifying this register while the recording for the corresponding stream is running is not allowed.

3.3.3.5 PTR – Next Memory Location to write (0x00C)

Field Bit(s) Type Reset Description

PTR 31:0 R 0 Current address pointer

Note that this register contains the state of the recorder state machine that defines calculates the next write
command. This does not mean that all pending commands are yet completed (i.e not all data may yet be
written to memory).

3.3.3.6 WINEND – End address of the currently active window (0x010)

Field Bit(s) Type Reset Description

ADDR 31:0 R 0 Endaddress of the current window + 1

This register shall not be accessed by software. It does not have any meaning in terms of software. It only
exists for firmware implementation reasons.

3.3.4 WNDWn – Window Memory for Stream N

3.3.4.1 Overview
Byte Address
Offset Name Description
0x000
+ SO*N
+ 0x10*W

WINCNTw Number of samples in window W of stream N

0x004
+ SO*N
+ 0x10*W

WINLASTw Address of the last sample written to window W of stream N

0x008
+ SO*N
+ 0x10*W

WINTSLOw Lower 32-bits of the timestamp of the trigger for window W of
Stream N

0x00C
+ SO*N
+ 0x10*W

WINTSHIw Higher 32-bits of the timestamp of the trigger for window W of
Stream N

W = window number
SO = Stream offset, see below

𝑆𝑆𝑆𝑆 = 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑙𝑙𝑙𝑙𝑙𝑙2(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊)� ∗ 0𝑥𝑥10
The window memory is separated from the rest of the context memory since its size can strongly vary
depending on the stream count and number of windows per stream. To foresee it in the address map of the

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 26

general context RAM could lead to big gaps in the memory map of the context RAM and therefore result in
very inefficient resource usage, especially for low window counts.

3.3.4.2 WINCNTw – Number of samples in window W

Field Bit(s) Type Reset Description

CNT 30:0 RW 0 Number of valid data samples (not bytes) in Window

ISTRIG 31 R 0

This flag says whether a window was finished by a
trigger or not.
1 Window finished by trigger
0 Window exited because full

To acknowledge that the data of a window was read by the software, the WINCNTw register bust be set to
zero.

3.3.4.3 WINLASTw – Address of the last sample written to window W

Field Bit(s) Type Reset Description

LAST 31:0 R 0
Address of the last sample that was written into window
W. This address is required to unwrap data in for
SCFG[RINGBUF]=1.

3.3.4.4 WINTSLOw – Timestamp of the trigger for window W [31:0]

Field Bit(s) Type Reset Description

TSLO 31:0 R 0

Bits [31:0] of the timestamp of the trigger that belongs to
window W.
In case of overflows of the timestamp FIFO, the
timestamp 0xFF..F is used. The same applies for stream
that do not have the timestamping enabled.

3.3.4.5 WINTSHIw – Timestamp of the trigger for window W [63:32]

Field Bit(s) Type Reset Description

TSHI 31:0 R 0

Bits [63:32] of the timestamp of the trigger that belongs
to window W.
In case of overflows of the timestamp FIFO, the
timestamp 0xFF..F is used. The same applies for stream
that do not have the timestamping enabled.

Paul Scherrer Institut • 5232 Villigen PSI psi_multi_stream_daq.docx / 26.07.2024 / page 27

4 Implementation Details

4.1 Clock Crossings
The figure below roughly shows the setup of the clock domains and the clock domain crossings (CDC) in
between them.
All configuration and status data that must be passed between the register interface clock domain and the
clock domains of individual data streams is clock-crossed inside the input logic entity. As a result, the clocks
of the individual streams are only required inside this entity which eases understanding as well as physical
implementation.
For the same reason the clock crossing of the main data stream to the memory interface clock domain is
done inside the input logic.
The maximum level of the input FIFO is detected inside the register interface. This detection is done on the
source clock domain (memory interface) to avoid peaks being missed because of CDC effects.
The context memory is a dual-port RAM with ports running on register interface and memory interface clocks,
so it serves as clock-crossing on itself.

Configuration data for the acquisition state machine (enable signals for individual streams) and the IRQ are
clock-crossed inside the register interface.

Figure 13: Clock Crossings

Tmem_Clk
S_Axi_Aclk

Register Interface

Input Logic DAQ Statemachine

Str_Clk

Smem_Clk
M_Axi_Aclk

CDC

Context
Memory CDC

Max.
Det.

CDC

Co
nf

ig

St
at

us

Co
fn

ig

IR
Q

Data

Le
ve

l

	1 Introduction
	1.1 Feature List
	1.2 Memory Organization

	2 Architecture
	2.1 Overview
	2.2 Input Logic
	2.3 Acquisition Logic
	2.3.1 Context RAM
	2.3.2 Control State Machine
	2.3.3 DMA Logic

	2.4 Memory Interface Master

	3 Interfaces
	3.1 Generics
	3.1.1 Common Generics
	3.1.2 Generics for AXI-4 Version only
	3.1.3 Generics for Tosca2 Version only
	3.1.4 Generic Configuration Guide

	3.2 Ports
	3.2.1 Common Ports
	3.2.2 Ports for AXI-4 Version only
	3.2.3 Ports for Tosca2 Version only

	3.3 Address Map
	3.3.1 Overview
	3.3.2 ACQCONF – Acquisition Configuration
	3.3.2.1 Overview
	3.3.2.2 GCFG – General Configuration Register (0x000)
	3.3.2.3 GSTAT – General Status Register (0x004)
	3.3.2.4 IRQVEC – Interrupt Vector Register (0x010)
	3.3.2.5 IRQENA – Interrupt Enable Register (0x014)
	3.3.2.6 STRENA – Data Stream Enable Register (0x020)
	3.3.2.7 ACPCFG – AXI Cache and Protection Configuration Register (0x024)
	3.3.2.8 MAXLVLn – Maximum FIFO level for stream N (0x200 + 0x10*N)
	3.3.2.9 POSTTRIGn – Post-trigger samples for stream N (0x204 + 0x10*N)
	3.3.2.10 MODEn – Operation mode of stream N (0x208 + 0x10*N)
	3.3.2.11 LASTWINn – Last window written to memory for stream N (0x20C + 0x10*N)

	3.3.3 CTXMEMn – Context Memory for Stream N
	3.3.3.1 Overview
	3.3.3.2 SCFG – Stream Configuration Register (0x000)
	3.3.3.3 BUFSTART – Buffer Start Address (0x004)
	3.3.3.4 Window Size (0x008)
	3.3.3.5 PTR – Next Memory Location to write (0x00C)
	3.3.3.6 WINEND – End address of the currently active window (0x010)

	3.3.4 WNDWn – Window Memory for Stream N
	3.3.4.1 Overview
	3.3.4.2 WINCNTw – Number of samples in window W
	3.3.4.3 WINLASTw – Address of the last sample written to window W
	3.3.4.4 WINTSLOw – Timestamp of the trigger for window W [31:0]
	3.3.4.5 WINTSHIw – Timestamp of the trigger for window W [63:32]

	4 Implementation Details
	4.1 Clock Crossings

