

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

Embedded Event Receiver (EEVR)

evr320
Revision 2.1

Firmware Data Sheet

PSI, 03.04.2018

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

Content

Table of Contents
1 Introduction ... 3

1.1 Features ... 3
1.2 Definitions, acronyms, and abbreviations ... 3
1.3 References ... 3
1.4 History .. 4

2 Functional Description .. 5
2.1 Firmware Description ... 5
2.2 Ports ... 6
2.3 IP Configuration ... 7
2.4 Design constraints .. 10

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

1 Introduction

The SwissFEL accelerator placed at PSI use a timing system provided by Micro-Research
Finland [1]. The timing system consists of one Event Generator (EVG) and several Event-
Receivers (EVR). Both are realized as a VME card. The communication between timing
components is realized with fiber optical links. Some of the accelerator systems which need the
timing system are realized as a stand-alone device with no VME bus and no access to the VME
EVR. Most of these devices have optical connector which can be used to connect to the timing
system. Therefore an Embedded Event Receiver (EEVR) was implemented which offers subset
of EVR functions. The EEVR is a VHDL component which can be integrated with existing Xilinx
FPGA projects.

1.1 Features

EEVR has the following properties:

 Distributed Bus decoder with update rate at 142.8 MHz

 Decoder of four user defined events with events table configurable in run-time

 Local memory for segmented data buffer

 Ready for 142.8 MHz clock recovery with deterministic phase

 Optional Features:
o Event Recorder
o AXI4.0 interface
o TOSCA-II Interface to use with IFC1210

 Portable to Xilinx FPGA:
o Kintex
o Virtex-6

1.2 Definitions, acronyms, and abbreviations

FPGA Field Programmable Gate Array

EVG Event Generator

EVR Event Receiver

EEVR Firmware Event Receiver

AXI Advanced eXtensible Interface

1.3 References

[1] “Event System with Delay Compensation– VME-EVM-300, VME-EVR-300, mTCA-EVR-300,
PCIe-EVR-300DC, Technical Reference VME-EVM-300 Firmware 22030207, VME-EVR-300
Firmware 12070207, PCIe-EVR-300DC Firmware 17060207, mTCA-EVR-300 Firmware
18070207”, Micro-Research Finland, 3. May 2017

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

1.4 History

Revision Date Author Description

2.0 26.05.2017 G. Marinkovic Version tested with GPAC board, Event Generator
and IOXOS IOC.

2.1 03.04.2018 P. Bucher Event Recorder Functionality added, tested on ifc1210
with Event Generator.

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

2 Functional Description

The EEVR was implemented in VHDL. It contains device specific primitives such as MGTs and
FIFOs. Therefore its portability is limited - see feature list in section 1.1. The component is
intended to be instantiated in other bigger projects which need timing information.
The Event Recorder functionality can be added on instantiation to verify the appeared events
and their arrival time (in clock cycles) form the configurable Start-of-Sequence (SOS) Event.
This monitoring functionality applies as well for the arrival time for the Segments of the
Segmented Data Buffer.
As an option the EEVR component is wrapped in a Xilinx Vivado IP component with slave AXI4
interface or can be used with the TOSCA-II Interface to use with IFC1210 based Projects.

2.1 Firmware Description

The firmware consists of MGT component, decoders and AXI interface.

User

Events

Decoder

Data

Buffer

Decoder

Dual Port

Memory

2048B

parallel

loopback

clock

recovery

data

aligment

2856 Mbps

from

EVG

User

Events

Table

User

Events

User

Event

Codes4x8B

4

data[16]

address[11]

data[8]

usrclk

address[9]

data[32]

142.8 MHz

refclk

recclk

142.8 MHz

TX

RX

MGT

AXI Slave AXI

AXI aclk

Figure 1: Block diagram of the evr320 firmware

The MGT component is built of MGT primitive and associated logic. The MGT primitive
instantiation is specific for each FPGA chip. Currently only one type of the MGT primitive is
supported: GTX for Kintex-7 FPGAs. The MGT component does not use internal RX elastic
buffer and the comma alignment is done in user logic. The reason for that is to get the
recovered clock 142.8 MHz with deterministic phase with respect to the source. All signals
derived from the serial data stream are also phase align to the recovered clock. The data buffer
memory was implemented as asynchronous dual port memory. The user can connect the read
port directly to its own clock domain. The MGT component is configured to work in far-end
parallel loopback mode. This mode allows simultaneous data receiving on RX parallel port and
data forwarding to the TX parallel port.

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

2.2 Vivado IP Ports

This chapter describes the ports and their uses.

Figure 2: Component Overview

Port name In/Out Type Description

EVR_TRG_EXT in std_logic External trigger input. Could be used for example to
connect an external timing input

EVR_GTX_REFCLK in std_logic_vector(1:0) Reference clock 142.8 MHz for MGT. The clock
frequency and stability has to be within the range
specified by Xilinx for the GTX.

EVR_GTX_RX_P
EVR_GTX_RX_N

in std_logic Differential serial data RX input for the MGT0. These
inputs are used to connect timing input serial stream.

EVR_GTX_TX_P
EVR_GTX_TX_N

out std_logic Differential serial data TX output for the MGT0. These
outputs are used to connect timing output serial
stream.

EVR_CLK out std_logic This clock comes from the clock recovery circuit in
RX of MGT. It has deterministic phase with respect to
the clock source in the EVG.

EVR_EVENTS out std_logic_vector(3:0) User defined events decoder output. The bits
generate single clock cycle pulses of o_clk_142MHz8
when the event is received. The pulses are generated
when event configured in

evr_params.event_numbers are detected and

only during 10 ms after the last correctly received
segmented data buffer frame.

EVR_IRQ out std_logic This signal is set if an event EVR_EVENTS was
decoded and triggered some actions.

EVR_LED out std_logic_vector(1:0) These signals are intended for ease of use. They
sould indicate to the user of a hardware if the link has
loss of sync and if it was triggered in the last 10 ms.
EVR_LED (0): denotes the EVR_EVENTS(0) did
toggle in the last 10 ms.
EVR_LED (1): denotes a loss of sync.

s00_axi_aclk in std_logic User clock to clock ports for evr320 params, status
and memory interface. It can have arbitrary
frequency.

s00_axi_aresetn in std_logic User asynchronous low active reset.

s00_axi in/out various This is the AXI4 bus interface.

debug_clk out std_logic Developer ILA interface clock.

debug out std_logic_vector(127:0) Developer ILA interface data.

Table 1: Port description of evr320_v2.0

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

2.3 Configuration

The component starts working automatically whenever the timing signal is connected the RX
input. Only the user events table has to be configured to detect the required events in run time.

2.3.1 Control and Status Register Map:

Address Size Access Description

0x00000000 32bit RO MGT status vector:
bit[0] – GTX PLL lock detected
bit[1] – RESETDONE
bit[8] – LOSSOFSYNC
bit[9] – RESETDONE (for legacy reasons with old EVR)

0x00000004 32bit RW User events codes:
bit[0:7] – user event 0 code
bit[8:15] – user event 1 code
bit[16:23] – user event 2 code
bit[24:31] – user event 3 code

0x00000008 32bit RW MGT control vector:
bit[0] – Reset GTX. This will completely reset the GTX component.

0x0000000C 32bit RW User events codes: (not implemented for ifc1210)
bit[24] – ‘0’ := Use decoded MGT events / ‘1’ := Use external LVDS
trigger

0x00000010 32bit RW Decoder enable on receiving event:
bit[0] – ‘1’ := enable decoding of user event 0 code
bit[8] – ‘1’ := enable decoding of user event 1 code
bit[16] – ‘1’ := enable decoding of user event 2 code
bit[24] – ‘1’ := enable decoding of user event 3 code

0x00000014 32bit RW reserved for -Force Event-

0x00000018 32bit R reserved for –Implementation Options-

0x0000001C 32bit R Recovered Clock Frequency [Hz] (ifc1210 only)

0x00000020 32bit RW Minimum number of correctly received segmented data buffer frames
necessary in order to allow triggering on events. (default: 100/0x64)

0x00000024 32bit RW Minimum time with correctly received segmented data buffer frames
necessary in order to allow triggering on events. (default: 0x15CA20)

0x00000040 32bit RW Event Recorder - Control:
bit[0] – ‘1’ := enable decoding of sos event (start-of-sequence)
bit[8:15] – sos event code (default: 0x20/32)

0x00000044 32bit RW Event Recorder - Read Handshake:
bit[0] – ‘1’ := data valid in buffers
bit[8] – ‘1’ := data error on readout (recommendation: discard data)
bit[16] – ‘1’ := data read acknowledge (usage: write ‘1’ after buffer read)
bit[24] – ‘1’ := error acknowledge (usage: write 1’ to clear data error
flag)

0x00000048 32bit RW Event Recorder - User Event Counter
Events: 0x01-0x6F and 0x80-0xFF (usage: counter value defines how
many entries in event recorder buffers are valid)

Table 2: Control and Status Register Address map of evr320

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

2.3.2 Segmented Data Buffer Map:

 Address Size Access Description

0x00000080-
0x0000087F

2KB R Segmented data buffer

0x00000880-
0x0000107F

2KB R Segmented data buffer synced with user event 0

0x00001080-
0x0000187F

2KB R Segmented data buffer synced with user event 1

0x00001880-
0x0000207F

2KB R Segmented data buffer synced with user event 2

0x00002080-
0x0000287F

2KB R Segmented data buffer synced with user event 3

Table 3: Segemented Data Buffer Address map of evr320

2.3.3 Event Recorder Map:

Address Size Access Description

0x00002880-
0x0000307F

2KB R Segmented data buffer synced with SOS

0x00003080-
0x0000347F

1KB R Event Numbers Timestamp (sorted in time domain, 32bit aligned)
bit[0:31] – event code timestamp [clock cycles]

0x00003480-
0x0000367F

512B R Segment Timestamps from data buffer (32bit aligned)
bit[0:31] – Segment Start timestamp [clock cycles]

0x00003680-
0x0000377F

256B R Event Numbers (sorted in time domain, Byte aligned)
bit[0:7] – event code 1st (typical SOS code)
bit[0:7] – event code 2nd
bit[0:7] – event code 3rd
 :
bit[0:7] – event code 255

th

0x00003780-
0x0000387F

256B R Event Flags (sorted by event code, Byte aligned)
bit[0] – event code 0
bit[0] – event code 1
bit[0] – event code 2
 :
bit[0] – event code 255

Table 4: Event Recorder Address map of evr320

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

2.4 Event Recorder

Idem to the basic EEVR events, the Event Recorder triggers onto a configurable event (Start-of-
Sequence Event or SOS-Event, default 32/0x20) when the Enable Bit is set (default off=’0’).

2.4.1 Data Readout
To guarantee valid data on readout the following rules must be followed.

- Minimum number of correctly received data buffer frames must set >= 1
- Minimum time of correctly received data buffer frames must be >= 0x15CA20 for

SwissFEL@100Hz with 142.8MHz reference clock
- The software needs to readout the desired data and confirm the termination with sending

the Read Ack before the next SOS Event
Two typical sequences are shown in Figure 3 and Figure 4 with the separate Acknowledge
signals for each status flag.

SOS Event (IRQ)

Data Valid

Read Ack

Error

Error Ack

Software Tasks Handle IRQ à Read Data Send ACK à Read Error Read Data Read ErrorHandle IRQ à Send ACK à

Figure 3: Normal Readout Sequence

SOS Event (IRQ)

Data Valid

Read Ack

Error

Error Ack

Software Tasks Handle IRQ à Read Data

Data Valid not cleared with Read ACK before next SOS Event. This
results in Error being set. IRQ should be masked by SW and

therefore the Data Block will be lost.

Send Error ACKIRQ ignored/masked Read ErrorSend ACK à Handle IRQ à

Data OK OKLost OK

Figure 4: Erroneous Readout Sequence

2.4.2 Data Validation
The User Events Counter register represents the amount of valid entries in the memory blocks
Event Numbers and Event Numbers Timestamp.

Paul Scherrer Institut • 5232 Villigen PSI evr320.rtf / 03.05.2018 / $Revision: 1.1 $

2.5 Design constraints

The design needs to specify the timing of the MGT output and all logic used with by the 142.8
MHz recovered clock.

